• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of drug position on the properties of paclitaxel-conjugated gold nanoparticles for liver tumor treatment

    2021-07-01 05:29:10HuaisongWangLinWangYueyuanGaoYaDing
    Chinese Chemical Letters 2021年3期

    Huaisong Wang,Lin Wang,Yueyuan Gao,Ya Ding*

    Key Laboratory of Drug Quality Control and Pharmacovigilance,Ministry of Education,China Pharmaceutical University,Nanjing 210009,China

    ABSTRACT Structure-efficacy effect of small molecular drug attracts wide attentions,but it has always been ignored in nanomedicine research.To reveal the efficacy modulation of nanomedicine,we developed a new type of paclitaxel(PTX)-conjugated gold nanoparticles(PTX-conjugated GNPs)to investigate the influence of drug position in controlling their in vitro properties and in vivo performance.Two therapeutic ligands(TA-PEG-NH-N=PTX and TA-PTX=N-NH-PEG)were synthesized to conjugate PTX on the surface of GNPs at different positions,locating on the surface of gold conjugate and inserting between GNPs and polyethylene glycol(PEG,molecular weight 1000 Da),respectively.It was found that PEG-PTX@GNPs with PTX located between GNP and PEG exhibited higher aqueous solubility,biocompatibility,and stability.In addition,an acid sensitive hydrazone bond has been inserted between PTX and PEG in both ligands for drug release of PTX and PTX-PEG segment,respectively, at the tumor site.Further release of PTX from PTX-PEG segment is based on the esterase hydrolysis of an ester bond between PTX and PEG.This two-step drug release mechanism offers PEG-PTX@GNPs effective and sustained release behavior for desirable anticancer activity,enhanced therapeutic efficacy,and lower systematic toxicity in Hepsbearing animal models.

    Keyword:Gold nanoparticles Paclitaxel Drug release Tumor therapeutic efficacy Effect of drug position

    Efficient delivery of drugs into tumor cells to increase the intracellular drug concentration is one of the important issues in cancer therapy[1–4].In recent years,a lot of drug nanocarrier systems have been developed to overcome the limitations of conventional chemotherapy,including the poor control over drug release and the distribution of drug in tumor site[5–9].The nanoscale drug delivery systems(DDSs)can potentially deliver drugs directly into cancerous tissues,and open up entirely new modalities of cancer therapy,such as photodynamic,hyperthermia,and stimulus-responsive treatments[10–14].

    Paclitaxel(PTX),a natural anti-tumor drug extracted from Pacific yew,can promote tubulin polymerization of tumor cells,inhibit mitosis and prevent the growth of tumor cells and then play an antitumor effect[15–19].In the clinical,PTX is mainly used for the treatment of ovarian cancer,breast cancer,and non-small cell lung cancer.Due to the low aqueous solubility of PTX,it is clinically available as Taxol?in a prescription composed of 1:1 of Cremophor EL?(CrEL)(polyoxyethylated castor oil and ethanol).However,side effects can be caused by CrEL including hypersensitivity reactions,nephrotoxicity,neurotoxicity,and cardiotoxicity[18,20–22].

    Drug-conjugated gold nanoparticles(GNPs)have become a new research in the field of DDSs[23,24].The GNPs possess their own advantages such as controllable shape and size,large surface area for versatile modification,and biocompatibility and non-toxic nature for biological applications[25–29].The utilization of GNPs has solved several problems that many drugs encountered in clinical application,such as poor solubility,short half-life,poor bioavailability,and serious side effects.In our previous research,we have designed a type of PTX-conjugated GNPs with PTX located on the surface[30],exhibiting increased solubility and antitumor activity.However,we also found some limitations to apply this conjugate.Firstly,the hydrophobic PTX was located on the surface of gold conjugate.Although the conjugate can be well-dissolved in water,they self-assembled into small clusters composed of~10 conjugates observed by transmission electron microscopy(TEM).The hydrophobic surface not only increases the system size and tends to absorb more proteins or enzymes in circulation,causing the instability of the conjugates.Secondly,polyethylene glycol(PEG)was connected to 7-hydroxyl group of PTX via a stable ester bond.Although PTX can be released in the presence of esterase in tumor cell cytoplasm,the selectivity of the system is still limited.Based on a series of works we carried out previously,we propose the concept of“structure-efficacy effect”on nanomedicine,especially the drug-conjugated GNPs[31].It is pointed out that the structure of drug-conjugated GNPs played important roles in modulating their in vitro properties and in vivo performances.

