• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stable confinement of Fe/Fe3C in Fe,N-codoped carbon nanotube towards robust zinc-air batteries

    2021-07-01 05:29:34LingoZongXinChenShumingDouKiciFnZuminWngWenjunZhngYunmeiDuJieXuXiofeiJiQiZhngXiLiYiDengYnnChenLeiWng
    Chinese Chemical Letters 2021年3期

    Lingo Zong,Xin Chen,Shuming Dou,Kici Fn*,Zumin Wng,Wenjun Zhng,Yunmei Du,Jie Xu,Xiofei Ji,Qi Zhng,Xi Li,Yi Deng,Ynn Chen,*,Lei Wng

    a Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology,Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science,MOE,State Key Laboratory of Eco-chemical Engineering,College of Chemistry and Molecular Engineering,Qingdao University of Science and Technology,Qingdao 266042,China

    b School of Materials Science and Engineering,Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education,Tianjin Key Laboratory of Composite and Functional Materials,Tianjin University,Tianjin 300072,China

    c Centre for Clean Environment and Energy,School of Environment and Science,Griffith University,Queensland 4222,Australia

    d Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China

    ABSTRACT Catalytic oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)have garnered great attention as the key character in metal-air batteries.Herein,we developed a superior nonprecious bifunctional oxygen electrocatalyst,fabricated through spatial confinement of Fe/Fe3C nanocrystals in pyridinic N and Fe-Nx rich carbon nanotubes(Fe/Fe3C-N-CNTs).During ORR,the resultant electrocatalyst exhibits positive onset potential of 1.0 V(vs.RHE),large half-wave potentials of 0.88 V(vs.RHE),which is more positive than Pt/C(0.98 V and 0.83 V,respectively).Remarkably,Fe/Fe3C-N-CNTs exhibits outstanding durability and great methanol tolerance,exceeding Pt/C and most reported nonprecious metal-based oxygen reduction electrocatalysts.Moreover,Fe/Fe3C-N-CNTs show a markedly low potential at j=10 mA/cm2,small Tafel slopes and extremely high stability for OER.Impressively,the Fe/Fe3C-N-CNTs-based Zn-air batteries demonstrate high power density of 183 mW/cm2 and robust charge/discharge stability.It is revealed that the spatial confinement effect can impede the aggregation and corrosion of Fe/Fe3C nanocrystals.Meanwhile,Fe/Fe3C and Fe-Nx play synergistic effect on boosting the ORR/OER activity,which provides an important guideline for construction of inexpensive nonprecious metal-carbon hybrid nanomaterials.

    Keywords:Patial confinement Nonprecious metal Bifunctional Oxygen electrocatalyst Synergistic effect Zn-air batterie

    Electrochemical oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)have attracted great interests as a vital process of metal-air batteries and fuel cells[1,2].The commercialization of these energy conversion and storage devices prominently relies on the manufacture of low cost,highly active and stable ORR/OER electrocatalysts[3].At present,the most widely employed ORR/OER electrocatalysts are noble metal-based materials.Unfortunately,relative scarcity,high cost,poor durability and susceptibility to poisoning have impeded practical applications of noble metal-based materials[4].Thus,great efforts are needed to develop cost effective and earth abundant electrocatalysts with comparable or even better electrocatalytic activity for ORR/OER than that of precious metal-based materials.

    To date,numerous nonprecious metal bifunctional oxygen electrocatalysts have been developed,including heteroatomsdoped carbon nanomaterials[5,6],metal oxides[7–9],metal oxides supported on carbon materials and transition metalnitrogen-carbon materials(TM- N-Cs,TM=Fe,Co)[10–12],etc.Especially,TM-N-Cs show exceptional catalytic activities towards ORR,which are better or comparable to benchmark precious metals[13].However,most of them presents far from satisfactory catalytic activity and stability towards OER,owing to the serious deterioration of principal features of active sites,including electrochemical oxidation or defunctionalization of carbon atoms located at edges/defects sites or reversible adsorption of oxygen groups on carbon atoms adjacent to TM-Nxsites in the potential range for OER[14–16].Recently,tremendous efforts have been devoted to alleviate the degradation of active sites,such as introducing proper foreign atom into carbon or integrating metalbased nanoparticles with well-defined graphitized carbon[17–19].Amongst,transition metal particles encapsulated in nitrogen doped carbon(M@NC)have been highlighted as fabulous bifunctional oxygen electrocatalyst,which is likely to be used in zinc-air battery[18,19].

    Recently,carbon nanotubes(CNTs)accompanied with intrinsically remarkable electrical conductivity,high chemical stability and unique structural features become attractive when used as matrix for nonprecious metal and noble metal electrocatalysts for ORR/OER[20,21].CNTs-based hybrids are beneficial to increase the number of active centers,promote the mass transportation and improve electrochemical corrosion resistance[22–24].By taking advantage of the high surface area and porous nanostructures,CNTs as well as the rich active sites exhibit excellent electrocatalytic performance[25].Apart from the above aspect,TM-Nxactive sites bonded or linked on CNTs can boost the electrocatalytic activity by the rapidly electron transfer from current collector to catalytically active sites[26].Notably,CNTs shells encapsulated transition metal nanocrystals provide remarkable ORR activity because of the electron transfer from metal nanoparticles to carbon shells,leading to the decreased work function on carbon shell surface[27].Moreover,recent investigations elucidate that nitrogen doping is an effective strategy to hinder the corrosion and enhance the stability of carbon-based materials through modifying the charge distribution in the carbon rings.Increasing the doping level of nitrogen cannot only augment the exposure of catalytic active sites but also stabilize the carbon-based support,thus boosting the performance of the electrocatalysts[28].However,very few progress have been made in employing CNTs as carbon matrix for Fe-N-C electrocatalysts because of the tedious processes of surface treatment[29].In these regards,controllable fabrication of Fe and N doped CNTs with stable spatial confined Fe/Fe3C as bifunctional electrocatalyst for ORR/OER is desirable.Therefore,it is still fascinating and challenging to explore facile and cost-effective strategy to prepare non-noble metal-based oxygen electrocatalysts with decent activity,proper architecture and excellent interaction between carbon and Fe/Fe3C nanocrystals.

