• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensional MgSiP2 with anisotropic electronic properties and good performances for Na-ion batteries

    2021-07-01 05:29:22ChunyingPuJiahuiYuLingFuJiaWangHouyongYangDaweiZhouChaozhengHe
    Chinese Chemical Letters 2021年3期

    Chunying Pu,Jiahui Yu,Ling Fu,Jia Wang,Houyong Yang,Dawei Zhou*,Chaozheng He,**

    a Institute of Environment and Energy Catalysis,School of Materials Science and Chemical Engineering,Xi’an Technological University,Xi’an 710021,China

    b College of Physics and Electronic Engineering,Nanyang Normal University,Nanyang 473061,China

    c Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices,School of Materials Science and Chemical Engineering,Xi'an Technological University,Xi'an 710021,China

    ABSTRACT Using the global particle-swarm optimization method and density functional theory,we predict a new stable two-dimensional layered material:MgSiP2 with a low-buckled honeycomb lattice.Our HSE06 calculation shows that MgSiP2 is an indirect-gap semiconductor with a band-gap of 1.20 eV,closed to that of bulk silicon.More remarkably,MgSiP2 exhibits worthwhile anisotropy along with electron and hole carrier mobility.A ultrahigh electron mobility is even up to 1.29×104 cm2 V-1 s-1,while the hole mobility is nearly zero along the a direction.The large difference of the mobility between electron and hole together with the suitable band-gap suggest that MgSiP2 may be a good candidate for solar cell or photochemical catalysis material.Furthermore,we explore MgSiP2 as an anode for sodium-ion batteries.Upon Na adsorption,the semiconducting MgSiP2 transforms to a metallic state,ensuring good electrical conductivity.A maximum theoretical capacity of 1406 mAh/g,a small volume change(within 9.5%),a small diffusion barrier(~0.16 eV)and low average open-circuit voltages(~0.15 V)were found for MgSiP2 as an anode for sodium-ion batteries.These results are helpful to deepen the understanding of MgSiP2 as a nanoelectronic device and a potential anode for Na-ion batteries.

    Keywords:First-principles calculations Two-dimensional MgSiP2 Anode materials Sodium-ion batteries Carrier mobility

    The discovery of graphene[1]opens the door of twodimensional(2D)materials,after that,a great deal of 2D materials such as hexagonal boron nitride[2],Mxenes[3–5],transitionalmetal dichalcogenides(TMDs)[6,7],and black phosphorene[8,9]were discovered.Differ from their bulk counter-parts,2D materials shows extraordinary properties and have great potentials for various applications including nanoelectronics and optoelectronics devices,field effect transistors(FET),sensor,p–n junctions,energy conversion and storage,and catalyst[10–16].Especially,the 2D monolayer black phosphorene(BP),which can be mechanically exfoliated from black phosphorus and have a tunable thicknessdependent direct band gap and high carrier(hole)mobility,has emerged as a promising FET material[17–20].Following the success of black phosphorene,2D phosphides received increasing attention with both moderate band gaps and high carrier mobility.For example,the monolayer BP5[21]with an indirect band gap(1.34 eV)exhibits an anisotropic visible-light absorption and high electron mobility of 7.1×103cm2V-1s-1.2D GeP3[22]is also discovered to have the hole and electron mobility of 0.85×104and 0.88×104cm2V-1s-1,respectively.Other 2D phosphides such as 2D InP3[23,24],SnP3[25,26]and CaP3[27]were also predicted to have high carrier mobility and have potential applications in optoelectronics and gas sensor.

    2D materials also exhibit unique advantages as anodes due to their large surface-volume ratio,broad electrochemical window,fascinating chemical activity,and excellent mechanical strength.Some 2D materials(e.g.,graphene[28],transition metal dichalcogenides[29],borophene[30,31],phosphides[32])have exhibited excellent performance in LIBs.However,the storage of lithium sources on Earth is rather limited.A potential candidate to replace LIBs is the rechargeable sodium-ion batteries(SIBs),which have attracted increasing attention because of the abundance of Na in earth(28,400 mg/kg)[33]and low cost.Therefore,SIBs are deemed to be promising energy storage devices[34–38].Up to now,a large number of 2D materials,such as graphene systems[39,40],phosphorene[41,42],borophene[43],transition-metal dichalcogenides and nitrides[44–48],and MXene[49,50]have been explored as potential anode for SIBs.For example,phosphorene as anode in SIBs achieves the theoretical capacity of 865 mAh/g[41,42],and borophene gain a maximum theoretical capacity of 1984 mAh/g[43].Furthermore,there are extensive researches on searching for other 2D anode materials,including defective graphene(1450 mAh/g)[51],B-doped graphene(762 mAh/g)[52],nitrogen holey graphene(2469 mAh/g)[53],borocarbonitride based anode(810 mAh/g)[54],silicene,germanene and stanene(954,369 and 226 mAh/g,respectively)[55,56].The ion diffusion barrier of most these 2D materials is in the range of 0.1 eV to 0.6 eV.

    So the unique performances of 2D materials encourage more theoretical works to predict and design new 2D materials with novel properties for further expanding the 2D family.We noticed that the phosphorus-correlated 2D materials usually show good performances in both electronic properties and anode materials.In this paper,through a first principles swarm structural research,we design a stable 2D semiconductor material MgSiP2,which exhibits novel electronic properties and also shows outstanding electrode performance for SIBs.The MgSiP2monolayer is an indirect-gap semiconductor with a band-gap of 1.20 eV.The mobility of electron and hole shows strong anisotropy.The electron mobility is as large as 1.29×104cm2V-1s-1,while the hole mobility is very small.In addition,the predicted MgSiP2show an ultrahigh theoretical storage capacity(1480 mAh/g)and small diffusion energy barriers(0.16 eV).The physical properties of MgSiP2such as electronic properties are also discussed in this paper.