    In this work,two new therapeutic ligands,TA-PEG-NH-N=PTX and TA-PTX=N-NH-PEG(Fig.1,molecular weight 1000 Da),were designed and synthesized to investigate the effect of drugposition on property modulation of PTX-conjugated GNPs in vitro and in vivo.In the chemical structures of these ligands,PTX was anchored on one terminal of ligand far from thioctic acid(TA)and inserted between TA and PEG,respectively.After opening the disulfide bond in TA by sodium borohydride,these ligands were easily modified on the surface of GNPs via the S-Au bond.The surface modification of therapeutic ligands provides the conjugates either a hydrophobic PTX shell or a bioco mpatible PEG outer layer,which of fersaplatform for investigating the drug position effect.In addition,we also introduced an acid-sensitive hydrazone bond between PTX and PEG in therapeutic ligands.The introduction of hydrazone bond bestows the pH-triggered PTX or PTX-PEG segment release in lysosomes.Combining with the esterase hydrolysis mechanism of PTX-PEG,ligand TA-PTX=N-NH-PEG with two-step drug release process increases the selectivity of drug release under the tumor environments of low pH and high concentration of esterase[32–34].

    Based on the above platform,in vitro properties and in vivo performance of the as-prepared conjugates have been investigated systematically.Comparing these two gold conjugates,PEGPTX@GNPs with PTX inserted between GNP and PEG showed an improved solubility,dispersity,tumor inhibition rate,and biosafety.We believe the optimized drug-conjugated GNPs via the“structure-efficacy studies”combining with the selectively tumor microenvironment-stimulated drug release solves the clinical problems of existent pharmaceutics,including their short half-life,poor stability,low bioavailability,toxicity,and so on.

    Owing to these strategies,GNPs[35–38]can sufficiently play their enhanced penetration and retention effect,and long circulating drug delivery advantage.The whole drug system can effectively avoid the capture by in vivo P-glycoprotein efflux pump and improve the PTX concentration at the tumor site.

    The chemical reaction schemes for synthesizing the therapeutic ligands as well as their1H and13C NMR are illustrated in Supporting information.Afterreduced bysodiumborohydride,disulfidebondin TA was opened and formed S-Au bond with GNPs to obtain drug loaded gold conjugates.The resultant two types of PTX-conjugated GNPs were characterized via UV–vis,FT-IR and NMR methods.UV–vis absorption spectrum of GNPs at 518 nm shows that the diameter of the GNPs is about 9 nm(Fig.2A).An obvious red-shiftof GNP peak for PTX-PEG@GNPs could be attributed to the poor solubility and aggregation of PTX-PEG@GNPs,while the slight redshift of peak for PEG-PTX@GNPs indicated their remaining good dispersity in the aqueous solution.According to FT-IR spectra(Fig.2B),the absorption signals at 3532 cm-1and 3457 cm-1indicate the existence of νN-Hin gold conjugates.The signals around 3300 cm-1come fromνO-H.The peaks around 1526 cm-1indicatethe existence of νC=Cfrom benzene groups.The peaks situated at 1740 cm-1and 1651 cm-1are representative of νC=Ofrom the ester groups.These FT-IR signals show the characteristic infrared signals of both PTX and PEG,which indicate the successful modification of PTX ligands on the surface of GNPs.In addition,1H NMR spectra were further used to confirm the successful preparation of GNP-paclitaxel conjugates(Fig.2C).Compared with the PTX,the PEG-PTX@GNPs and PTX-PEG@GNPs exhibit new,broad resonance at 3.6 ppm that corresponds to the protons of PEG,and the characteristic peaks of PTXcan also beobserved,which mean the existence of bothPEGand PTX in the conjugates.