    In this study,we present a scalable and straightforward approach to produce highly active ORR/OER electrocatalyst:Fe,N-doped nanotubes with spatial confined Fe/Fe3C nanocrystals.Through pyrolysis,the in situ generated Fe/Fe3C nanocrystals are well spatial confined by Fe,N-doped CNTs.In this spatial confinement effect,steric effect can impede the corrosion and aggregation of Fe/Fe3C nanocrystals in harsh medium during electrocatalysis.The in-depth investigation indicates that Fe/Fe3C nanocrystals can dramatically boost the electrocatalytic activity of active sites.The synergetic effect between Fe-Nxactive sites,Fe/Fe3C nanocrystals and Fe,N-doped CNTs architecture elevates electrocatalytic activity of Fe/Fe3C- N-CNTs bifunctional oxygen electrocatalyst.Notably,the fabricated rechargeable Zn-air batteries possess large powder density of 183 mW/cm2,excellent durability of 195 h and small charge-discharge voltage gap of 0.81 V.

    Materials:Melamine(Sigma Aldrich),Nafion solution(Sigma Aldrich),NaNO3,FeCl3·6H2O,KOH and HCl(Sinopharm Chemical Reagent Co.,Ltd.),20 wt% commercial Pt/C and 99.95% RuO2(Alfa Aesar).All chemicals were used without further purification.

    Efficient Fe/Fe3C- N-CNTs bifunctional oxygen electrocatalyst was synthesized using straightforward sol-gel approach.Firstly,1.2 g glucose and 1.6 g NaNO3were firstly dissolved in 30 mL DI water to form a homogeneous solution.Melamine(1.2 g)was dump in and stirred for 10 min.Secondly,6 mL HCl(0.5 mol/L)and 10 mL FeCl3(0.5 mol/L)solution were added into the solution to form homogeneous supramolecular hydrogel,and the formed hydrogel state was stabilized through holding for 12 h.The resulted products were washed with Milli-Q water and freeze dried.And then they were heated in N2atmosphere 800°C for 1 h(gas flow rate:50 sccm,5°C/min).The obtained products were then washed thoroughly by Milli-Q water to wipe off the remained NaCl impurity and subsequently freeze dried.The final oxygen electrocatalyst denoted as Fe/Fe3C- N-CNTs was collected for further characterization and test.

    The N-doped carbon materials(N-C)electrocatalyst was fabricated according to the strategy for preparing Fe/Fe3C- N-CNTs without introduction of FeCl3·6H2O.

    The obtained electrocatalysts were characterized using Scanning electron microscope(SEM,FE-SEM,S4800,Hitachi),transmission electron microscope(TEM,JEM-2100 F),high angle annular dark field scanning transmission electron microscope(HAADF-STEM)and powder X-ray diffraction(XRD Rigaku-Dmax 2500 diffractometer with Cu-Kα radiation,λ= 0.15405 nm).The chemical compositions and chemical valence state were inspected by X-ray photoelectron spectroscopy(XPS,Kratos Axis ULTRA).The specific surface area of the result electrocatalysts were characterized using nitrogen adsorption/desorption at 77 K(Micromeritics ASAP 2020 physisorption analyzer).Raman spectroscopy was obtained on the confocal Raman microscope with the laser wavelength of 532 nm(LabRAM HR800).

    The electrochemical performance was conducted on electrochemical workstation(Gamry,USA),which equipped with the Pine’RDE(rotational disk electrode,D= 5 mm)and RRDE(ringdisk electrode,D= 5.61 mm).The rotating glassy carbon electrode was polished by Al2O3.The catalyst ink was prepared by mixing 5.0 mg of electrocatalysts in the mixed solution(730.0 μL of water,240.0 μL of isopropanol and 30.0 μL of Nafion).The electrocatalyst loading was 0.510 mg/cm2.

    Glassy carbon electrode with electrocatalysts,Ag/AgCl(saturated KCl)and graphite rod were applied as working electrode,reference electrodes and counter electrodes,respectively.0.1 mol/L KOH or 0.5 mol/L H2SO4solution was used as electrolyte solution.For comparison,the commercial Pt/C electrocatalyst ink was also prepared.The ORR performance was evaluated by bubbling the alkaline electrolyte with high purity O2.The working electrode was cycled 50 circles at a scan rate of 50 mV/s before the measurement.The LSV polarization curves were performed from 1.2 V to 0.2 V(vs.RHE)with different electrode rotating rates(scan rate of 5 mV/s).All the obtained LSV polarization curves were corrected with iRcorrection.

    For the calculation of H2O2%and electron transfer number(n),RRDE measurement was conducted in O2saturated 0.1 mol/L KOH and the Pt ring electrode potential was constant at 1.2 V(vs.RHE).The H2O2% and n were calculated by the following equations:

    Here,Idiskand Iringwere the disk current and ring current,and N=0.37 was the current collection efficiency of Pt ring.

    The glassy carbon electrode(D=5 mm,0.196 cm2)loaded with resulted electrocatalysts was used as the working electrode,Hg/HgO electrode and graphite rod as reference and counter electrode,respectively.The catalyst loading of RuO2(or the obtained electrocatalysts)was 0.510 mg/cm2.The LSV were obtained at a scan rate of 5 mV/s and 1600 rpm to alleviate the O2bubbles on working electrode surface.The recorded potential was converted to the reversible hydrogen electrode(RHE),following the equation of ERHE=EHg/HgO+0.926 V- 95% iR in 1.0 mol/L KOH solution.

    The electrocatalyst slurry was prepared by mixing electrocatalysts(5 mg)in isopropanol(950 μL)/Nafion(50 μL)mixed solution,followed by ultrasonication.6 mol/L KOH solution was used as an electrolyte.Air cathode was fabricated by uniformly coating electrocatalyst slurry onto the carbon paper followed by drying at room temperature.The loading capacity for the obtained electrocatalysts is 1 mg/cm2.Zn plate was used as the anode of the constructed rechargeable Zn-air battery with 6 mol/L KOH solution as electrolyte.The rechargeable Zn-air battery was conducted on home-built cells.

