• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Selective adsorption behaviors of guest molecules COR in the hexamer host networks at liquid/solid interface

    2021-07-01 05:29:20XiaokangLiJianqiaoLiChunyuMChenChenSiqiZhangBinTuWubiaoDuanQingdaoZengc
    Chinese Chemical Letters 2021年3期

    Xiaokang Li,Jianqiao Li,Chunyu MChen Chen,Siqi Zhang,Bin Tu*,Wubiao Duan**,Qingdao Zengc,*

    a CAS Key Laboratory of Standardization and Measurement for Nanotechnology,CAS Center for Excellence in Nanoscience,National Center for Nanoscience and Technology(NCNST),Beijing 100190,China

    b Department of Chemistry,School of Science,Beijing Jiaotong University,Beijing 100044,China

    c Center of Materials Science and Optoelectonics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    ABSTRACT Here,the selective adsorption behaviors of guest molecule COR in two hexamer host grids were investigated by means of scanning tunnelling microscope(STM).The assembled structures of small functional organic molecules TTBTA and TATBA were thermodynamically stable.Interestingly,the introduction of the guest molecule COR destroyed the original hexamer structure of TTBTA and combined with it to form a new triangular host-guest system.Different from TTBTA,the introduction of the guest molecule COR did not affect the six-membered ring structure of TATBA.Furthermore,the co-assembly structure of TTBTA/TATBA/COR was established and the guest molecule COR showed preferential adsorption to the TATBA host grid.Density functional theory(DFT)calculations had been performed to disclose the mechanism of the involved assemblies.

    Keywords:Scanning probemicroscopy(STM)Selective adsorption Host-guest chemistry Supramolecular chemistry Aromatic carboxylic acid

    The host-guest chemistry of the surface/interface has attracted much attention due to its broad prospects in nanotechnology and nanomaterials[1–4].The main reason for this is that the host-guest chemistry provides an interesting strategy for the construction of ordered specific structures at the molecular level[5].It is well known that host-guest chemistry is a branch of supramolecular chemistry,which constructs functional complexes through noncovalent interactions among molecules[6–12].In general,in order to obtain well ordered specific complexes,the rigid host networks can be used to accommodate the guest molecules.The guest molecules filled in the cavity of the rigid host networks cannot change the original structures of the host templates[13–15].However,the host networks constructed by small functional organic molecules[16–20]can respond to the guest molecules flexibly through the breakage and generation of noncovalent bonds,which is more conducive to enhance the stability of the structure.Another significant point is that conjugated systems of aromatic rings are helpful to facilitate electron transport,thus the self-assembled structures are more prone to have special optical,electrical,and magnetic properties.Scanning tunneling microscope(STM),with atomic-level resolution,is an essential characterization tool for studying host-guest systems[6,21–24].With the help of STM,the assembly structures and dynamic behaviors of the host-guest systems can be observed and studied directly under atmospheric conditions[25–31].

    Up to now,there have been many researches on host-guest systems,including the fabrication of controllable nanoparticles in the host networks[32],efficient photochemical reactions[33]and preferential adsorption of different guests on different host networks[34].However,studies on the dynamic selective adsorption behavior of a single type of guest molecule in multiple host networks are rare.Peng et al.studied the adsorption behavior of the same guest in host templates based on different driving forces[20].Li et al.reported the non-selective adsorption of guest molecule COR in two flower-like structures formed by two kinds of C3-symmetric hexacarboxylic acid molecules[35–39].

    Here,the preferential adsorption behavior of the same guest in different host networks would be further investigated.Two kinds of small functional organic molecules with three carboxyl groups,benzo[1,2-b:3,4-b':5,6-b'']tristhiophene-2,5,8-tricarboxylic acid(TTBTA)and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzoic acid(TATBA),are chosen to construct host networks.With the help of STM,the co-assembly behavior of the guest molecule coronene(COR)in the host networks formed by TTBTA and TATBA are studied separately.The solid substrate used in the experiment is highly oriented pyrolytic graphite(HOPG).Combined with density functional theory(DFT)calculations,the mechanism of selective adsorption of the guest molecule COR in the host networks TTBTA and TATBA was further studied.The chemical structures of TTBTA,TATBA and COR are shown in Scheme 1.

    Scheme 1.Chemical structures of TTBTA,TATBA and guest molecule COR investigated in this paper.