    The morphologies of PTX-conjugated GNPs were investigated by TEM.As shown in Figs.2D and E,the dark gold cores are spherical with a diameter of~9 nm.However,the PTX-PEG@GNP particles are aggregated,consistent with its result in UV–vis spectrum(Fig.2A,curve b).It is due to the hydrophobic property of PTX located at the outer layer of PTX-PEG@GNPs.On the contrary,the hydrophilic PEG on the surface of the PEG-PTX@GNPs leads to the good dispersion of PEG-PTX@GNPs in aqueous solution.Accordingly,this aggregation and dispersity states of gold conjugates are also reflected in their dynamic light scattering(DLS)data,a larger hydrodynamic average diameter of PTXPEG@GNPs(353.2±0.4 nm)than that of PEG-PTX@GNPs(300.3±8.5 nm).Moreover,the zeta potential values are 1.4±0.1 mV for PTX-PEG@GNPs and -3.5±0.4 mV for PEGPTX@GNPs,respectively,confirming that the surfaces of two gold conjugates were modified with different moieties(PTX or PEG).

    Fig.1.Schematic illustration of(A)the chemical structure of therapeutic ligands and their gold conjugates including PTX-PEG@GNPs and PEG-PTX@GNPs,and(B)the cellular uptake of PEG-PTX@GNPs and their two-step drug release process inside tumor cells.

    Fig.2.Characterization of PTX-conjugated GNPs.(A)UV–vis spectra of(a)GNPs,(b)PTX-PEG@GNPs and(c)PEG-PTX@GNPs.(B)FT-IR spectra of(a)PTX-PEG@GNPs and(b)PEG-PTX@GNPs in KBr.(C)1H NMR spectra of(a)PTX,(b)PTX-PEG@GNPs and(c)PEG-PTX@GNPs.TEM images of(D)PTX-PEG@GNPs and(E)PEG-PTX@GNPs.Scale bar:100 nm.(F)TGA measurement of the loss of organic material corresponding to the PEG-PTX@GNPs.

    The advantages of PEG-PTX@GNPs in terms of its physical and chemical properties can be used for further development of drug delivery system.To determine the PTX loading capacity in the PEGPTX@GNPs,TGA was carried out to evaluate the organic loss.The TGA curves shown in Fig.2F demonstrate that the composition of the PEG-PTX@GNPs conjugate was 82.3% organic and 17.7%metallic gold after dialysis at 500°C.The drug loading capacity(DLC)of PEG-PTX@GNPs was calculated to be 32% by calculating the individual molar mass of PTX and its corresponding ligand are 854 g/mol and 2198 g/mol,respectively.

    In addition,the stability of the PEG-PTX@GNPs was evaluated in different environments that can induce the aggregation of unmodified gold particles by measuring UV–vis absorption intensity at 520 nm(Fig.S1 in Supporting information).In buffers with neutral pH values(0.02 mol/L PBS,pH 7.4),the elevated salt concentrations(0.3 mol/L PBS,pH 7.4)and in the presence of 2%serum(0.02 mol/L PBS,pH 7.4,+2%serum),the relative absorbance of PEG-PTX@GNPs at 10 h was no less than 91.4% of the gold conjugates at 0 h,indicating that the conjugates are stable,due to the covalent linkage in the components of PEG-PTX@GNPs.However,in buffers with low pH values(0.02 mol/L PBS,pH 5.5),PEG-PTX@GNPs are not stable.It can be due to the cleavage of pH-sensitive hydrazone bonds in the therapeutic ligand that released PTX-PEG segment in an acidic environment.

    Here,three important parameters influence the drug release of PEG-PTX@GNPs.On the basis of the chemical structure of TAPTX=N-NH-PEG,free PTX is expected to be released under the synergistic conditions of the different(1)pH value environments in tumor tissue or organelles,(2)glutathione(GSH)concentration and(3)esterase levels inside or outside tumor cells.Under these conditions,in vitro drug release studies of PEG-PTX@GNPs were systematically investigated(Fig.S2 in Supporting information).