    The 2D structure predictions of MgSiP2monolayer are carried out using the particle-swarm optimization(PSO)method as implemented in the CALYPSO code[57,58].We performed structural searches with simulation cell sizes of 1,2 and 4 formula units(f.u.).The 2D MgSiP2were placed in the xy plane with the Z direction perpendicular to the layer plane.To make sure that there are no interactions among atoms along the Z direction,we use a very large vacuum layer of 30?during the 2D structure predictions.The structure optimization and electronic property calculations were performed with projector augmented wave(PAW)method[59,60]as implemented in the Vienna ab-initio simulation package(VASP)[61,62].The generalized gradient approximation(GGA)with Perdew-Burke-Ernzerhof(PBE)[63]function was adopted for the exchange-correlation functional.To estimate the band structures of MgSiP2more accurately,the Heyd–Scuseria–Ernzerhof(HSE06)hybrid functional[64]with the screening parameter(ω )of 0.2?-1was used.The plane wave cutoff energy of 600 eV was employed in all the computations.The convergence threshold was set as 10-6eV in energy and 10-3eV in force.The Brillouin zone was sampled with a 9×16×1 Monkhorst-Pack k-point grid.The phonon dispersion curves were calculated with the finite displacement method implemented in the phonopy package[65].The thermal stability was further tested by ab initio molecular dynamics(AIMD)simulations using the canonical ensemble(NVT)with a 2×3 supercell.In the calculation of Na-ion adsorption,we set 35?vacuum layer to avoid interactions between the neighboring images under the periodic boundary condition.To quantitatively determine the lowest energetic diffusion pathways of Na on MgSiP2,we used the climbing Nudged Elastic Band method(cNEB)method[66].

    The most stable structure of MgSiP2through the global structure searching is shown in Fig.1a(top view)and Fig.1c(side view).We can see that the 2D structure exhibits bilayer stacking system of a low-buckled honeycomb lattice.Two dimensional MgSiP2has a space group of P2/m(No.10)and the unit cell of MgSiP2contains two Mg,two Si and four P atoms in a monoclinic with lattice constants of a=7.211 and b=3.796?.Each Si atom and Mg atom binds to four P atoms forming siliconphosphorus and magnesium-phosphorus tetrahedron,respectively.The Si-P bond lengths are 2.307 and 2.331?,where the bond distances of Mg-P are 2.453,2.535 and 2.832?,respectively,indicating that the magnesium atom and silicon atom can’t form the standard sp3configuration.

    Fig.1.Schematic illustration of two dimensional MgSiP2(a)top view and(c)side view,Mg,Si and P atoms are represented by brown,blue,and pink spheres,respectively.Difference charge density plots(b)top view and(d)side view.The gold color(i.e.,0.006 e/?3)in the plot indicates an electron density increase in the electron density after bonding,and the cyan color(i.e.,0.006 e/?3)indicates a loss.

    The chemical bonding of the MgSiP2can be understood according to its charge difference density(Figs.1b and d),which is defined as the total electron density of the MgSiP2minus the electron density of isolated Mg,Si and P atoms at their respective positions.It is clearly seen from Figs.1b and d that a significant amount of electrons transfers from Mg to the nearest and nextnearest P atoms.Our Bader charge analysis suggests that the Mg-P bonds are more ionic in nature as net charges on Mg are+1.52|e|,while the atoms between Si-P are covalently bonded.

    To clarify the thermal stability of the predicted 2D MgSiP2,we calculated its formation energy defined as

    where E2d(MgSiP2),E2d(SiP2),and Ebulk(Mg)are the total energies of 2D MgSiP2,2D SiP2reported in the previous work[67],and the bulk hcp-Mg material,respectively.n2d(MgSiP2),n2d(SiP2)and nbulk(Mg)are the number of atoms present in the unit cell considered for the calculation.The calculated formation energy for the MgSiP2monolayer is-0.49 eV per f.u.The negative formation energy implies that the synthesis of the MgSiP2monolayer under ambient conditions is feasible.

    The dynamical stability of MgSiP2was also checked by calculating the phonon dispersion curves.As shown in Fig.S1a(Supporting information),no imaginary frequency in the first Brillouin zone was found,which confirms the dynamical stability of MgSiP2.To further evaluate the thermal stability,we performed AIMD simulations of the MgSiP2with a 2×3 supercell at the temperature of 600 K and 900 K.The fluctuation of the total potential energy with simulation time is plotted in Fig.S1b(Supporting information)and Fig.S1c(Supporting information),respectively,which shows that the average value of the total potential energy remains nearly constant during the entire simulation.Snapshots taken at the end of 10 ps are also shown in Figs.S1b and c,respectively.From the snapshots,one can see that the original geometry of MgSiP2is generally well-kept and no bond is broken at 600 K.As temperature increase to 900 K,the distortion become more and more evident and the framework of MgSiP2started to collapse.The above results reveal that the MgSiP2monolayer can maintain its structural integrity even at a temperature of 600 K.

    The mechanical stability of MgSiP2was examine,and the four independent elastic constants C11,C22,C12and C66are calculated to be C11=83.7 N/m,C22=81.0 N/m,C12=25.5 N/m and C66=10.1 N/m,respectively.All the calculated elastic constants meet the necessary mechanical equilibrium conditions[68]for mechanical stability:C11C22->0 and C11,C22and C66>0.Thus the 2D MgSiP2also meet mechanical stability criteria.