    In this research,TTBTA and TATBA molecules were purchased from Jilin Chinese Academy of Sciences-Yanshen Technology Co.,Ltd.COR and 1-heptanoic acid(HA)were purchased from J&K Scientific.All molecules including the host molecules(TTBTA,TATBA)and the guest molecule(COR)were dissolved in the heptanoic acid respectively with the solution concentrations not exceeding 10-4mol/L.The assemblies were prepared by subsequent deposition of the components onto a freshly cleaned HOPG(grade ZYB,NTMDT,Russia)surface.TTBTA or TATBA solution was deposited on HOPG,and then detected by STM.Afterwards,COR dissolved in 1-heptanoic acid was added to the monocomponent system of TTBTA and TATBA followed by STM detection.All experiments were performed at room temperature.

    The STM measurements were performed by means of a NanoscopeⅢa scanning probe microscope(Bruker,USA)in constant current mode under ambient conditions.As the STM tips,it is prepared by mechanically cutting the Pt/Ir wire(80/20).

    In this work,theoretical analysis of STM data was carried out with the DMol3mode[40].We applied DFT-D3 method(Perdew-Burke-Ernzerhof correlation energy PBE[41]as the DFT functional applied in the generalized gradient approximation(GGA)to describe exchange and correlation),in which the atom-pair wise(atom-triple wise)dispersion correction can be added to the standard Kohn–Sham density functional theory(KS-DFT)energies(and gradient)[42]:

    with Edispbeing the sum of the two-and three-body contributions to the dispersion energy:

    The most important two-body term is given at long range by

    Considering that the interaction between adsorbates and substrate is mainly van der Waals interaction,the dispersion corrections(for example,the Grimme’s dispersion corrections)should be included in the results.We have performed DFT-D method to estimate the interaction energy of the adsorbate with graphene.The DFT-D method really can be considered successfully now on thousands of different systems including inter-and intramolecular cases ranging from rare gas dimers to huge graphene sheets[36].The graphene layer was referred to as a periodic arrangement of orthorhombic unit cells including two carbon atoms,wherein the distance in the normal direction in the superlattice was 40?.When modeling the adsorbates on graphene,we used graphene supercells and sampled the Brillouin zone by a 1×1×1 k-point mesh.The interaction energy Einterof adsorbates with graphite is given by Einter=Etot(adsorbates/graphene)-Etot(isolated adsorbates in vacuum)-Etot(graphene).

    After depositing a droplet of TTBTA solution on HOPG,the largescale self-assembly structures were detected at the interface of heptanoic acid/HOPG,and was shown in Fig.S1a(Supporting information).It is worth noting that two types of structures can be observed,one is a loose structure formed by two carboxyl groups head to head,and the other is a close-packed network formed side by side.The first kind of structure has been studied to host C60molecule[43],so here we focus on the second kind of close-packed network.As shown in Fig.1a,an ordered hexamer grid can be clearly observed.The bright spots of the approximate triangle correspond to TTBTA molecules,which were aligned edge-to-edge.The central cavity of the hexamer structure is formed by the carboxyl groups of six TTBTA molecules in a fenced manner.The molecular model of TTBTA structures(Fig.1b)indicated that a circular cavity with an inner diameter of 0.8±0.1 nm was composed of carboxyl groups connected by hydrogen bonds.Moreover,each carboxyl group of the TTBTA molecule simultaneously formed two hydrogen bonds with the two carboxyl groups of two adjacent TTBTA molecules(as shown by the black circle in Fig.1b).A unit cell of the molecular model was marked in Fig.1a,a=b=1.7±0.1 nm and α=60±2°(Table 1).The hexameric structure of TTBTA allowed the three carboxyl groups of each molecule to combine with the carboxyl groups of adjacent molecules to form three pairs of hydrogen bonds,ensuring the saturation of the hydrogen bonds of the carboxyl groups.

    Fig.1.(a)High-resolution STM image of TTBTA structures at the HA/HOPG interface(Iset=375.4 pA,Vbias= 601.8 mV).(b)Proposed molecular model of TTBTA hexamer grid structures.(c)High-resolution STM image of TATBA structures at the HA/HOPG interface(Iset=363.2 pA,Vbias= 582.0 mV).(d)Proposed molecular model of TATBA six-membered ring structures.

    Table 1 The experimental(exptl.)and calculated(calcd.)unit cell parameters for the templates and host-guest architectures.