    The growth of Fe/Fe3C- N-CNTs is schematically demonstrated in Fig.1a.Typically,the hydrogel is firstly prepared through forming metal-melamine coordination with the assistance of sodium nitrate.Then,the hydrogel mixture composed of glucose,melamine and FeCl3is carbonized under the N2atmosphere for the efficient development of Fe/Fe3C- N-CNTs.During the pyrolysis process,Fe3+is reduced to Fe by the carbothermal reduction reactions and then Fe reacted with the carbon,leading to the hybrid of Fe and Fe3C[30].X-ray diffraction(XRD)pattern is employed to distinguish the composition of the obtained electrocatalyst.As elucidated in Fig.1b,Fe/Fe3C- N-CNTs display obvious sharp peaks at 26.0°,43.7°,44.7°and 65.0°,which can be assigned undisputedly to(002)plane of graphitic carbon,(102)plane of Fe3C and(110)and(200)planes of Fe,respectively.The XRD results signify that graphitic carbon,Fe and Fe3C consist in Fe/Fe3C- NCNTs.In this reaction system,glucose provides carbon source for the controlled growth of Fe/Fe3C- N-CNTs catalyzed by iron species[31].It is revealed that Fe and Fe3C can promote the graphitization of the surrounding carbon,and thus Fe/Fe3C nanocrystals are encompassed by the graphitic carbon.

    The morphology of hydrogel precursor is firstly investigated by scanning electron microscopy image(SEM).As shown in Fig.S1(Supporting information),the aerogel is constructed by smooth and ultralong nanofiber with a diameter of 240 nm.The representational transmission electron microscopy image(TEM)in Fig.1c further confirms the growth of CNTs,which should be originated from the transportation and realignment of carbon atoms catalyzed by the added iron in the pyrolysis process.The bright-field high-resolution TEM image(HRTEM,Fig.1d)discloses that iron-containing nanoparticles confined by CNTs are well crystallized with the lattice distance of 0.201 nm(corresponding to the(110)crystallographic plane of cubic metallic Fe(PDF No.06-696)or(220)plane of Fe3C(PDF No.35–772).Energy dispersive Xray mapping(EDX)is also employed to illustrate the different elements distributions.Remarkably,the corresponding High-angle annular dark-field STEM image(HAADF-STEM)of Fig.1e and element mappings( Figs.1f–h)reveal highly dispersed Fe,Fe3C nanocrystals and uniform distributions of C,N,Fe elements.The detected Fe signal illustrates the successful dispersion of Fe in Ndoped CNTs.

    Fig.1.(a)Schematic illustration for the preparation process of Fe/Fe3C- N-CNTs.(b)XRD of Fe/Fe3C- N-CNTs.(c)TEM image.(d)High-magnification TEM image.(e)HAADFSTEM image of Fe/Fe3C- N-CNTs.Corresponding elemental mapping of(f)C,(g)N and(h)Fe.

    Fig.2.(a)N2 adsorption-desorption isotherms,the pore size distribution curve(inset)of Fe/Fe3C- N-CNTs.(b)Raman spectra of the Fe/Fe3C- N-CNTs and N-C.(c)High-resolution N 1s spectrum of Fe/Fe3C- N-CNTs.(d)The Fe 2p XPS spectrum of Fe/Fe3C- N-CNTs.

    In addition,N2adsorption/desorption isotherm(Fig.2a)demonstrates large Brunauer-Emmett-Teller(BET)surface area of Fe/Fe3C- N-CNTs(245.46 m2/g)with meso/macroporous characteristic,favoring the mass transport and exposure of more active sites.Raman spectroscopy is conducted to describe the carbon structure of Fe/Fe3C- N-CNTs,and the corresponding Raman spectra(Fig.2b)clearly display characteristic D peak(defect band)and G peak(graphite band).As characterized by the intensity ratio of ID/IG,it suggests that Fe/Fe3C- N-CNTs show lower ID/IG(0.97)than N--C(1.0),signifying higher degree of graphitization and excellent electrical conductivity.The improved graphitization degree is attributed to the Fe catalyzed graphitization mechanism in the high temperature pyrolysis process[32].To further investigate the composition and chemical states of Fe/Fe3C- NCNTs,X-ray photon spectroscopy(XPS,Fig.2c)characterization is adopted.The N 1s spectrum indicates the coexistence of graphitic N(401.2 eV),pyrrolic N(399.6 eV),Fe-Nx(399.0 eV)and pyridinic-N(398.1 eV)[33,34].As shown in Fig.2d,the high-resolution Fe 2p spectrum indicates that these peaks are identified as Fe0(708.1 eV),Fe2+(710.7 eV,723.9 eV),Fe3+(713.6 eV,726.7 eV)and satellite peak(716.5 eV,729.6 eV)[35].It should be noted that the graphitization of carbon is another key factor that influences the stability of the electrocatalyst.Though the Fe-Nxsingle atom structure is formed at relative low pyrolysis temperature,e.g.,700°C,the catalytic activity and stability are inferior than the one prepared at higher temperature.The amorphous or low graphitized carbon,which experiences obviously structure decomposition at high oxidizing potentials should be avoided in the prepared electrocatalysts[36,37].

    To explore the effect of pyrolysis temperature on ORR activities,the electrocatalytic performance of Fe/Fe3C- N-CNTs pyrolyzed at different temperatures of 700°C,800°C and 900°C are demonstrated in Fig.S2(Supporting information).In addition,the N2adsorption/desorption isotherm curves(Fig.S3 in Supporting information)show similar high specific surface area of 226.3 m2/g for Fe/Fe3C- N-CNTs-700,245.5 m2/g for Fe/Fe3C- NCNTs-800,275.3 m2/g for Fe/Fe3C- N-CNTs-900),thus eliminating the effect of specific surface area on ORR activity.As displayed in Fig.S2,Fe/Fe3C- N-CNTs-800 show the highest Eonset(onset potential),most positive E1/2(half-wave potential),and largest j(limiting current density).The results testify that the pyrolysis temperature at 800°C seemed to be the optimal temperature in the synthesis of Fe/Fe3C- N-CNTs electrocatalyst.The weak electrocatalytic performance of Fe/Fe3C- N-CNTs-700 may due to the lower graphitization,which is demonstrated by Raman spectra(Fig.S4 in Supporting information).For the Fe/Fe3C- NCNTs-900,despite the outstanding graphitic degree,they own low N content and poor active N species(pyridinic-N),as illustrated by XPS analysis(Fig.S5,Tables S1 and S2 in Supporting information).Thus,the influence of pyrolysis on electrocatalytic activity may be attributed to the synergistic effect of active N doping and graphitic degree of the electrocatalysts obtained at different pyrolysis temperatures.