    To get insight into the electronic properties of MgSiP2,the calculated band structure together with its projected density of states are shown in Fig.S2a(Supporting information).The calculation of energy band structure reveals that MgSiP2is an indirect band gap semiconductor.The conduction band minimum(CBM)is located at S point,while the valence band maximum(VBM)is located at theΓpoint.The band gap of MgSiP2is 0.51 eV by the PBE calculation.Due to the band gap underestimation of PBE,we have also estimated the band gap using the non-local hybrid functional,and the obtained band gap value of 1.20 eV.The suitable band gap width makes the 2D MgSiP2might can be used to solar cell device.Furthermore,anisotropic band-structured features can be seen from Fig.S2a,the lowest conduct band has a very large dispersion in both S-X and S-Y directions,whereas the highest valence band is very flat in theΓ-X direction.As we all known,the larger the band curvature,the smaller the effective mass,and this is true reciprocally.So the 2D MgSiP2has a very small effective mass of electron,while a very large effective mass of the hole in theΓ-X direction.In fact,the small effective mass of electron of MgSiP2results in large electron mobility and we will discuss later.We also pointed out that the larger difference effective mass between electron and hole is usually favorable to reduce electron-hole recombination rate,suggesting the 2D MgSiP2may also show good performance as a photochemical catalysis material.

    The projected densities of states(PDOS)show that the VBM are mainly contributed by the P 2p states,while the unoccupied conduction band is contributed by the hybridized 3s and 3p orbitals of Si and P atoms.The partial charge densities associated with the VBM and CBM(Figs.S2b and c in Supporting information)for MgSiP2reveal that the VBM mainly distributes on the P atoms nearest to Si atoms,while the CBM mainly distributes on both P and Si atoms and the middle of a square consisting of Si and P atoms.Therefore,the Si and P atoms could provide empty orbitals for electron-donor alkali metal and could have better adsorption capacity for alkali metal atoms,suggesting that 2D MgSiP2can be used to design high-performance alkalimetal-ion batteries.

    We further evaluate the effective mass and carrier mobility of MgSiP2quantitatively based on the calculated band structure along a and b directions.Schematic of structure of MgSiP2is shown in Fig.2a.However,since the hole effective mass along a direction is very large,we only calculated the effective mass of the electron by fitting the band dispersion along a and b directions and hole along b direction to the following formula:

    The effective masses are calculated to be 0.385m0(0.258m0)for electron along the a(b)direction and 0.156m0for hole along the b direction,where m0is the effective mass of a free electron.The effective mass of electron is different along the a and b directions.So the effective mass of electron is anisotropic,and the effective mass along the a direction is higher than that along the b direction.

    The carrier mobility of MgSiP2were described by the deformation potential approximation[69]using the following formula[70]:

    Fig.2.(a)Schematic of the strain along the a and b directions.(b)The total energy shift as a function of lattice deformation along a and b directions in MgSiP2.(c)Shift of the conduction band under uniaxial strain along the a direction and b direction.(d)Shift of the valence band under uniaxial strain along the b direction.

    where m*is the effective mass in the transport direction,T is the temperature of 300 K,is the deformation potential constant.C2dis the elastic modulus derived fromwhere E is the total energy and E0,S0are the total energy and lattice area at equilibrium for the MgSiP2,respectively.

    The changes of total energy versus strains are shown in Fig.2b.We obtained the in-plane stiffness C2dby fitting the energy-strain curves.The C2dare 83.3 and 81.5 N/m for a and b directions,respectively.The shift of band edges as a function of strain is shown in Figs.2c and d.The deformation potentials are equal to the slope of the fitting lines.Based on the obtainedC2dand m*,the mobility at T=300 K are calculated and listed in Table 1.The electron mobility of MgSiP2are predicted to be 2.50×103and 1.29×104cm2V-1s-1along a direction and b direction,respectively.The hole mobility is only 837 cm2V-1s-1along the b direction.The electron mobility of 2D MgSiP2along b direction is significantly higher than that of MoS2mono-layer nanosheets(~200 cm2V-1s-1)[71]and can comparable with that of XP3(X=Ca,In,Ge and Sb)[22–27,72],which suggests its promising potential applications in nanoelectronics.We want to pointed that the large carrier mobility(electrons along b direction)originates from the small deformation potential constant E1of the conduction band.The MgSiP2has high carrier mobility along b direction than that along a direction,which shown an anisotropic character in-plane.

    Table 1 Calculated deformation potential constant(El),2D elastic modulus(C2d),effective mass(m*),and mobility for electron(e)and hole(h)along a and b directions at 300 K.

    Since both silicon and phosphorus elements show good integration with sodium,2D Phosphorene and silicene exhibit large capacities as anode sodium battery.Considering theelemental and structural similarity,we further estimated the performance of MgSiP2as an anode material.

    We first estimated Na absorption behaviors on 2D MgSiP2using a 2×3 supercell as the substrate,which is tested to be large enough to weaken their interactions.After adsorption of one Na atom,the adsorption energy Eadsis calculated using the following formula

    where ENa+MgSiP2and EMgSiP2refer to the total energy of MgSiP2with and without adsorbed Na atom,respectively,ENarepresents the average energy of a Na atom in bulk Na metal.Considering the structural symmetry of MgSiP2lattice,nine possible sites for Na atom adsorption are shown in Fig.3a.After the geometry optimizations of the adsorbed MgSiP2systems,we found that some Na atoms would spontaneously transfer from one site to another site,and the equivalent sites are listed as following:S2=S1,S3=S4=S5=S6,S8=S9=S10.So only S1,S3,S7 and S8 sites are left.The adsorbed energies for Na atoms are calculated to be -0.581 eV(S1),-0.611 eV(S3),-0.720 eV (S7),and-0.357 eV(S8),respectively.The negative Eadsfor all four sites indicates the dispersive distribution of adsorbed Na atoms instead of forming a cluster.