    The highly ordered arrangement of the TATBA structure over a wide range can be observed,as shown in Fig.S1b(Supporting information).Similar to TTBTA molecule,as shown in highresolution Fig.1c,the bright point of the triangle corresponded to the TABAA molecule,but it can be clearly seen that the triangle shape corresponding to TATBA is more regular and obvious.The TATBA molecules could self-assemble into regular six-membered rings,and the inner diameter of the central cavity is 2.2±0.1 nm.The reason for this is that the angle between the two carboxyl groups in the molecule is 120°,and it takes six pairs of carboxyl groups to form a closed loop geometrically.In addition,the 1,3,5-triazine cores of the TATBA molecules were used as the vertex of the hexagon,and two carboxyl groups at the end of two TATBA molecules interact in a head-to-head manner to form a pair of hydrogen bonds(as shown by the red circle in Fig.1d).The parameters of the unit cell,measured from Fig.1c,were a=b=3.1±0.1 nm,α=60°±2°(Table 1).In these two hexamer structures,the three carboxyl groups of TTBTA and TATBA all participated in self-assembly to form hydrogen bonds,releasing more energy,which makes the energy of the intermolecular system lower and more stable.Both TTBTA and TATBA cavities can accommodate guest molecules,so the study of the selective behavior of guest molecules on these two molecular templates has attracted our interest.

    When the COR solution was added to the mono-component system of TTBTA,a large-scale STM image of the TTBTA/COR coassembled structures was shown in Fig.S2a(Supporting information).Interestingly,after the introduction of the guest molecule COR,the original hexamer structure of TTBTA was destroyed and combined with it to form a new triangular host-guest system.In the high-resolution STM image(Fig.2a),it is shown that the COR molecules(shown as blue circles in Fig.2a)represented by circular bright spots are located in a triangular cavity formed by three TTBTA molecules(shown as white circles in Fig.2a).This transformation of the TTBTA molecule host network was advantageous for the immobilization of guest molecules COR in the cavity(Fig.2b).The unit cell parameters were measured a=b=1.8±0.1 nm and α=48°±2°(Table 1).With the introduction of COR,the interactions between molecules and substrate in the architecture were much strengthened and resulted in the reduction of the total energy per unit area(-0.485 kcal mol-1?-2),which was helpful for the stable existence of TTBTA/COR coassembled structures on HOPG.The DFT results(Table 2)revealed that the total energies per unit areas of TTBTA/COR co-assembled structures(-0.485 kcal mol-1?-2)was lower than that of TTBTA’s pure architecture(-0.398 kcal mol-1?-2),so the host-guest architectures could be constructed after the addition of COR.Furthermore,when COR molecules was deposited on the TATBA templates,a large-scale STM image of the TATBA/COR coassembled architectures was shown in Fig.S2b(Supporting information).Different from TTBTA,the introduction of the guest molecule COR did not affect the six-membered ring structures of TATBA(Fig.2c).The high-resolution image indicated that a guest molecule COR was immobilized in the center of the cavity of the six-membered ring.The parameters of the unit cell,measured from Fig.2d,were a=b=3.1±0.1 nm,α=60°±2°.Similar to TTBTA,due to the introduction of COR,the total energy per unit area of TATBA/COR co-assembled structure(-0.402 kcal mol-1?-2)was lower than that of TATBA’s pure architecture(-0.282 kcal mol-1?-2),which is also conducive to the construction of TATBA/COR coassembled structure and its stable existence on HOPG.

    Table 2 Total energies and energies per unit area for the assembly structures of TTBTA,TTBTA/COR,TATBA and TATBA/COR.

    Fig.2.(a)High-resolution STM image of TTBTA/COR structures at the HA/HOPG interface(Iset=152.6 pA,Vbias= 919.8 mV).(b)Proposed molecular model of TTBTA/COR.(c)High-resolution STM image of TATBA/COR structures at the HA/HOPG interface(Iset=183.1 pA,Vbias= 911.9 mV).(d)Proposed molecular model of TATBA/COR.

    To further investigate the selective adsorption of COR in the two templates,the three-component structure of the TTBTA/TATBA/COR system was built.As shown in the high-resolution image(Figs.3a and b),when the two host networks formed by TTBTA and TATBA coexist,the guest molecule COR would be selectively adsorbed in the cavities formed by TATBA(region I),while the hexamer grid formed by TTBTA would not be affected(region II).Although the DFT results showed that the total energy per unit area of TTBTA/COR system(-0.485 kcal mol-1?-2)was lower than that of TATBA/COR(-0.402 kcal mol-1?-2),this selective assembly was probably due to the steric hindrance effect that played an important role in the dynamic process of COR’s preferential adsorption of the two host networks.We observed that the cavities formed by TTBTA were smaller than those formed by TATBA,into which a COR molecule cannot enter(The measured diameters of cavities formed by TTBTA and TATBA were about 0.7±0.1 and 2.2±0.1 nm,respectively,and the size of single COR molecule was about 1.0 nm).During the process of COR enter the cavities formed by TTBTA,the original host structure must be broken first,and then reassembled.On the other hand,COR can directly enter into the host structure of TATBA without obstacles.Therefore,COR molecules may be preferentially adsorbed in the host networkof TATBA instead of TTBTA,forming the thermodynamic stable TATBA/COR architecture.