    Fig.3a reveals the linear sweep voltammetry(LSV)results of Fe/Fe3C- N-CNTs,N-C and benchmark Pt/C.The LSV curves show that the control electrocatalyst(N-C)displays the worst ORR performance in terms of the onset potential Eonset,half-wave potential E1/2and limited current density j.Significantly,when Fe/Fe3C nanocrystals are introduced into the carbon matrix,the ORR activity of Fe/Fe3C- N-CNTs dramatically leaped forward according to the largest Eonset(1.0 V)and most positive E1/2(0.88 V),which is 110 mV and 50 mV more positive than that of N-C(E1/2=0.77 V),benchmark Pt/C(E1/2=0.83 V),respectively.The superior ORR activity of Fe/Fe3C- N-CNTs is more excellent than that of most nonprecious metal electrocatalysts[38,39]and CNT-based carbon electrocatalysts(Table S3 in Supporting information).The largest j indicates that the conductivity of Fe/Fe3C- N-CNTs is boosted,which may be due to the improvement of graphitization degree in the presence of Fe/Fe3C nanocrystals and N doping during pyrolysis process[40].The electron transfer number(n)for ORR is acquired from LSV curves under different rotation speeds(Fig.3b)according to the Koutechy-Levich(K–L)plots.The K–L plots(Fig.3b inset)show good linear relationships,with similar slope of 3.93,confirming a four-electron pathway for ORR process.It is well known that a smaller Tafel slope signifies the faster kinetic process for ORR[41].Fig.3c shows the smallest Tafel plots of~84 mV/dec than that of Pt/C(92 mV/dec)and N-C(163 mV/dec)suggesting outstanding ORR kinetics.

    To further evaluate the ORR process of Fe/Fe3C- N-CNTs,RRDE measurements is employed.As shown in Fig.3d,Fe/Fe3C- N-CNTs indicate high disk current density for ORR and much lower ring current density for H2O2oxidation.Fig.S6(Supporting information)reveals the electron transfer numbers(n)and H2O2%calculated from the RRDE curves.As shown in Fig.S6,the H2O2%is strikingly suppressed by Fe/Fe3C- N-CNTs,and the H2O2%is lower than 10%.The large electron transfer number(n)for Fe/Fe3C- N-CNTs indicates that Fe/Fe3C- N-CNTs possess highly efficient four-electron transfer process and superior electrocatalytic efficiency.Thus,the analysis results illustrate that it is allimportant to introduce Fe/Fe3C nanocrystals into the material for attaining exceptionally high performance,which can facilitate the formation of Fe-Nxactive species.In addition,the stability and methanol tolerance are also explored.Notably,Fe/Fe3C- N-CNTs show strong long-term durability than Pt/C,as attested by the slower decay rate of the chronoamperometry measurement(Fig.3e).After 20,000 s stability test,the TEM image of Fe/Fe3C- N-CNTs displays exceptional morphological stability(Fig.S7 in Supporting information),elucidating the encouraging stability of the as-synthesis electrocatalyst.After the injection of methanol into the electrolyte solution,the current density of benchmark Pt/C decrease rapidly,whereas no significant change of Fe/Fe3C- N-CNTs(Fig.3f).These experimental results unambiguously testify that Fe/Fe3C- N-CNTs own excellent methanol tolerance much better than and superior stability stronger than benchmark Pt/C.The superior ORR activity of Fe/Fe3C- N-CNTs under alkaline electrolyte stimulates us to study the ORR performance in 0.5 mol/L H2SO4acidic media.As shown in Fig.S8a(Supporting information),it is demonstrated that the Eoneset(0.84 V)of Fe/Fe3C- N-CNTs is only 60 mV lower than the benchmark Pt/C(0.90 V).Remarkably,Fe/Fe3C- N-CNTs exhibit strong robustness in acidic media,as disclosed by the very weak decay(5%,1600 rpm)after 20,000 s continuous cycles(Fig.S8b in Supporting information).

    Fig.3.(a)LSV curves of Pt/C,Fe/Fe3C- N-CNTs and N-C.(b)LSV curves under different rotation speeds(600-2025 rpms)for Fe/Fe3C- N-CNTs with 5 mV/s.inset:K-L plots at different potentials.(c)Tafel plots of ORR for Pt/C,Fe/Fe3C- N-CNTs and N-C.(d)ORR polarization curves measured by using RRDE technique at 1600 rpm,5 mV/s.(e)Chronoamperometric curves of Pt/C,Fe/Fe3C- N-CNTs at 0.6 V(vs.RHE),1600 rpm.(f)Chronoamperometric response of Pt/C,Fe/Fe3C- N-CNTs upon addition of 2.0 mol/L methanol at 0.6 V vs.RHE.

    Fig.4.(a)Polarization curves of Fe/Fe3C- N-CNTs,N-C and RuO2 for OER.(b)Tafel plots from the LSV curves.(c)Chronoamperometric curves of Fe/Fe3C- N-CNTs,N-C and Pt/C with 10 mA/cm2 in 1.0 mol/L KOH,1600 rpm.(d)The potential gap of Fe/Fe3C- N-CNTs.

    To demonstrate the difunctional performance,we further evaluate the OER activity of the Fe/Fe3C- N-CNTs in 1.0 mol/L KOH solution.LSV curves of the samples are recorded at 5 mV/s,1600 rpm.As displayed in Fig.4a,the LSV of N--C presents the largest onset potential(1.68 V)of OER at j=10 mA/cm2,indicating the inferior activity.The onset potential decreases rapidly and the anodic current density increases rapidly when Fe/Fe3C nanocrystals are introduced into the carbon matrix.The superior OER activity of Fe/Fe3C- N-CNTs is reflected by the lower potential of 1.57 V at j=10 mA/cm2and much higher currents density.It has been demonstrated that pyridinic N electron-withdrawing functional groups can facilitate OER reaction[17].Thus,Fe/Fe3C- NCNTs with higher pyridinic N show better OER activity than N--C.The OER kinetics of the electrocatalysts are further analyzed by the Tafel curves as exhibited in Fig.4b.The Tafel slope of Fe/Fe3C- NCNTs is 78 mV/dec,which is similar to RuO2(69 mV/dec),suggesting the extremely exceptional OER kinetics.More noteworthy,Fe/Fe3C- N-CNTs reserve more that 95%of its initial current density(Fig.4c)even after 30,000 s long-term testing,strongly confirming the excellent robustness of the electrocatalyst.The Fe/Fe3C- N-CNTs after 30,000 s durability test are characterized by TEM(Fig.S9 in Supporting information).The TEM image exhibits no obvious change of morphology,demonstrating excellent stability during the electrochemical testing.The potential gap(ΔE)between the OER potential at j=10 mA/cm2and E1/2for ORR is adopted to estimate the electrocatalytic performance of bifunctional oxygen electrocatalyst[42].As reported,a better bifunctional oxygen electrocatalysts tend to have a smallerΔE.Remarkably,as can be seen in Fig.4d,Fe/Fe3C- N-CNTs elucidate an exceptionally lowΔE of 0.69 V,which is much smaller than that RuO2,Pt/C and many reported bifunctional oxygen electrocatalysts[43,44].Therefore,the newly fabricated Fe/Fe3C- N-CNTs bifunctional oxygen electrocatalyst further elucidate the exceptional activity for both ORR and OER,which confirm the huge potential as outstanding air cathode electrocatalyst for Zn-air batteries.