    To get better understanding of electronic interactions between Na ions and MgSiP2electrode,we have investigated the charge density difference between metal ions and MgSiP2,as presented in Fig.3b.The charge density difference can be expressed as Δρ=ρNaMgSiP2-ρMgSiP2-ρNa,where ρNaMgSiP2,ρMgSiP2and ρNarefer to the charge density of MgSiP2layer with adsorbed Na atom,pristine MgSiP2and the isolated Na atom,respectively.The cyan and yellow areas represent electron depletion and accumulation,respectively.Obvious electron localization can be observed with remarkable electron accumulation around P atoms and depletion around the metal atoms,which indicates the formation of the strong ionic bond.The total and partial density of states of NaMgSiP2are also shown in Fig.3c.It can be seen that there are considerable electronic states at the Fermi level,which indicates that the adsorption of Na atom changes 2D MgSiP2from a semiconductor to a metal.The metal character of NaMgSiP2is also advantageous for making 2D MgSiP2electrode material.

    The storage capacity is one of the most concerned parameters for the electrode materials.In order to calculate the storage capacity,we first calculated the average adsorption energy layer by layer,which is defined by

    Fig.3.(a)The possible sites for Na adsorption of 2D MgSiP2 material.(b)The charge density differenceΔρ with the absorption of Na atom with the isosurface level of 0.001e/?3.(c)The total and partial density of states of MgSiP2Na.

    where ENais the total energy per atom in bulk Na,while ENa12nMg12Si12P24and ENa12(n-1)Mg12Si12P24represent the total energies of EMg12Si12P24(2×3 supercell of MgSiP2)with the absorption of n and n-1 Na atom layers,respectively.If Enis negative,then the adsorption of n layers is more favorable energetically rather than forming Na clusters.The one-layer,two-layer,and three-layer adsorptions of Na atoms on both sides of 2×3 supercell of 2D MgSiP2were estimated.As shown in Fig.S3(Supporting information),for the first adsorption layer,the metal atoms are adsorbed above the vacancies S1 and S7,which is the most stable Na adsorption sites with the lowest energy.The corresponding adsorption energy for the first adsorption layer is calculated to be -0.324 eV.For the second adsorption layer,the S3 and S4 sites are found to be the most stable adsorption sites,and the adsorption energy is-0.148 eV.When the third layer Na atoms is added,the S1 and S7 becomes the most stable adsorption sites again,the absorption energy still can keep negative with a value of -0.011 eV.However,when the fourth layer is added,the absorption energy becomes a positive value of 0.02 eV.So MgSiP2can adsorb maximum three layers of Na atoms in theory.Then we can calculate maximum capacity(CM)by the following equation

    where x represents the number of adsorbed Na ions on the MgSiP2per formula unit,F derives from the Faraday constant with the value of 26,798 mAh/mol,and M is the mass of MgSiP2in g/mol.The stoichiometry MgSiP2Na6reaches a maximum theoretical capacity of 1406.2 mAh/g,Even if the final product of sodium could not achieves MgSiP2Na6,the stable MgSiP2Na4stoichiometry can also get a theoretical capacity of 937 mAh/g.The capacity of MgSiP2is much higher than that of reported 2D anode materials(e.g.,132 mAh/g for Mo2C[73],146 mAh/g for MoS2[46],253 mAh/g SnP3[74]and 751 mAh/g for ReN2[75]).We also estimated the volume changes of sodiation MgSiP2.According to previous work,although some 2D materials such as Si and P have a large capacity,however,the huge volume change of Si limited their application as good anodes.For MgSiP2,the volume change is within 9.5% with the increasing of Na adsorbing layers.The small change in volume after the adsorption of one,two and three layers of Na ions indicates that the MgSiP2is robust.

    We further turn our focus on the open circuit voltage (OCV)in fact,the charge/discharge process of MgSiP2can be described as

    Based on this reaction,the average open circuit voltage can be defined by

    where ENanMgSiP2and EMgSiP2refer to the total energy of MgSiP2with and without adsorbed Na atom,respectively,n and ENarepresents the number of Na atom and average energy of a Na atom in bulk Na metal assuming volume and entropy effects are negligible.The calculated OCV value decreases from 0.23 V to 0.15 V with the increase of the adsorbed Na concentration from 48 atoms to 72 atoms on the 2×3 supercell.So the MgSiP2is suitable to serve as an anode material because of its relatively low average OCV.

    The diffusion barrier of metal ion is as essential parameter to estimate the performance of the battery.A low diffusion barrier means a fast charging/discharging process for ion batteries.We first investigate the diffusion of one Na ion on the MgSiP2surface.Two possible diffusion paths between the lowest energy adsorption sites and the calculated results are shown in Fig.4.The diffusion barrier of the path 1 is 0.16 eV,which lower than that of path 2(0.36 eV)and other anode materials,such as BP(0.22 eV)[76],MoN2(0.56 eV)[77],NiC3(0.23 eV)[78]comparable with that of TiC3(0.18 eV)[79],P3C(0.19 eV)[80]and ReS2(0.16 eV)[81].The low diffusion can result in ultrafast charging/discharging cycles in the Na ion batteries.