    Fig.3.(a,b)High-resolution STM image of TTBTA/TATBA/COR co-assembly structures at the HA/HOPG interface(Iset=183.1 pA,Vbias= 911.9 mV).

    In summary,the assembly behavior of two small functional organic molecules,TTBTA and TATBA,was studied by STM and DFT calculations.Both TTBTA and TATBA molecules can self-assemble into six-membered ring structure through hydrogen bonding interactions,but two kinds of cavities with different sizes were formed due to the different binding directions of hydrogen bonds between carboxyl groups.The self-assembled networks of TTBTA and TATBA could be used as molecular templates to accommodate the guest molecule COR.Interestingly,the introduction of the guest molecule COR destroyed the original hexamer structure of TTBTA and combined with it to form a new triangular host-guest system.Different from TTBTA,the introduction of the guest molecule COR did not affect the six-membered ring structure of TATBA.Furthermore,the co-assembly structure of TTBTA/TATBA/COR was established.The guest molecule COR showed preferential adsorption to the TATBA host grid,and it was explained and analyzed by the combination of DFT calculations and steric hindrance effect.This research provide da deep insight of the selective adsorption behavior of a single guest in multiple host templates.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Basic Research Program of China(No.2016YFA0200700),the National Natural Science Foundation of China(Nos.21773041 and 21972031)and the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.07.049.