    Firstly,as DDSs,pH sensitive system has been most widely used due to the lower pH in tumor environments than that in normal tissues caused by the high rate of glycolysis in cancer cells,both in aerobic and anaerobic conditions.Tumors have been demonstrated to exhibit acidic pH values ranging from 5.7 to 7.8,while the pH of normal tissue is 7.4[39,40].Even greater pH differences can be found at the subcellular level;late endosomes and lysosomes have much lower pH,in the range 4.5-5.5.Therefore,pH-sensitive delivery systems are valuable for controlling drug delivery in cancerous diseases.Fig.S2A shows the drug release profiles of PTX in PBS with different pH values.The release of free PTX was increased with the decrease of pH value,due to the cleavage of the pH-sensitive hydrazone bond.

    Secondly,the TA-PTX=N-NH-PEG ligands were modified on GNPs based on Au-S groups.The GSH at extracellular and intracellular can function as a reducing agent to exchange the TA-PTX=N-NH-PEG from the surface of GNPs.The GSH-induced drug release from the conjugates was related to the GSH concentration(Fig.S2B).The drug was liberated from the conjugates in the form of ligands,especially in the release media with intracellular GSH levels(10 mmol/L).The cumulative drug release peaked after 70 h at ca. 12%,indicating that the release velocity of the ligands was controlled by the GSH concentrationdependent ligand exchange rate.

    Thirdly,pig liver esterase(PLE)was also used to study the drug release of the conjugates,because mammalian esterases are widely distributed throughout the plasma,many organs,and tissues(Fig.S2C).In the presence of PLE,free PTX was slowly dissociated from the conjugates,and the cumulative percentage of PTX release in the presence of PLE was about 12% in 70 h.

    Finally,we investigated the drug release in the media meeting the above three conditions at the same time.The drug release from conjugate is still quite low:the cumulative percentage of PTX release was about 14.5%in 70 h(Fig.S2D).It indicates that most of the conjugates remain stable in circulation for long periods of time in vivo.Either low pH,high GSH concentration,or high PLE level,can increase the drug release.However,these pathological environments are not completely overlayered with each other.It is difficult to simulate the drug release process in the body.Therefore,we use the bioactivity of conjugates to substitute the detection of drug content for evaluating their drug release.

    Fig.3A shows the viability of HepG2 cells after treatment with the distinct PTX formulations.Compared to free PTX,the cytotoxicity of PEG-PTX@GNPs was lower in low concentration level.With the increase of PTX concentration,they exhibited nearly the same toxicity.The potential reason is that free PTX is directly dispersed in the solvent and exerted efficacy in the cell.In comparison,the drug release from PEG-PTX@GNPs needs to crack covalent hydrazone bond,S-Au bond and ester bond,which is more selective and safe to normal tissues.To HepG2 tumor cells,PEGPTX@GNPs also show a high cytotoxicity(IC50=1.0 μg/mL),which might be due to the increased cellular uptake(Fig.3B)and intracellular PTX release via a synergistic manner.

    Detected by high performance liquid chromatography(HPLC)and subsequent correction using intracellular protein content,intracellular drug content was shown in Fig.3B.PEG-PTX@GNPtreated group showed about two-times higher PTX concentration than the free PTX group in HepG2 cells from 4 h to 24 h and the drug was in the form of PTX.This phenomenon implied the sustained and effective drug release from PEG-PTX@GNPs in tumor cells.

    To investigate the cellular distribution inside tumor cells,HepG2 cells were incubated with PEG-PTX@GNPs at a dose of 2.5 μg/mL PTX for 4 h and 12 h.As shown in Fig.3C,both GNPs and PEG-PTX@GNPs are present in the cytoplasm of HepG2 cells after 4 h of incubation.Furthermore,Fig.3C-b and Fig.3C-d showed even more nanoparticles localized in the cytoplasm after 12 h of incubation.At this time,cell edges are in irregular state and show projection and depression,indicating that free PTX is released from the nanoparticle and causes damage to the cell.