    Fig.4.Energy profile of Na diffusion on path 1 and path 2.The inserted figures show the possible sites for Na adsorption in MgSiP2,and the corresponding diffusion pathways are also shown.

    In summary,we predicted a stable 2D MgSiP2with bilayer stacking system of a low-buckled honeycomb lattice by using the PSO-based global structure search method and first-principles calculations.The phonon spectrum,molecular dynamics,and elastic constants simulation confirm its dynamical,thermal,and mechanical stabilities,respectively.It has an indirect band gap with the value of 1.20 eV,which is promising candidate for solar cell.The highest electron mobility(1.29×104cm2V-1s-1)of MgSiP2is comparable with that of XP3(X=Ca,Ge,Sb),showing the potential application in nano electronic devices.Furthermore,we investigate 2D MgSiP2as an anode for NIBs.The metallicity of the MgSiP2with Na adsorption provides good electron conductivity.The MgSiP2can spontaneously adsorb Na ions with an unexpected stoichiometry of Na6MgSiP2,leading to a large theoretical capacity of 1406 mAh/g.Its Na ion diffusion barrier is as low as 0.16 eV,ensuring a quick charge/discharge rate capacity for SIBs.These results could enhance the understanding of 2D MgSiP2,which is important for the designing of anode materials for SIBs.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This research was supported by Henan Joint Funds of the National Natural Science Foundation of China(Nos.U1904179,U1404608 and U1404216),the National Natural Science Foundation of China(No.21603109),the Key Science Fund of Educational Department of Henan Province of China(No.20B140010).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.08.042.