    久久99热6这里只有精品| 深爱激情五月婷婷| 老司机深夜福利视频在线观看| 国产日本99.免费观看| 好男人在线观看高清免费视频| 亚洲 国产 在线| 亚洲中文字幕一区二区三区有码在线看| 午夜免费男女啪啪视频观看 | 他把我摸到了高潮在线观看| 哪里可以看免费的av片| a在线观看视频网站| 国产高清视频在线观看网站| 99久久精品国产亚洲精品| 国产美女午夜福利| 桃红色精品国产亚洲av| 69av精品久久久久久| 嫩草影院精品99| 国产一区二区三区在线臀色熟女| 成年女人永久免费观看视频| 国产精品,欧美在线| 国产一区二区三区视频了| 亚洲一区二区三区不卡视频| 国产探花在线观看一区二区| 天堂影院成人在线观看| 99久国产av精品| 性欧美人与动物交配| bbb黄色大片| 麻豆成人午夜福利视频| 国产精品嫩草影院av在线观看 | av天堂在线播放| 久久久久亚洲av毛片大全| 久久久久亚洲av毛片大全| 免费av不卡在线播放| 国产成人aa在线观看| 麻豆国产av国片精品| 久久久国产成人免费| 精品人妻熟女av久视频| 国产欧美日韩一区二区精品| 一本一本综合久久| 日韩欧美精品免费久久 | 午夜免费男女啪啪视频观看 | 久久久久久大精品| 精品午夜福利在线看| 丰满人妻一区二区三区视频av| 色吧在线观看| 久久精品国产亚洲av香蕉五月| 日韩欧美精品v在线| 精品人妻视频免费看| 国产精品一区二区性色av| 婷婷精品国产亚洲av| 国产午夜精品论理片| 欧美乱色亚洲激情| 亚洲 国产 在线| 麻豆国产av国片精品| 在线观看午夜福利视频| 性色avwww在线观看| 午夜精品在线福利| 亚洲国产色片| 久久性视频一级片| 给我免费播放毛片高清在线观看| 夜夜爽天天搞| 高清毛片免费观看视频网站| 最后的刺客免费高清国语| 日韩高清综合在线| 99riav亚洲国产免费| 99精品久久久久人妻精品| 一进一出抽搐动态| aaaaa片日本免费| 亚洲,欧美精品.| 久久这里只有精品中国| 久久久成人免费电影| 亚洲av.av天堂| 91麻豆精品激情在线观看国产| 国产精品,欧美在线| 国产av不卡久久| 精品久久久久久久久av| 一二三四社区在线视频社区8| 精品乱码久久久久久99久播| 亚洲av成人av| 91麻豆精品激情在线观看国产| 久久久久久久久大av| 天堂动漫精品| 成人特级av手机在线观看| 久久久精品欧美日韩精品| 亚洲av熟女| 国产成人影院久久av| 禁无遮挡网站| 成人av在线播放网站| 精品欧美国产一区二区三| 日韩大尺度精品在线看网址| 级片在线观看| 亚洲在线观看片| 欧美最黄视频在线播放免费| 在线播放无遮挡| 亚洲va日本ⅴa欧美va伊人久久| 亚洲色图av天堂| 久久香蕉精品热| 成人av一区二区三区在线看| 免费看a级黄色片| 一a级毛片在线观看| 日韩欧美一区二区三区在线观看| 麻豆国产97在线/欧美| 国产欧美日韩精品亚洲av| 香蕉av资源在线| 哪里可以看免费的av片| 我要搜黄色片| 亚洲精华国产精华精| 美女cb高潮喷水在线观看| 欧美xxxx性猛交bbbb| 性欧美人与动物交配| 久久精品国产亚洲av天美| 久久久精品大字幕| 在线国产一区二区在线| 国产精品国产高清国产av| 动漫黄色视频在线观看| 国产免费一级a男人的天堂| 日本与韩国留学比较| 最新中文字幕久久久久| 亚洲经典国产精华液单 | 不卡一级毛片| 91字幕亚洲| www日本黄色视频网| 黄片小视频在线播放| 乱人视频在线观看| 日韩av在线大香蕉| 亚洲人与动物交配视频| 国产精品嫩草影院av在线观看 | 欧美三级亚洲精品| 老熟妇仑乱视频hdxx| 18禁黄网站禁片免费观看直播| 丰满人妻一区二区三区视频av| 观看美女的网站| 给我免费播放毛片高清在线观看| 精品熟女少妇八av免费久了| 久久精品国产亚洲av天美| 99热这里只有是精品50| 十八禁国产超污无遮挡网站| 国产精品人妻久久久久久| 99久久精品国产亚洲精品| 国产老妇女一区| 成人性生交大片免费视频hd| 内射极品少妇av片p| 午夜激情福利司机影院| 久久国产精品影院| 蜜桃久久精品国产亚洲av| 精品一区二区三区视频在线| 噜噜噜噜噜久久久久久91| 久久精品夜夜夜夜夜久久蜜豆| 欧美绝顶高潮抽搐喷水| 欧美激情国产日韩精品一区| 最新在线观看一区二区三区| 欧美成人性av电影在线观看| 午夜福利高清视频| 免费人成视频x8x8入口观看| 欧美性猛交╳xxx乱大交人| 久久人人精品亚洲av| 