    Fig.5.(a)Schematic illustration of the Zn-air batteries.(b)Polarization curves and power density plots of Zn-air batteries based on Fe/Fe3C- N-CNTs and commercial Pt/C electrodes.(c,d)Galvanostatic charge-discharge cycling curve at the current density of 5 mA/cm2.

    To evaluate the potential energy conversion application of Fe/Fe3C- N-CNTs,rechargeable Zn-air batteries are assembled(Fig.5a)by using Fe/Fe3C- N-CNTs as air cathodes.As shown in Fig.5b,the assembled Zn-air batteries deliver the polarization and power density curves of Zn-air batteries,and Zn-air batteries with Fe/Fe3C- N-CNTs air cathodes have the larger peak power density of 183 mW/cm2than that of Pt/C based air cathodes(110 mW/cm2),indicating remarkable performance of the Zn-air batteries.Furthermore,Zn-air batteries assembled with Fe/Fe3C- N-CNTs reveal a much higher discharge current compared to benchmark Pt/C,confirming the outstanding catalytic activity of Fe/Fe3C- NCNTs[45,46].The recharge ability and robustness of Zn-air batteries is of great significance for large-scale applications,and the stability is assessed by galvanostatic charge-discharge cycling displayed in Figs.5c and d.It indicates that the Fe/Fe3C- N-CNTs electrode displays very stable charge and discharge potential even after 195 h(cycle for 195 h:2.0 V for charging,1.19 V for discharging),indicating the ultrahigh electrocatalytic stability of Fe/Fe3C- N-CNTs bifunctional oxygen electrocatalyst.

    In conclusion,high-performance nonprecious metal Fe/Fe3C- NCNTs bifunctional oxygen electrocatalyst with high density Fe-Nxsites,active N species and spatial confined Fe/Fe3nanocrystals for ORR/OER is developed by a simple sol-gel approach and followed pyrolysis tactics.Due to the architectural and componential characteristics,the obtained Fe/Fe3C- N-CNTs exhibit remarkable electrocatalytic performance in both alkaline and acidic electrolyte,including positive ORR Eonset,large ORR E1/2and the lower potential of OER at j=10 mA/cm2.Experimental results reveal that the remarkable catalytic activities attribute to the synergistic effect of confined Fe/Fe3C nanocrystals and intrinsic Fe-Nxactive sites as well as the porous network of carbon matrix.Furthermore,Zn-air batteries based on Fe/Fe3C- N-CNTs air electrode exhibit high peak power density of~183 mW/cm2,excellent discharge current and charge-discharge durability(~195 h).Consequently,this finding not only offers feasible approach towards excellent ORR/OER and Zn-air batteries but also presents a reliable technique to prepare new dispersed metal-N4active sites electrocatalysts for energy conversion.

    Declaration of competing interest

    The authors declare that there is no conflict of interest.

    Acknowledgments

    This work was supported financially by the National Natural Science Foundation of China(Nos.51702180,21703116,91963113,51372127),The Scientific and Technical Development Project of Qingdao,China(No.18-2-2-52-jch),The Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.08.029.