    Fig.3.Cell experiments.(A)In vitro MTT assays to measure the cytotoxicity of(a)PTX and(b)PEG-PTX@GNPs with varying PTX concentrations for 48 h against HepG2 cells.(B)Intracellular PTX content detection of PTX and PEG-PTX@GNPs in HepG2 cells at 4,8,12,and 24 h.(C)TEM images of HepG2 cells under the following conditions:cells cultured with GNPs for(a)4 h and(b)12 h,or with PEG-PTX@GNPs for(c)4 h and(d)12 h.

    After intravenous administration of commercial PTX formulation Taxol?and PEG-PTX@GNPs in rats,we characterized the plasma concentration-time profiles of PTX(Fig.S3A in Supporting information).The pharmacokinetic parameters of PTX in the two formulations are presented in Fig.S3B(Supporting information).As shown in Fig.S3A,PEG-PTX@GNPs produced a higher plasma concentration of PTX than the Taxol?group from 5 min to 48 h.For PEG-PTX@GNPs,the area under the plasma concentration-time curve(AUC0-48h)was 18.06±1.34 μg mL-1kg-1,which is approximately 4.5-fold higher than free PTX(4.10±0.55 μg mL-1kg-1),and the corresponding total body clearance(CL)was 0.21±0.03 L/h,which was 8-fold lower than Taxol?(1.72±0.22 L/h).These data suggest that the conjugate group displayed slower elimination of PTX,longer plasma half-life(t1/2)and longer mean residence time(MRT)compared to Taxol?,confirming the longer circulation characteristics of PEGPTX@GNPs in blood.

    Moreover,antitumor efficacy was evaluated in ICR mice bearing Heps tumors.Changes in tumor volume,final tumor weight,tumor images and the body weight of mice treated with saline,Taxol?,and PEG-PTX@GNPs are presented in Figs.4A-D.Tumor growth was significantly suppressed in the group treated with PEGPTX@GNPs compared to saline,even better than Taxol?.Although the body weight of PEG-PTX@GNPs group(31.8±2.5 g)was as heavy as saline group,exceeded that of the Taxol?groups,it had the smallest tumor size and tumor weight.These results indicate improved quality of life in mice treated with the conjugate.

    As for survival rates of the three groups(Fig.4E),no mice died in the PEG-PTX@GNPs or saline-treated group(n=5)after 12 days,whereas no one was survival in Taxol?-treated group.Great systemic toxicity of Taxol?in vivo can be seen from this result,but treatment with PEG-PTX@GNPs can effectively reduce this side effect and prolong their life.This is due to the increased tumor selectivity produced by PEG-PTX@GNPs.The enhanced therapeutic efficacy of PEG-PTX@GNPs is also owing to long circulation and the successful passive tumor targeting of the conjugates in tumor tissues.

    The PTX concentration in different tissues of tumor bearing mice treated with Taxol?decreased gradually with time going.However,PEG-PTX@GNPs kept relatively high PTX level.This result provides additional evidence for the high stability and sustained drug release of the conjugates observed in in vitro drug release assays.For the maximum PTX amount in heart,liver,spleen and lung,the Taxol?group are much higher than that of PEGPTX@GNPs(Fig.S4 in Supporting information).In addition,the PTX concentration in the tumor tissues from the PEG-PTX@GNPs group was higher,and it was eliminated more slowly than was observed for the Taxol?group.

    To determine the extent of tumor damage in response to concentrated distribution of the conjugate and the high level of Taxol?released from it,we performed histological examination of H&E stained tumor tissue sections at 12-day post-injection(Fig.4F).Almost no damage was observed in tumors from the saline-treated group,but significant necrosis was present in both the Taxol?and PEG-PTX@GNPs-treated groups.These data further confirmed the therapeutic effect of the nano-prodrug.Therefore,the pH-sensitive and controlled drug release in tumor tissues ensured that higher amounts of PTX at tumor site,resulting in increased therapeutic efficacy and anti-tumor efficiency.