成人永久免费在线观看视频| 国产精品久久久久久久久免 | 一个人免费在线观看电影| 91字幕亚洲| 搡老熟女国产l中国老女人| 欧美最黄视频在线播放免费| 国产aⅴ精品一区二区三区波| 亚洲精品乱码久久久v下载方式| 美女cb高潮喷水在线观看| 精品欧美国产一区二区三| 1024手机看黄色片| 国内毛片毛片毛片毛片毛片| 久久精品影院6| 精品人妻熟女av久视频| 欧美乱色亚洲激情| 国产精品av视频在线免费观看| 午夜老司机福利剧场| 久久伊人香网站| 国产爱豆传媒在线观看| 女人被狂操c到高潮| 亚洲经典国产精华液单 | 国产伦精品一区二区三区视频9| 精品一区二区免费观看| 国产一区二区在线av高清观看| 国产免费av片在线观看野外av| 精品久久久久久久人妻蜜臀av| 欧美色欧美亚洲另类二区| 蜜桃亚洲精品一区二区三区| 成年免费大片在线观看| 女人被狂操c到高潮| 免费人成视频x8x8入口观看| 久久久久久久久久黄片| 精品人妻偷拍中文字幕| 欧美+亚洲+日韩+国产| 亚洲欧美日韩无卡精品| 波多野结衣高清作品| 亚洲av成人av| 亚洲七黄色美女视频| 日韩 亚洲 欧美在线| 欧美乱色亚洲激情| 床上黄色一级片| 欧美三级亚洲精品| 女生性感内裤真人,穿戴方法视频| 国产视频内射| 色哟哟哟哟哟哟| 国产精品女同一区二区软件 | 国内久久婷婷六月综合欲色啪| 亚洲电影在线观看av| 国产精品爽爽va在线观看网站| 一卡2卡三卡四卡精品乱码亚洲| 一区二区三区激情视频| 欧美成人性av电影在线观看| 波多野结衣巨乳人妻| 欧美在线黄色| 美女 人体艺术 gogo| 婷婷亚洲欧美| 一个人免费在线观看的高清视频| 日本一本二区三区精品| 亚洲成人中文字幕在线播放| 中文字幕精品亚洲无线码一区| 国产探花极品一区二区| 国产一区二区在线av高清观看| 欧美日韩亚洲国产一区二区在线观看| 久久精品人妻少妇| 欧美乱妇无乱码| 国产伦一二天堂av在线观看| 亚洲熟妇熟女久久| 高清在线国产一区| 日本与韩国留学比较| 性色avwww在线观看| 午夜免费男女啪啪视频观看 | 亚洲欧美日韩卡通动漫| 脱女人内裤的视频| 男女下面进入的视频免费午夜| 最近在线观看免费完整版| 欧美日本视频| 88av欧美| 校园春色视频在线观看| 亚洲精品在线观看二区| 亚洲欧美清纯卡通| 日韩精品中文字幕看吧| 偷拍熟女少妇极品色| 免费黄网站久久成人精品 | 变态另类成人亚洲欧美熟女| 亚洲av一区综合| 久久久精品大字幕| 色噜噜av男人的天堂激情| 简卡轻食公司| 淫妇啪啪啪对白视频| 精品不卡国产一区二区三区| 欧美bdsm另类| 一级黄片播放器| 精品福利观看| 日本免费a在线| 天堂影院成人在线观看| av国产免费在线观看| 嫁个100分男人电影在线观看| 亚洲人成网站高清观看| eeuss影院久久| 18禁黄网站禁片午夜丰满| 亚洲经典国产精华液单 | 亚洲经典国产精华液单 | 亚洲专区国产一区二区| 亚洲七黄色美女视频| 麻豆一二三区av精品| 草草在线视频免费看| 欧美xxxx性猛交bbbb| 三级男女做爰猛烈吃奶摸视频| 久99久视频精品免费| www.熟女人妻精品国产| 中文字幕av成人在线电影| 18美女黄网站色大片免费观看| 午夜日韩欧美国产| 九色成人免费人妻av| 日本在线视频免费播放| 无遮挡黄片免费观看| 午夜精品在线福利| 麻豆成人av在线观看| 国产伦人伦偷精品视频| 国产亚洲精品综合一区在线观看| 少妇的逼好多水| 免费黄网站久久成人精品 | 色尼玛亚洲综合影院| av中文乱码字幕在线| 一本一本综合久久| 精品国产亚洲在线| 我要看日韩黄色一级片| 久久精品综合一区二区三区| 精品国内亚洲2022精品成人| 欧美午夜高清在线| 日本三级黄在线观看| 午夜福利在线在线| 日韩有码中文字幕| 91久久精品电影网| 欧美成狂野欧美在线观看| 欧美日韩瑟瑟在线播放| 一个人免费在线观看电影| 真人做人爱边吃奶动态| 久久精品影院6| 级片在线观看| 国产蜜桃级精品一区二区三区| 两人在一起打扑克的视频| 三级国产精品欧美在线观看| 俺也久久电影网| 成年版毛片免费区| 18禁在线播放成人免费| 最新在线观看一区二区三区| 午夜福利在线在线| 中文字幕精品亚洲无线码一区| 不卡一级毛片| 十八禁人妻一区二区| 国内精品一区二区在线观看| 亚洲av一区综合| 亚洲中文日韩欧美视频| a级毛片免费高清观看在线播放| 夜夜躁狠狠躁天天躁| 他把我摸到了高潮在线观看| 