    成人鲁丝片一二三区免费| 超碰av人人做人人爽久久| 两个人的视频大全免费| 赤兔流量卡办理| 很黄的视频免费| 欧美zozozo另类| 国产69精品久久久久777片| 男人舔奶头视频| 变态另类成人亚洲欧美熟女| 免费av观看视频| 中文字幕精品亚洲无线码一区| 婷婷精品国产亚洲av在线| 亚洲美女搞黄在线观看 | 国产人妻一区二区三区在| 午夜福利18| 亚洲国产日韩欧美精品在线观看| 国产人妻一区二区三区在| 男女下面进入的视频免费午夜| 人妻制服诱惑在线中文字幕| 国产激情偷乱视频一区二区| 久久精品国产99精品国产亚洲性色| 听说在线观看完整版免费高清| 一区福利在线观看| 欧美精品啪啪一区二区三区| 脱女人内裤的视频| 亚洲avbb在线观看| 热99re8久久精品国产| 国产精品三级大全| 大型黄色视频在线免费观看| 日日摸夜夜添夜夜添av毛片 | 欧美在线一区亚洲| www.色视频.com| 亚洲 国产 在线| 在线十欧美十亚洲十日本专区| 国内久久婷婷六月综合欲色啪| 给我免费播放毛片高清在线观看| 亚洲精品粉嫩美女一区| 婷婷精品国产亚洲av在线| 国产精品乱码一区二三区的特点| 日本一本二区三区精品| 女生性感内裤真人,穿戴方法视频| 亚洲第一区二区三区不卡| 成人高潮视频无遮挡免费网站| 看黄色毛片网站| 国产在线精品亚洲第一网站| 午夜激情欧美在线| 亚洲av成人不卡在线观看播放网| 精品国内亚洲2022精品成人| 成熟少妇高潮喷水视频| 桃色一区二区三区在线观看| 久久性视频一级片| 婷婷六月久久综合丁香| 欧美日韩黄片免| 婷婷精品国产亚洲av| 真人一进一出gif抽搐免费| 乱人视频在线观看| 丰满乱子伦码专区| 搡老岳熟女国产| 国产精品98久久久久久宅男小说| 国产亚洲精品综合一区在线观看| 99久久精品国产亚洲精品| 精品欧美国产一区二区三| 午夜福利视频1000在线观看| 欧美激情在线99| 在线观看一区二区三区| 不卡一级毛片| 两性午夜刺激爽爽歪歪视频在线观看| 久久人妻av系列| 麻豆av噜噜一区二区三区| www.www免费av| av在线天堂中文字幕| 欧美黄色片欧美黄色片| 久久久久久九九精品二区国产| 亚洲国产精品合色在线| 免费人成在线观看视频色| 国产v大片淫在线免费观看| 成人av在线播放网站| 天美传媒精品一区二区| 日本黄大片高清| 熟妇人妻久久中文字幕3abv| 色5月婷婷丁香| 波多野结衣巨乳人妻| 在线播放国产精品三级| 国产成人啪精品午夜网站| 久久伊人香网站| 亚洲av成人精品一区久久| bbb黄色大片| 日本 欧美在线| 最近视频中文字幕2019在线8| 亚洲av一区综合| 看黄色毛片网站| 青草久久国产| 国产精品精品国产色婷婷| 亚洲综合色惰| 色吧在线观看| 精品久久久久久久久亚洲 | 亚洲欧美日韩东京热| 国产av麻豆久久久久久久| 色尼玛亚洲综合影院| 欧美丝袜亚洲另类 | 九色成人免费人妻av| 黄片小视频在线播放| 又粗又爽又猛毛片免费看| 中文资源天堂在线| 欧美最黄视频在线播放免费| 亚洲不卡免费看| 色视频www国产| 国产欧美日韩一区二区精品| 欧美xxxx黑人xx丫x性爽| 少妇裸体淫交视频免费看高清| 精品久久久久久久久av| 久久久久久久久大av| 国产真实伦视频高清在线观看 | 在线a可以看的网站| 好看av亚洲va欧美ⅴa在| 国产精品电影一区二区三区| 蜜桃久久精品国产亚洲av| 真人一进一出gif抽搐免费| 变态另类丝袜制服| 草草在线视频免费看| 久久亚洲精品不卡| 男女做爰动态图高潮gif福利片| 男女下面进入的视频免费午夜| 欧美午夜高清在线| 日本五十路高清| 国产一区二区三区视频了| 亚洲专区国产一区二区| 三级男女做爰猛烈吃奶摸视频| 国产精品1区2区在线观看.| 成人一区二区视频在线观看| 又爽又黄无遮挡网站| 99在线视频只有这里精品首页| 国产成人aa在线观看| 欧美黑人巨大hd| 亚洲七黄色美女视频| 欧美成人一区二区免费高清观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲美女视频黄频| 亚洲精品在线观看二区| 九九在线视频观看精品| 伦理电影大哥的女人| 麻豆成人av在线观看| 在线观看免费视频日本深夜| 激情在线观看视频在线高清| 亚洲av成人精品一区久久| 丰满人妻熟妇乱又伦精品不卡| 91麻豆av在线| 老司机午夜十八禁免费视频| 亚洲欧美日韩高清专用| 男人的好看免费观看在线视频| 性插视频无遮挡在线免费观看| 最近中文字幕高清免费大全6 | 熟女电影av网| 国产精品1区2区在线观看.| 少妇高潮的动态图| 亚洲va日本ⅴa欧美va伊人久久| 欧美日本视频| 99久久99久久久精品蜜桃| 成人欧美大片| 国产精品野战在线观看| 可以在线观看毛片的网站| 国内精品久久久久精免费| 国产精品一区二区免费欧美| av在线老鸭窝| 真实男女啪啪啪动态图| 真实男女啪啪啪动态图| 男女那种视频在线观看| 国产成人a区在线观看| 亚洲第一电影网av| 亚洲第一电影网av| 久久久久久久亚洲中文字幕 | 在线观看一区二区三区| 久久热精品热| 亚洲精品一卡2卡三卡4卡5卡| 婷婷亚洲欧美| 亚洲色图av天堂| 国产精品综合久久久久久久免费| 人人妻人人澡欧美一区二区| avwww免费| 最新中文字幕久久久久| 国产激情偷乱视频一区二区| 国产探花在线观看一区二区| 国产精品人妻久久久久久| 国产精品乱码一区二三区的特点| 全区人妻精品视频| 变态另类成人亚洲欧美熟女| 国语自产精品视频在线第100页| 亚洲色图av天堂| 在线观看免费视频日本深夜| 亚洲第一区二区三区不卡| 婷婷亚洲欧美| 中文字幕av成人在线电影| 国产主播在线观看一区二区| 国产一区二区激情短视频| 亚洲av日韩精品久久久久久密| 美女xxoo啪啪120秒动态图 | 亚洲男人的天堂狠狠| 亚洲男人的天堂狠狠| 啦啦啦观看免费观看视频高清| 搞女人的毛片| 国产极品精品免费视频能看的| 免费看光身美女| 特级一级黄色大片| 国产精品亚洲美女久久久| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久国产精品人妻aⅴ院| .