    Fig.4.In vivo antitumor efficacy of(a)saline,(b)Taxol? and(c)PEG-PTX@GNPs in Heps tumor xenograft ICR mouse models.(A)tumor volume changes,(B)tumor tissue weight 10 days post-injection(***P<0.001),(C)body weight changes,(D)images of the tumor tissues excised from mice on day 10,(E)survival rates of the three groups of tumor-bearing mice,(F)H&E stained tumor tissue sections from control and test groups at 10 days post-injection(Scale bar:50 μm).

    In summary,we have developed two types of PTX-conjugated GNPs for investigating their in vitro properties and in vivo performance affected by the drug position in the therapeutic ligands.In these systems,GNPs were selected as the nano-drug delivery carrier and two therapeutic ligands(TA-PEG-NH-N=PTX and TA-PTX=N-NH-PEG)consisted of PTX and PEG were synthesized for conjugating to the surface of GNPs.After investigating their solubility,drug loading,surface charge,and particle size,we found the TA-PTX=N-NH-PEG modified GNPs(PEG-PTX@GNPs)showed optimized properties for drug delivery.The PEGPTX@GNPs exhibit high aqueous solubility,good biocompatibility,good stability,good anticancer activity,controlled drug release,and enhanced therapeutic efficacy.The advantages of the optimized drug loading system can be potentially used as a promising approach for in vivo tumor therapy.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This research was supported by grants from the National Natural Science Foundation of China(Nos.31870946,31470916,31500769 and 21705165),the Funding of Double First-rate Discipline Construction of China(No.CPU2018GF07),Priority Academic Program Development of Jiangsu Higher Education Institutions,and the Fundamental Research Funds for the Central Universities(Nos.2015PT036,2016PT014,and 3011900159).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.08.044.