    亚洲婷婷狠狠爱综合网| 日产精品乱码卡一卡2卡三| 亚洲精品视频女| 欧美精品人与动牲交sv欧美| 搡女人真爽免费视频火全软件| 一级片'在线观看视频| 精品卡一卡二卡四卡免费| 少妇人妻精品综合一区二区| 日韩视频在线欧美| 又黄又爽又刺激的免费视频.| 国产高清有码在线观看视频| 欧美人与善性xxx| 在线观看人妻少妇| 晚上一个人看的免费电影| 欧美xxxx性猛交bbbb| 人妻少妇偷人精品九色| 99久久综合免费| 国产精品国产三级国产av玫瑰| 精品一区二区免费观看| 26uuu在线亚洲综合色| 少妇丰满av| 亚洲欧洲国产日韩| 少妇被粗大猛烈的视频| 看非洲黑人一级黄片| 亚洲国产欧美在线一区| 中文字幕精品免费在线观看视频 | 免费黄网站久久成人精品| 另类亚洲欧美激情| 妹子高潮喷水视频| 亚洲三级黄色毛片| 久久人妻熟女aⅴ| 中文欧美无线码| 国产精品国产三级国产av玫瑰| 久久韩国三级中文字幕| 中文字幕制服av| 亚洲精华国产精华液的使用体验| 中文天堂在线官网| 一边亲一边摸免费视频| 国产片特级美女逼逼视频| 亚洲人成网站在线播| 日日摸夜夜添夜夜添av毛片| 蜜臀久久99精品久久宅男| 久久久久久久久大av| 美女xxoo啪啪120秒动态图| 狂野欧美激情性xxxx在线观看| 男女高潮啪啪啪动态图| 亚洲欧美日韩卡通动漫| 亚洲av免费高清在线观看| 春色校园在线视频观看| 亚洲人与动物交配视频| 婷婷成人精品国产| 精品亚洲成a人片在线观看| 精品亚洲乱码少妇综合久久| 欧美97在线视频| 国产淫语在线视频| 欧美+日韩+精品| 日本黄色日本黄色录像| 你懂的网址亚洲精品在线观看| 免费高清在线观看日韩| 欧美精品一区二区大全| 亚洲美女黄色视频免费看| 国产精品成人在线| 亚洲美女视频黄频| 国国产精品蜜臀av免费| 中文字幕av电影在线播放| 青青草视频在线视频观看| 成人18禁高潮啪啪吃奶动态图 | 午夜激情福利司机影院| 香蕉精品网在线| 晚上一个人看的免费电影| a级片在线免费高清观看视频| 天堂中文最新版在线下载| 女人精品久久久久毛片| 亚洲综合精品二区| 国产精品麻豆人妻色哟哟久久| 久久女婷五月综合色啪小说| 色吧在线观看| videossex国产| 丝瓜视频免费看黄片| 九草在线视频观看| 视频区图区小说| 国产高清有码在线观看视频| 丝瓜视频免费看黄片| 成人免费观看视频高清| 中国三级夫妇交换| 亚洲国产色片| 男女无遮挡免费网站观看| 亚洲第一区二区三区不卡| 99热网站在线观看| av不卡在线播放| videos熟女内射| 国产高清不卡午夜福利| 成人国产av品久久久| 精品人妻在线不人妻| 大话2 男鬼变身卡| 一级毛片电影观看| 国产乱来视频区| 80岁老熟妇乱子伦牲交| 这个男人来自地球电影免费观看 | 欧美人与善性xxx| 国产极品天堂在线| av在线播放精品| 91精品国产九色| 久久精品国产亚洲av涩爱| 欧美亚洲 丝袜 人妻 在线| 亚洲欧洲日产国产| 欧美日韩av久久| 男人添女人高潮全过程视频| 亚洲av中文av极速乱| av一本久久久久| 日韩 亚洲 欧美在线| 免费少妇av软件| 欧美三级亚洲精品| 丰满乱子伦码专区| 亚洲成人一二三区av| 高清视频免费观看一区二区| 99热国产这里只有精品6| 卡戴珊不雅视频在线播放| 中文字幕亚洲精品专区| 免费av不卡在线播放| 亚洲av成人精品一二三区| 啦啦啦中文免费视频观看日本| 嘟嘟电影网在线观看| 亚洲性久久影院| 国产精品一国产av| 男男h啪啪无遮挡| 狠狠精品人妻久久久久久综合| 九草在线视频观看| 国产欧美另类精品又又久久亚洲欧美| 国产黄色视频一区二区在线观看| 亚洲国产精品999| 在线观看免费日韩欧美大片 | 国产成人精品在线电影| 亚洲精品乱久久久久久| 最近的中文字幕免费完整| 在线观看免费视频网站a站| 美女大奶头黄色视频| 2018国产大陆天天弄谢| 国产视频内射| 日韩熟女老妇一区二区性免费视频| 搡女人真爽免费视频火全软件| 一区二区三区免费毛片| 国产一区有黄有色的免费视频| 全区人妻精品视频| 精品久久国产蜜桃| a级毛色黄片| 成人午夜精彩视频在线观看| 插逼视频在线观看| 日本色播在线视频| 激情五月婷婷亚洲| 好男人视频免费观看在线| 水蜜桃什么品种好| 丁香六月天网| 亚洲久久久国产精品| av.在线天堂| 中文欧美无线码| 日韩制服骚丝袜av| 国产黄频视频在线观看| 男女啪啪激烈高潮av片| 精品久久久久久电影网| 免费观看无遮挡的男女| 欧美 日韩 精品 国产| 男人添女人高潮全过程视频| 日本免费在线观看一区| 天天操日日干夜夜撸| 2022亚洲国产成人精品| 日韩中文字幕视频在线看片| xxxhd国产人妻xxx| 国产精品久久久久久精品古装| 久久婷婷青草| 高清午夜精品一区二区三区| freevideosex欧美| 一本色道久久久久久精品综合| 国产综合精华液| 在线 av 中文字幕| 婷婷色av中文字幕| 午夜免费男女啪啪视频观看| 国产高清不卡午夜福利| 日本色播在线视频| 精品一区在线观看国产| 91在线精品国自产拍蜜月| av又黄又爽大尺度在线免费看| 高清av免费在线| 在线观看三级黄色| 在线观看三级黄色| 亚洲色图 男人天堂 中文字幕 | 不卡视频在线观看欧美| 亚洲中文av在线| 久久99一区二区三区| 男人操女人黄网站| 一区二区三区精品91| 99热网站在线观看| 成人影院久久| av国产精品久久久久影院| 99久久综合免费| 91精品伊人久久大香线蕉| 国产在视频线精品| 欧美 亚洲 国产 日韩一| 久久久久精品性色| 国产精品国产三级国产专区5o| 蜜桃久久精品国产亚洲av| 91成人精品电影| 亚洲精华国产精华液的使用体验| 久久久久久久久久久免费av| 人成视频在线观看免费观看| 视频在线观看一区二区三区| 亚洲欧美成人综合另类久久久| 中文精品一卡2卡3卡4更新| 中国国产av一级| 