国产精品久久| 亚洲国产高清在线一区二区三| 免费在线观看影片大全网站| 国产精品综合久久久久久久免费| 欧美又色又爽又黄视频| 亚洲精品一区av在线观看| 日韩中字成人| 久久久成人免费电影| 亚洲国产精品999在线| 亚洲真实伦在线观看| 村上凉子中文字幕在线| 在线免费观看的www视频| 午夜亚洲福利在线播放| 欧美日韩乱码在线| 一区二区三区免费毛片| 国产美女午夜福利| 一级黄片播放器| 一级黄片播放器| 中文字幕免费在线视频6| 人人妻人人看人人澡| 在线观看66精品国产| 亚洲乱码一区二区免费版| 人人妻人人澡欧美一区二区| 成人三级黄色视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品色激情综合| 亚洲片人在线观看| 国产三级中文精品| 此物有八面人人有两片| 免费看a级黄色片| 色吧在线观看| 露出奶头的视频| 国内毛片毛片毛片毛片毛片| 美女cb高潮喷水在线观看| 一本久久中文字幕| 99热6这里只有精品| 国产精品久久电影中文字幕| 亚洲中文日韩欧美视频| netflix在线观看网站| 日韩欧美在线乱码| 成人国产综合亚洲| 久久精品91蜜桃| 午夜影院日韩av| 久久精品国产清高在天天线| 欧美一区二区国产精品久久精品| 亚洲七黄色美女视频| 桃红色精品国产亚洲av| 99在线视频只有这里精品首页| 非洲黑人性xxxx精品又粗又长| 老司机午夜十八禁免费视频| 婷婷丁香在线五月| 国产中年淑女户外野战色| 简卡轻食公司| 久久久国产成人精品二区| 久久国产精品人妻蜜桃| 亚洲午夜理论影院| 日韩精品中文字幕看吧| 91久久精品电影网| 亚洲美女视频黄频| eeuss影院久久| 久久99热这里只有精品18| 欧美黑人欧美精品刺激| 99久久无色码亚洲精品果冻| 一级作爱视频免费观看| 在线看三级毛片| 午夜精品久久久久久毛片777| 少妇人妻精品综合一区二区 | 国产伦精品一区二区三区四那| av在线老鸭窝| 欧美3d第一页| 免费av观看视频| 精品人妻1区二区| 久久久精品欧美日韩精品| 99久久精品国产亚洲精品| 成人高潮视频无遮挡免费网站| 国产精品一区二区性色av| 他把我摸到了高潮在线观看| 999久久久精品免费观看国产| 男人舔奶头视频| 国产精品精品国产色婷婷| 精品欧美国产一区二区三| 欧美潮喷喷水| 老熟妇仑乱视频hdxx| 久久久久久久久久黄片| 最近最新免费中文字幕在线| 国产高清三级在线| 麻豆久久精品国产亚洲av| 久久精品久久久久久噜噜老黄 | 亚洲人成网站在线播| 91在线观看av| 婷婷精品国产亚洲av在线| 免费看美女性在线毛片视频| 好男人在线观看高清免费视频| 真实男女啪啪啪动态图| 欧美三级亚洲精品| 在线免费观看的www视频| 国产亚洲精品久久久com| 十八禁国产超污无遮挡网站| 国产三级中文精品| 欧美性感艳星| 久久久国产成人精品二区| 波多野结衣巨乳人妻| 国产免费一级a男人的天堂| 免费av毛片视频| 少妇裸体淫交视频免费看高清| 别揉我奶头~嗯~啊~动态视频| 精品午夜福利视频在线观看一区| 国产免费男女视频| 国产免费一级a男人的天堂| 在线免费观看的www视频| 午夜福利视频1000在线观看| 亚洲第一欧美日韩一区二区三区| 免费无遮挡裸体视频| 欧美黑人欧美精品刺激| 亚洲精品456在线播放app | 欧美潮喷喷水| 在线播放无遮挡| 国产乱人视频| 天堂√8在线中文| 日韩有码中文字幕| 首页视频小说图片口味搜索| 精品久久久久久久人妻蜜臀av| 亚洲国产高清在线一区二区三| 宅男免费午夜| 少妇裸体淫交视频免费看高清| 亚洲人与动物交配视频| 人妻丰满熟妇av一区二区三区| 伦理电影大哥的女人| 久久精品国产亚洲av香蕉五月| 国产精品久久久久久人妻精品电影| 国内精品久久久久久久电影| 精品人妻一区二区三区麻豆 | 亚洲中文字幕日韩| 久久这里只有精品中国| 亚洲av一区综合| 精品一区二区三区视频在线| 亚洲第一电影网av| 亚洲午夜理论影院| 又粗又爽又猛毛片免费看| 欧美性猛交黑人性爽| 99热6这里只有精品| 18+在线观看网站| 亚洲欧美日韩无卡精品| 色播亚洲综合网| 精品99又大又爽又粗少妇毛片 | 又爽又黄a免费视频| 久久久久久久久久成人| 男人舔奶头视频| 国内毛片毛片毛片毛片毛片| 在线免费观看不下载黄p国产 | 国产人妻一区二区三区在| 国产成人a区在线观看| 欧美日韩黄片免| 久久精品久久久久久噜噜老黄 | 国产亚洲精品综合一区在线观看| 精品不卡国产一区二区三区| 老熟妇仑乱视频hdxx| 天堂√8在线中文| 国产麻豆成人av免费视频| 男女那种视频在线观看| 动漫黄色视频在线观看| 搡女人真爽免费视频火全软件 | 老司机午夜十八禁免费视频| 日本一本二区三区精品| 午夜两性在线视频| 国产91精品成人一区二区三区| 久久久久久久精品吃奶| 婷婷丁香在线五月| 成人高潮视频无遮挡免费网站| 日韩欧美精品v在线| 我要搜黄色片| 老司机午夜福利在线观看视频| 国产成+人综合+亚洲专区| 2021天堂中文幕一二区在线观| 长腿黑丝高跟| 国产精品美女特级片免费视频播放器| 看免费av毛片| 一级a爱片免费观看的视频| 51午夜福利影视在线观看| 中文字幕免费在线视频6| av福利片在线观看| 亚洲av成人av| aaaaa片日本免费| 亚洲色图av天堂| 亚洲精品色激情综合| 日本撒尿小便嘘嘘汇集6| 久久久久免费精品人妻一区二区| 国产男靠女视频免费网站| 一个人观看的视频www高清免费观看| 亚洲精品乱码久久久v下载方式| 国产极品精品免费视频能看的| 天堂√8在线中文| 狠狠狠狠99中文字幕| 99热这里只有精品一区| 亚洲 欧美 日韩 在线 免费| 国产高清激情床上av| 性色avwww在线观看| 国产成人a区在线观看| 成人特级黄色片久久久久久久| 国产一区二区激情短视频| 美女 人体艺术 gogo| 小蜜桃在线观看免费完整版高清| www日本黄色视频网| a在线观看视频网站| a级一级毛片免费在线观看| 