国产久久久一区二区三区| 2021天堂中文幕一二区在线观| 可以在线观看的亚洲视频| 久久香蕉精品热| 嫩草影院入口| av天堂中文字幕网| 欧美成人a在线观看| 伊人久久精品亚洲午夜| 免费观看人在逋| 欧美国产日韩亚洲一区| 亚洲成人免费电影在线观看| 熟女人妻精品中文字幕| 淫妇啪啪啪对白视频| av在线蜜桃| 少妇裸体淫交视频免费看高清| 99久久精品一区二区三区| 美女高潮喷水抽搐中文字幕| 国产又黄又爽又无遮挡在线| 丰满的人妻完整版| 日本在线视频免费播放| 一进一出好大好爽视频| 国产大屁股一区二区在线视频| 少妇被粗大猛烈的视频| 欧美极品一区二区三区四区| 精品久久久久久,| 亚洲人成伊人成综合网2020| 免费在线观看影片大全网站| 别揉我奶头~嗯~啊~动态视频| 午夜两性在线视频| 欧美成狂野欧美在线观看| 国产亚洲精品久久久久久毛片| 色播亚洲综合网| 日韩精品中文字幕看吧| 国产精品自产拍在线观看55亚洲| 如何舔出高潮| av在线蜜桃| 一本一本综合久久| 身体一侧抽搐| 精品熟女少妇八av免费久了| 欧美+亚洲+日韩+国产| 国产美女午夜福利| 久久欧美精品欧美久久欧美| 99热这里只有是精品在线观看 | 老司机午夜十八禁免费视频| 人人妻,人人澡人人爽秒播| 亚洲成人久久爱视频| 一进一出抽搐gif免费好疼| 麻豆国产av国片精品| 欧美日韩黄片免| 久久久色成人| 12—13女人毛片做爰片一| 国内揄拍国产精品人妻在线| 麻豆国产97在线/欧美| 成人一区二区视频在线观看| 男女床上黄色一级片免费看| 又黄又爽又刺激的免费视频.| 久久久成人免费电影| 欧美极品一区二区三区四区| 99久久精品热视频| 精品人妻一区二区三区麻豆 | 变态另类成人亚洲欧美熟女| 桃红色精品国产亚洲av| 麻豆久久精品国产亚洲av| 真人一进一出gif抽搐免费| 国产午夜福利久久久久久| 免费观看的影片在线观看| 亚洲成人免费电影在线观看| 好男人在线观看高清免费视频| av在线蜜桃| 国产真实乱freesex| 精品一区二区三区人妻视频| 在现免费观看毛片| 国产精品亚洲美女久久久| 露出奶头的视频| 午夜精品一区二区三区免费看| 少妇人妻一区二区三区视频| 国产精品永久免费网站| 精品一区二区三区视频在线观看免费| 精品一区二区三区视频在线| 国产老妇女一区| 亚洲av第一区精品v没综合| 看免费av毛片| 亚洲精品日韩av片在线观看| 精品人妻熟女av久视频| 国产免费一级a男人的天堂| 亚洲国产色片| 免费看a级黄色片| 亚洲最大成人av| 色5月婷婷丁香| 俄罗斯特黄特色一大片| 老司机深夜福利视频在线观看| 我要搜黄色片| 国产精品99久久久久久久久| 99久久精品国产亚洲精品| 永久网站在线| 久久久色成人| 久久久久亚洲av毛片大全| 欧美黄色淫秽网站| 国产高清激情床上av| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久久大av| 亚洲在线自拍视频| a级毛片a级免费在线| 亚洲成av人片在线播放无| 欧美性感艳星| 看十八女毛片水多多多| 高清毛片免费观看视频网站| 成人av一区二区三区在线看| 一级黄片播放器| 亚洲国产精品sss在线观看| 亚洲人成网站在线播| 免费av毛片视频| av在线老鸭窝| 国产三级黄色录像| 欧美激情国产日韩精品一区| 亚洲五月天丁香| 精品国产亚洲在线| 午夜激情福利司机影院| 18禁黄网站禁片免费观看直播| 99热这里只有精品一区| 亚洲精品色激情综合| 免费在线观看日本一区| 18禁在线播放成人免费| 亚洲av二区三区四区| 久久久久九九精品影院| 国产免费av片在线观看野外av| 亚洲第一欧美日韩一区二区三区| 黄色女人牲交| 亚洲av成人精品一区久久| 国产精品三级大全| 特级一级黄色大片| 国产精品久久视频播放| 欧美日韩国产亚洲二区| 精华霜和精华液先用哪个| 国产精品久久电影中文字幕| 男人舔女人下体高潮全视频| 欧美黄色淫秽网站| 欧美+亚洲+日韩+国产| 给我免费播放毛片高清在线观看| 亚洲专区国产一区二区| 99在线视频只有这里精品首页| 一进一出抽搐gif免费好疼| 久久九九热精品免费| av天堂中文字幕网| 国产视频一区二区在线看| 久久热精品热| 一级作爱视频免费观看| 国产黄片美女视频| 狠狠狠狠99中文字幕| 国产探花极品一区二区| 超碰av人人做人人爽久久| 久久久久久久久久成人| 757午夜福利合集在线观看| 综合色av麻豆| 