精品少妇久久久久久888优播| 中文字幕精品免费在线观看视频 | 亚洲欧美一区二区三区国产| 热99久久久久精品小说推荐| 久久久久久伊人网av| 最近手机中文字幕大全| 亚洲精品久久成人aⅴ小说 | 日日撸夜夜添| 热re99久久精品国产66热6| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产高清有码在线观看视频| 老熟女久久久| 老司机影院毛片| 国产亚洲欧美精品永久| 日韩一区二区三区影片| 91精品三级在线观看| 3wmmmm亚洲av在线观看| 插阴视频在线观看视频| 高清在线视频一区二区三区| 亚洲精品亚洲一区二区| 99九九线精品视频在线观看视频| 亚洲美女搞黄在线观看| 成年美女黄网站色视频大全免费 | av黄色大香蕉| av网站免费在线观看视频| 欧美另类一区| 亚洲av不卡在线观看| 亚洲欧美精品自产自拍| 亚洲精品国产色婷婷电影| 韩国高清视频一区二区三区| 色94色欧美一区二区| 18在线观看网站| 视频中文字幕在线观看| 又黄又爽又刺激的免费视频.| 黑丝袜美女国产一区| 午夜激情久久久久久久| 另类精品久久| 精品国产露脸久久av麻豆| 亚洲内射少妇av| 久久久久网色| 欧美激情 高清一区二区三区| 亚洲熟女精品中文字幕| 国产免费视频播放在线视频| 高清视频免费观看一区二区| 七月丁香在线播放| 一边摸一边做爽爽视频免费| 欧美人与善性xxx| 久久人人爽人人爽人人片va| 性色av一级| 亚洲精品美女久久av网站| 日本av免费视频播放| 丰满迷人的少妇在线观看| 午夜影院在线不卡| 午夜av观看不卡| 久久午夜福利片| 超碰97精品在线观看| 岛国毛片在线播放| 久久久久久久久久人人人人人人| 亚洲av二区三区四区| 女人久久www免费人成看片| 精品人妻偷拍中文字幕| 欧美bdsm另类| 国国产精品蜜臀av免费| 好男人视频免费观看在线| 婷婷成人精品国产| 久久这里有精品视频免费| 日韩成人伦理影院| 亚洲av日韩在线播放| av免费在线看不卡| 丝袜脚勾引网站| 亚洲精华国产精华液的使用体验| 亚洲国产av新网站| 日韩 亚洲 欧美在线| 九九在线视频观看精品| 激情五月婷婷亚洲| 乱人伦中国视频| 纵有疾风起免费观看全集完整版| 久久青草综合色| 亚洲精品久久成人aⅴ小说 | 狂野欧美激情性xxxx在线观看| 91精品国产九色| 熟女电影av网| av天堂久久9| 少妇精品久久久久久久| 亚洲激情五月婷婷啪啪| 国产免费一区二区三区四区乱码| 国产精品国产av在线观看| 亚洲精品日韩av片在线观看| 欧美丝袜亚洲另类| 大话2 男鬼变身卡| 黄色毛片三级朝国网站| 久久久久久久久久成人| 日本vs欧美在线观看视频| 最近2019中文字幕mv第一页| 岛国毛片在线播放| 亚洲国产av影院在线观看| 99九九在线精品视频| 久久精品夜色国产| 一级a做视频免费观看| 亚洲成人手机| 三级国产精品片| 欧美97在线视频| 色网站视频免费| av免费在线看不卡| 国产精品一区二区在线不卡| av播播在线观看一区| 精品久久久久久久久亚洲| 丰满迷人的少妇在线观看| 亚洲精品中文字幕在线视频| 成年人免费黄色播放视频| 亚洲精品日韩av片在线观看| 久久综合国产亚洲精品| 久久久国产欧美日韩av| 国产成人精品无人区| 国国产精品蜜臀av免费| 啦啦啦啦在线视频资源| 亚洲欧美成人精品一区二区| 黄片无遮挡物在线观看| 综合色丁香网| 另类精品久久| www.av在线官网国产| 一区在线观看完整版| 久久久久久久精品精品| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久久免费av| 日本色播在线视频| 国产成人av激情在线播放 | 最近的中文字幕免费完整| 在线观看免费视频网站a站| 亚洲精品自拍成人| 99九九线精品视频在线观看视频| 免费黄色在线免费观看| 久久婷婷青草| 欧美精品一区二区大全| 高清av免费在线| 韩国av在线不卡| 日韩一区二区视频免费看| 精品少妇黑人巨大在线播放| 日韩av在线免费看完整版不卡| 亚洲国产精品专区欧美| 在线观看国产h片| 三上悠亚av全集在线观看| 欧美激情极品国产一区二区三区 | 赤兔流量卡办理| 涩涩av久久男人的天堂| 久久久久久久久久人人人人人人| 一本色道久久久久久精品综合| 国产精品久久久久成人av| 亚洲少妇的诱惑av| 纵有疾风起免费观看全集完整版| 亚州av有码| 最后的刺客免费高清国语| 欧美日韩av久久| 黄色欧美视频在线观看| 人人妻人人爽人人添夜夜欢视频| 欧美bdsm另类| 国产精品久久久久成人av| 一级毛片aaaaaa免费看小| 蜜臀久久99精品久久宅男| 亚洲精品av麻豆狂野| 日本av手机在线免费观看| 韩国高清视频一区二区三区| 久久精品国产亚洲av涩爱| 日本wwww免费看| 午夜久久久在线观看| 国产69精品久久久久777片| 尾随美女入室| 超色免费av| 亚洲av电影在线观看一区二区三区| 国产精品一区www在线观看| 亚洲少妇的诱惑av| www.av在线官网国产| 大码成人一级视频| 成人二区视频| 欧美日韩在线观看h| 亚洲欧美清纯卡通| 五月开心婷婷网| 男女国产视频网站| 精品久久久噜噜| 国产一区二区在线观看日韩| 久久精品夜色国产| 在线观看免费日韩欧美大片 | 91成人精品电影| 国产一区二区三区av在线| 亚洲精品国产av成人精品| 另类亚洲欧美激情| av在线观看视频网站免费| 日韩人妻高清精品专区| 99国产综合亚洲精品| 少妇丰满av| 搡老乐熟女国产| 欧美3d第一页| 亚洲在久久综合| 免费播放大片免费观看视频在线观看| 欧美日韩视频高清一区二区三区二| 亚洲精品456在线播放app| 黄色一级大片看看| 搡女人真爽免费视频火全软件| 男女高潮啪啪啪动态图| 婷婷色av中文字幕| 国产在线免费精品| 日韩一本色道免费dvd| 