    丰满人妻熟妇乱又伦精品不卡| 99久久精品一区二区三区| 国产精品人妻久久久久久| 午夜两性在线视频| 宅男免费午夜| 一本久久中文字幕| 亚洲第一电影网av| 国产精品亚洲一级av第二区| 最新中文字幕久久久久| 天天躁日日操中文字幕| 国内久久婷婷六月综合欲色啪| 欧美+日韩+精品| 国产高清视频在线播放一区| 精品久久国产蜜桃| 亚洲人与动物交配视频| 中文字幕高清在线视频| 国产三级在线视频| 亚洲七黄色美女视频| aaaaa片日本免费| 国产激情偷乱视频一区二区| 日韩欧美国产一区二区入口| 欧美一区二区国产精品久久精品| 一级黄片播放器| 成人一区二区视频在线观看| 日韩欧美国产一区二区入口| 天美传媒精品一区二区| 校园春色视频在线观看| 看黄色毛片网站| 一本综合久久免费| 久久九九热精品免费| 老司机午夜十八禁免费视频| 日本一本二区三区精品| 看黄色毛片网站| 日韩中文字幕欧美一区二区| 国产一区二区三区视频了| 无遮挡黄片免费观看| 99久久精品热视频| 九色成人免费人妻av| 淫秽高清视频在线观看| 99riav亚洲国产免费| 亚洲精品久久国产高清桃花| 日本a在线网址| 亚洲av成人av| 两人在一起打扑克的视频| 欧美日韩乱码在线| 久久久久久久久大av| 午夜影院日韩av| 国产精品亚洲一级av第二区| 欧美日韩瑟瑟在线播放| 亚洲无线观看免费| 在线国产一区二区在线| 免费在线观看日本一区| 首页视频小说图片口味搜索| 国产成人影院久久av| 亚洲aⅴ乱码一区二区在线播放| 乱人视频在线观看| 亚洲国产欧美人成| 天堂动漫精品| 国产蜜桃级精品一区二区三区| av欧美777| 亚洲片人在线观看| 香蕉av资源在线| 国内揄拍国产精品人妻在线| 一区福利在线观看| 一级a爱片免费观看的视频| 亚洲精品在线观看二区| 久久精品人妻少妇| 亚洲精品在线观看二区| 2021天堂中文幕一二区在线观| 午夜影院日韩av| 精品人妻1区二区| 悠悠久久av| 国产午夜福利久久久久久| 小说图片视频综合网站| 在线观看66精品国产| 亚洲欧美日韩东京热| 午夜免费男女啪啪视频观看 | 99精品在免费线老司机午夜| 99久久精品一区二区三区| 天堂影院成人在线观看| 精品日产1卡2卡| 极品教师在线视频| 国产真实乱freesex| 久久午夜福利片| 乱人视频在线观看| 天美传媒精品一区二区| 欧美一区二区亚洲| 欧美一区二区国产精品久久精品| 国产精品美女特级片免费视频播放器| 黄色视频,在线免费观看| 窝窝影院91人妻| 亚洲在线自拍视频| 高清毛片免费观看视频网站| 日韩av在线大香蕉| 免费观看人在逋| 嫩草影院新地址| 九九热线精品视视频播放| 哪里可以看免费的av片| 亚洲18禁久久av| 欧美精品国产亚洲| 欧美午夜高清在线| 亚洲国产精品sss在线观看| 日韩精品青青久久久久久| 久久香蕉精品热| 国产白丝娇喘喷水9色精品| 国产午夜精品论理片| 久久久久免费精品人妻一区二区| 91在线观看av| 欧美日韩瑟瑟在线播放| 变态另类成人亚洲欧美熟女| 国产亚洲精品av在线| 怎么达到女性高潮| 中文字幕免费在线视频6| 亚洲avbb在线观看| 色av中文字幕| 欧美色视频一区免费| 在线免费观看不下载黄p国产 | av在线天堂中文字幕| 床上黄色一级片| 一二三四社区在线视频社区8| 亚洲片人在线观看| 深夜精品福利| 国产精品免费一区二区三区在线| 热99在线观看视频| 久久国产乱子伦精品免费另类| 身体一侧抽搐| 亚洲av五月六月丁香网| 熟妇人妻久久中文字幕3abv| 熟女电影av网| 亚洲 欧美 日韩 在线 免费| .国产精品久久| 99久久九九国产精品国产免费| 黄色一级大片看看| 黄色日韩在线| 在线观看66精品国产| 欧美日韩瑟瑟在线播放| 黄色一级大片看看| 91狼人影院| 亚洲午夜理论影院| 国产探花在线观看一区二区| 国产色婷婷99| 免费一级毛片在线播放高清视频| 亚洲欧美日韩高清在线视频| 一本精品99久久精品77| 成年女人毛片免费观看观看9| 别揉我奶头~嗯~啊~动态视频| 亚洲精品久久国产高清桃花| 69人妻影院| 亚洲av一区综合| 我要看日韩黄色一级片| 18禁在线播放成人免费| 久久亚洲精品不卡| 亚洲国产精品999在线| 一级a爱片免费观看的视频| 精华霜和精华液先用哪个| 国产av在哪里看| 自拍偷自拍亚洲精品老妇| 亚洲 国产 在线| 亚洲精品亚洲一区二区| 