少妇人妻一区二区三区视频| 欧美激情在线99| 国产又黄又爽又无遮挡在线| 亚洲 国产 在线| 国产精品久久久久久人妻精品电影| 国产精品久久电影中文字幕| 在线观看66精品国产| 亚洲自偷自拍三级| 美女高潮的动态| 熟女电影av网| 听说在线观看完整版免费高清| 一卡2卡三卡四卡精品乱码亚洲| 国产老妇女一区| 99热只有精品国产| 熟女人妻精品中文字幕| 国产精品不卡视频一区二区 | 久久久久九九精品影院| 午夜精品一区二区三区免费看| 日本免费一区二区三区高清不卡| 久久久精品欧美日韩精品| 亚洲精品456在线播放app | 午夜日韩欧美国产| 国产午夜精品久久久久久一区二区三区 | 激情在线观看视频在线高清| 香蕉av资源在线| 真人一进一出gif抽搐免费| 久久久久久久久中文| 美女免费视频网站| 一边摸一边抽搐一进一小说| 亚洲三级黄色毛片| 午夜影院日韩av| 日本 欧美在线| 亚洲三级黄色毛片| 国产乱人视频| 亚洲黑人精品在线| 青草久久国产| 老司机午夜福利在线观看视频| 动漫黄色视频在线观看| 我要看日韩黄色一级片| 日本在线视频免费播放| 久久热精品热| a级毛片a级免费在线| 免费在线观看成人毛片| 变态另类成人亚洲欧美熟女| 亚洲无线在线观看| 国产精品久久电影中文字幕| 欧美又色又爽又黄视频| 欧美黑人巨大hd| 18+在线观看网站| 亚洲av美国av| 免费黄网站久久成人精品 | 欧美zozozo另类| 99热这里只有是精品50| 深夜a级毛片| 国产人妻一区二区三区在| 久久久久国产精品人妻aⅴ院| 国产黄a三级三级三级人| xxxwww97欧美| 亚洲第一区二区三区不卡| 深爱激情五月婷婷| 亚洲在线观看片| 国内揄拍国产精品人妻在线| 99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 制服丝袜大香蕉在线| 国产成人a区在线观看| 国产午夜精品久久久久久一区二区三区 | 久久久久久久久久黄片| 97超级碰碰碰精品色视频在线观看| 婷婷精品国产亚洲av| 色综合站精品国产| 国产久久久一区二区三区| 大型黄色视频在线免费观看| 欧美zozozo另类| 日日摸夜夜添夜夜添小说| 一a级毛片在线观看| 能在线免费观看的黄片| 老熟妇乱子伦视频在线观看| 色哟哟·www| 亚洲精品乱码久久久v下载方式| 国产乱人视频| 久久天躁狠狠躁夜夜2o2o| 午夜免费男女啪啪视频观看 | 国产精品久久电影中文字幕| 黄色丝袜av网址大全| 国产乱人视频| 中国美女看黄片| 久久久久免费精品人妻一区二区| 免费电影在线观看免费观看| 99久久精品国产亚洲精品| 中文亚洲av片在线观看爽| 99国产综合亚洲精品| 久久久久久久亚洲中文字幕 | x7x7x7水蜜桃| 99视频精品全部免费 在线| 一级毛片久久久久久久久女| 人人妻人人看人人澡| a级毛片免费高清观看在线播放| 亚洲不卡免费看| 亚洲美女视频黄频| x7x7x7水蜜桃| 亚洲精品在线美女| 成人午夜高清在线视频| 成人一区二区视频在线观看| 搡女人真爽免费视频火全软件 | 成人欧美大片| 欧美午夜高清在线| 成熟少妇高潮喷水视频| 午夜福利18| 在线免费观看不下载黄p国产 | 国产高清视频在线观看网站| 亚洲avbb在线观看| 亚洲成人中文字幕在线播放| 免费在线观看亚洲国产| 一区二区三区高清视频在线| 欧美成狂野欧美在线观看| 麻豆成人av在线观看| 一区二区三区四区激情视频 | 91在线观看av| 少妇的逼好多水| 中文字幕久久专区| 波多野结衣高清作品| 人妻久久中文字幕网| 国产精品影院久久| 欧美日韩福利视频一区二区| 亚洲第一区二区三区不卡| 夜夜爽天天搞| 欧美精品啪啪一区二区三区| 亚洲内射少妇av| 国产精品一区二区免费欧美| 亚洲成人精品中文字幕电影| 国产麻豆成人av免费视频| 我的老师免费观看完整版| 男插女下体视频免费在线播放| av福利片在线观看| 久久午夜福利片| 亚洲精品一卡2卡三卡4卡5卡| 国产精品精品国产色婷婷| 亚洲av成人精品一区久久| 91麻豆精品激情在线观看国产| 精品久久久久久成人av| 午夜福利欧美成人| 亚洲精品456在线播放app | 夜夜看夜夜爽夜夜摸| 一区二区三区四区激情视频 | 国产午夜精品论理片| www.999成人在线观看| 国产色爽女视频免费观看| 国产91精品成人一区二区三区| 国内久久婷婷六月综合欲色啪| 精品久久久久久久久亚洲 | 在线免费观看不下载黄p国产 | 全区人妻精品视频| 夜夜爽天天搞| 欧美日韩瑟瑟在线播放| 国产精品女同一区二区软件 | 亚洲av成人精品一区久久| 国产蜜桃级精品一区二区三区| 精品午夜福利视频在线观看一区| 国产精品久久久久久亚洲av鲁大| 麻豆成人午夜福利视频| 999久久久精品免费观看国产| 成人无遮挡网站| 亚洲av二区三区四区| 最近中文字幕高清免费大全6 | 无人区码免费观看不卡| 成人av一区二区三区在线看| 久久久色成人| 成年女人看的毛片在线观看| 18禁裸乳无遮挡免费网站照片| av天堂中文字幕网| 欧美黑人巨大hd| 国语自产精品视频在线第100页| 亚洲av熟女| 激情在线观看视频在线高清| 亚洲av熟女| 激情在线观看视频在线高清| 国产高清有码在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 制服丝袜大香蕉在线| 一本综合久久免费| 我要搜黄色片| 搞女人的毛片| 亚洲av第一区精品v没综合| 伊人久久精品亚洲午夜| 最近中文字幕高清免费大全6 | 中文字幕精品亚洲无线码一区| 大型黄色视频在线免费观看| 日韩 亚洲 欧美在线| 欧美+亚洲+日韩+国产| 99热6这里只有精品| 成人国产一区最新在线观看| 欧美xxxx性猛交bbbb| 成人国产一区最新在线观看| 热99re8久久精品国产| 久久欧美精品欧美久久欧美| 精品无人区乱码1区二区| 日本五十路高清| 欧美中文日本在线观看视频| 亚洲国产精品sss在线观看| 亚洲第一欧美日韩一区二区三区| 精华霜和精华液先用哪个| 欧美日韩亚洲国产一区二区在线观看| 久久精品久久久久久噜噜老黄 |