日本vs欧美在线观看视频| 欧美日韩国产mv在线观看视频| 新久久久久国产一级毛片| 只有这里有精品99| 性色avwww在线观看| 日韩视频在线欧美| 精品国产一区二区久久| 婷婷成人精品国产| 亚洲国产精品一区二区三区在线| 男人爽女人下面视频在线观看| 一个人免费看片子| 国产午夜精品久久久久久一区二区三区| 人妻少妇偷人精品九色| 免费大片黄手机在线观看| 国产黄色免费在线视频| 国产老妇伦熟女老妇高清| 亚洲人成77777在线视频| 免费观看性生交大片5| 在线观看人妻少妇| 免费久久久久久久精品成人欧美视频 | 91午夜精品亚洲一区二区三区| 我要看黄色一级片免费的| 久久久国产精品麻豆| 一级二级三级毛片免费看| 久久狼人影院| 精品久久蜜臀av无| 日韩欧美一区视频在线观看| 久久久国产一区二区| 精品亚洲成国产av| 亚洲熟女精品中文字幕| 嘟嘟电影网在线观看| 亚洲精品久久久久久婷婷小说| 在现免费观看毛片| 欧美日韩成人在线一区二区| 久久精品国产亚洲网站| 午夜日本视频在线| 亚洲成人一二三区av| 久久久午夜欧美精品| 五月天丁香电影| 高清午夜精品一区二区三区| av女优亚洲男人天堂| 久久人妻熟女aⅴ| 18禁在线无遮挡免费观看视频| 国产欧美亚洲国产| 高清欧美精品videossex| 色网站视频免费| 美女福利国产在线| 人妻 亚洲 视频| 亚洲av中文av极速乱| 春色校园在线视频观看| 人体艺术视频欧美日本| 久久久久精品性色| 美女大奶头黄色视频| 丰满饥渴人妻一区二区三| a级毛片在线看网站| 亚洲av综合色区一区| 视频在线观看一区二区三区| 国产乱来视频区| 日韩伦理黄色片| 晚上一个人看的免费电影| 亚洲av男天堂| 老女人水多毛片| √禁漫天堂资源中文www| 精品久久久噜噜| 亚洲一级一片aⅴ在线观看| 免费黄频网站在线观看国产| 成人国语在线视频| 国产日韩欧美在线精品| 国产日韩一区二区三区精品不卡 | 亚洲av日韩在线播放| 性色avwww在线观看| 91精品三级在线观看| 成人无遮挡网站| 欧美日韩综合久久久久久| 欧美日韩av久久| 美女大奶头黄色视频| 国产精品久久久久久精品古装| 久久99精品国语久久久| 亚洲精品第二区| 日本午夜av视频| 欧美日韩亚洲高清精品| 一级毛片 在线播放| 亚洲图色成人| 久久久久久伊人网av| 日韩欧美一区视频在线观看| 激情五月婷婷亚洲| 久久久国产欧美日韩av| 久久ye,这里只有精品| 99久久精品一区二区三区| 日本av手机在线免费观看| 国产探花极品一区二区| 天堂8中文在线网| 国产成人精品在线电影| 好男人视频免费观看在线| 美女大奶头黄色视频| 最近2019中文字幕mv第一页| 69精品国产乱码久久久| 中文字幕亚洲精品专区| 国产成人精品婷婷| 日韩电影二区| 国产av国产精品国产| 大香蕉久久网| 在线 av 中文字幕| 日韩人妻高清精品专区| 蜜桃久久精品国产亚洲av| 免费播放大片免费观看视频在线观看| 国产淫语在线视频| a级毛片免费高清观看在线播放| 日韩人妻高清精品专区| 美女福利国产在线| 黑丝袜美女国产一区| 亚洲综合精品二区| 精品人妻偷拍中文字幕| 麻豆乱淫一区二区| 亚洲激情五月婷婷啪啪| 内地一区二区视频在线| 亚洲伊人久久精品综合| 伊人久久国产一区二区| 久久ye,这里只有精品| 亚洲性久久影院| 久久久久久久精品精品| 国产精品不卡视频一区二区| videossex国产| 国产精品久久久久久久电影| 欧美 亚洲 国产 日韩一| 国产在线视频一区二区| 美女内射精品一级片tv| 成人亚洲欧美一区二区av| 在线观看美女被高潮喷水网站| 国产一区二区三区综合在线观看 | 亚洲欧洲精品一区二区精品久久久 | 色5月婷婷丁香| 亚洲精品色激情综合| 纯流量卡能插随身wifi吗| 五月伊人婷婷丁香| 免费看av在线观看网站| 亚洲久久久国产精品| 多毛熟女@视频| 久久99热6这里只有精品| 久久女婷五月综合色啪小说| 久久久精品94久久精品| 久久久久国产精品人妻一区二区| 一级毛片aaaaaa免费看小| 免费播放大片免费观看视频在线观看| 女性被躁到高潮视频| 十八禁网站网址无遮挡| 亚洲精品自拍成人| 中文字幕精品免费在线观看视频 | 狂野欧美激情性bbbbbb| 夜夜看夜夜爽夜夜摸| 久久精品久久精品一区二区三区| 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看| 久久精品国产a三级三级三级| 久久热精品热| 99久国产av精品国产电影| 亚洲国产日韩一区二区| 国产成人a∨麻豆精品| 亚洲在久久综合| 在线观看免费高清a一片| 黑丝袜美女国产一区| 秋霞在线观看毛片| 69精品国产乱码久久久| 精品亚洲乱码少妇综合久久| 制服人妻中文乱码| 免费大片黄手机在线观看| 亚洲成人手机| 三级国产精品欧美在线观看| 免费黄色在线免费观看| 你懂的网址亚洲精品在线观看| videossex国产| 一个人看视频在线观看www免费| 精品一区二区三区视频在线| 一区二区三区精品91| 久久99热6这里只有精品| 一区二区av电影网| 日日摸夜夜添夜夜添av毛片| 卡戴珊不雅视频在线播放| 亚洲精品日韩在线中文字幕| 97在线人人人人妻| 色哟哟·www| 国产男女超爽视频在线观看| 在线观看www视频免费| 亚洲av成人精品一二三区| 欧美老熟妇乱子伦牲交| 我要看黄色一级片免费的| 91午夜精品亚洲一区二区三区| 丁香六月天网| 欧美少妇被猛烈插入视频| 国产av码专区亚洲av| 一本久久精品| 美女主播在线视频| 热99久久久久精品小说推荐| 久久99热这里只频精品6学生| 亚洲国产精品999| 亚洲,一卡二卡三卡| 国产伦理片在线播放av一区| 大片免费播放器 马上看| 中文欧美无线码| 亚洲人成网站在线播| 成人18禁高潮啪啪吃奶动态图 | 欧美bdsm另类| 国产免费又黄又爽又色| 午夜激情久久久久久久|