精品一区二区三区视频在线| 久久精品国产亚洲av涩爱 | 舔av片在线| 成人美女网站在线观看视频| 亚洲片人在线观看| 非洲黑人性xxxx精品又粗又长| 精品一区二区三区视频在线观看免费| 免费人成视频x8x8入口观看| 一本综合久久免费| 国产国拍精品亚洲av在线观看| 日本三级黄在线观看| 欧美bdsm另类| 久久草成人影院| 欧美日本亚洲视频在线播放| 国产精品美女特级片免费视频播放器| 在线天堂最新版资源| 中文字幕熟女人妻在线| 色综合婷婷激情| 国产一区二区三区在线臀色熟女| 伦理电影大哥的女人| 国产精华一区二区三区| 久久久久亚洲av毛片大全| 99热这里只有精品一区| 国产黄a三级三级三级人| 老司机深夜福利视频在线观看| 日韩高清综合在线| 嫩草影视91久久| 亚洲av电影不卡..在线观看| 一二三四社区在线视频社区8| 亚洲一区二区三区不卡视频| 最后的刺客免费高清国语| 91久久精品电影网| 色av中文字幕| 五月玫瑰六月丁香| 亚洲美女黄片视频| 久久久久精品国产欧美久久久| 99在线人妻在线中文字幕| 欧美激情国产日韩精品一区| 亚洲五月婷婷丁香| h日本视频在线播放| 国产伦精品一区二区三区视频9| 中文字幕久久专区| 日韩欧美免费精品| 在线天堂最新版资源| 免费在线观看成人毛片| 日韩欧美一区二区三区在线观看| 国产精品野战在线观看| 亚洲黑人精品在线| 精品人妻偷拍中文字幕| 国产成人啪精品午夜网站| 久久人人爽人人爽人人片va | 久久人人爽人人爽人人片va | 我要看日韩黄色一级片| 女同久久另类99精品国产91| 午夜激情欧美在线| www.色视频.com| 久久久久久久久中文| 一级毛片久久久久久久久女| 搞女人的毛片| 日日干狠狠操夜夜爽| 亚洲国产精品合色在线| 国模一区二区三区四区视频| 日韩人妻高清精品专区| 日本在线视频免费播放| 国产精品爽爽va在线观看网站| 国语自产精品视频在线第100页| av女优亚洲男人天堂| 久久精品国产清高在天天线| 男女那种视频在线观看| 国产黄a三级三级三级人| 又黄又爽又免费观看的视频| 国产真实乱freesex| 少妇丰满av| 脱女人内裤的视频| 亚洲国产精品成人综合色| 免费在线观看影片大全网站| 亚洲av电影不卡..在线观看| 国产一区二区亚洲精品在线观看| 国产精品98久久久久久宅男小说| 国产成人av教育| 99久久精品热视频| 在线观看舔阴道视频| 高清毛片免费观看视频网站| 久久国产乱子伦精品免费另类| 国产成人a区在线观看| 日本免费a在线| 身体一侧抽搐| 欧美极品一区二区三区四区| 久久久久久国产a免费观看| 国产精品98久久久久久宅男小说| 精品无人区乱码1区二区| 亚洲综合色惰| 国产成+人综合+亚洲专区| 亚洲av成人精品一区久久| 中文字幕熟女人妻在线| 欧美三级亚洲精品| 精品日产1卡2卡| 久久久久久久午夜电影| 国产精品亚洲一级av第二区| 欧美色欧美亚洲另类二区| 欧美黄色片欧美黄色片| 欧美精品啪啪一区二区三区| 亚洲成人久久爱视频| 黄色女人牲交| 国产伦一二天堂av在线观看| 1024手机看黄色片| 搡女人真爽免费视频火全软件 | 老司机午夜十八禁免费视频| 国产精品免费一区二区三区在线| 两性午夜刺激爽爽歪歪视频在线观看| 成人av在线播放网站| 国产精品av视频在线免费观看| 9191精品国产免费久久| 青草久久国产| 一级a爱片免费观看的视频| а√天堂www在线а√下载| 两个人的视频大全免费| 亚洲人成网站在线播| 国产精品爽爽va在线观看网站| 亚洲成人免费电影在线观看| 亚洲第一欧美日韩一区二区三区| 国产一区二区在线av高清观看| 亚洲专区国产一区二区| 美女高潮的动态| 精品人妻视频免费看| 久久国产精品人妻蜜桃| 琪琪午夜伦伦电影理论片6080| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品久久国产高清桃花| 久久国产乱子伦精品免费另类| 啦啦啦韩国在线观看视频| 久久天躁狠狠躁夜夜2o2o| 自拍偷自拍亚洲精品老妇| 在线观看舔阴道视频| 欧美成人一区二区免费高清观看| 亚洲精品在线观看二区| 久久久精品大字幕| 性插视频无遮挡在线免费观看| 国产精品影院久久| 高潮久久久久久久久久久不卡| 99国产精品一区二区蜜桃av| 大型黄色视频在线免费观看| 午夜久久久久精精品| 狠狠狠狠99中文字幕| 九九在线视频观看精品| 成年女人永久免费观看视频| 在线观看66精品国产| 色视频www国产|