亚洲中文字幕日韩| 在线观看66精品国产| 国产黄片美女视频| 精品福利观看| 在线观看免费视频日本深夜| 免费人成在线观看视频色| 国产成人a区在线观看| 18+在线观看网站| 国产在线精品亚洲第一网站| 日本黄色视频三级网站网址| 亚洲成人精品中文字幕电影| ponron亚洲| 国产精品综合久久久久久久免费| 国产精品久久久久久久电影| 在线观看一区二区三区| 丰满人妻一区二区三区视频av| 久久精品久久久久久噜噜老黄 | 国产一区二区亚洲精品在线观看| 欧美黑人欧美精品刺激| 亚洲av电影在线进入| 精品久久久久久久末码| 国产麻豆成人av免费视频| 91麻豆av在线| 日韩欧美在线二视频| 日日摸夜夜添夜夜添小说| 国产白丝娇喘喷水9色精品| 国产免费一级a男人的天堂| 亚洲真实伦在线观看| 亚洲,欧美精品.| 亚洲性夜色夜夜综合| 嫁个100分男人电影在线观看| 国产69精品久久久久777片| 久久久久精品国产欧美久久久| 欧美潮喷喷水| 一级黄色大片毛片| 日韩欧美国产一区二区入口| 丰满的人妻完整版| 亚洲性夜色夜夜综合| 国产淫片久久久久久久久 | 91九色精品人成在线观看| 久久香蕉精品热| 五月伊人婷婷丁香| 亚洲av免费在线观看| 91久久精品国产一区二区成人| 99精品久久久久人妻精品| 亚洲人成网站在线播| 看黄色毛片网站| 中文亚洲av片在线观看爽| 亚洲精品日韩av片在线观看| 国产黄a三级三级三级人| 免费搜索国产男女视频| 欧美成狂野欧美在线观看| 国产精品亚洲av一区麻豆| 午夜久久久久精精品| 国产亚洲精品av在线| 黄色日韩在线| 婷婷精品国产亚洲av在线| 丰满的人妻完整版| а√天堂www在线а√下载| 久久久色成人| 高清在线国产一区| 国产精品99久久久久久久久| 精品一区二区三区视频在线观看免费| 男女做爰动态图高潮gif福利片| 亚洲av第一区精品v没综合| 一本久久中文字幕| 精品99又大又爽又粗少妇毛片 | 成人av在线播放网站| av在线老鸭窝| 亚洲av五月六月丁香网| 久久人人精品亚洲av| 国产精品,欧美在线| 少妇裸体淫交视频免费看高清| 三级毛片av免费| 脱女人内裤的视频| 欧美日韩综合久久久久久 | 欧美日韩综合久久久久久 | 国产成+人综合+亚洲专区| 欧美+日韩+精品| 人妻夜夜爽99麻豆av| 嫩草影视91久久| eeuss影院久久| av在线天堂中文字幕| 欧美成人一区二区免费高清观看| 免费看日本二区| 中文字幕久久专区| 韩国av一区二区三区四区| 99久久九九国产精品国产免费| 日本黄大片高清| 国产主播在线观看一区二区| 深夜精品福利| 99国产精品一区二区蜜桃av| av女优亚洲男人天堂| 中出人妻视频一区二区| 夜夜躁狠狠躁天天躁| 国产精品乱码一区二三区的特点| 久久香蕉精品热| 丁香欧美五月| 亚洲自偷自拍三级| 观看美女的网站| 精品欧美国产一区二区三| 免费黄网站久久成人精品 | 悠悠久久av| 无遮挡黄片免费观看| 免费电影在线观看免费观看| 免费看美女性在线毛片视频| 俺也久久电影网| 一级av片app| av专区在线播放| 日韩中文字幕欧美一区二区| 午夜福利高清视频| 在线观看av片永久免费下载| 国产真实伦视频高清在线观看 | 成人国产一区最新在线观看| 亚洲精品日韩av片在线观看| 色综合亚洲欧美另类图片| 综合色av麻豆| 在线观看午夜福利视频| 国产在视频线在精品| 中文亚洲av片在线观看爽| 在线免费观看的www视频| 国产黄色小视频在线观看| 99在线视频只有这里精品首页| 一个人免费在线观看的高清视频| 国产伦人伦偷精品视频| 亚洲国产色片| 在线国产一区二区在线| 亚洲欧美日韩无卡精品| 一区二区三区四区激情视频 | 欧美精品啪啪一区二区三区| 亚洲自偷自拍三级| 免费看日本二区| 日本黄大片高清| 国产精品自产拍在线观看55亚洲| 特大巨黑吊av在线直播| 欧美三级亚洲精品| 一二三四社区在线视频社区8| 久久午夜福利片| 久久久久精品国产欧美久久久| 一区二区三区激情视频| 美女黄网站色视频| 国产欧美日韩一区二区精品| 怎么达到女性高潮| 成人毛片a级毛片在线播放| 亚州av有码| 日韩有码中文字幕| 国产午夜精品论理片| 亚洲欧美日韩无卡精品| 久久久久久国产a免费观看| 国产麻豆成人av免费视频| 国产激情偷乱视频一区二区| 婷婷亚洲欧美| 日韩欧美精品v在线| 免费电影在线观看免费观看| 一区二区三区四区激情视频 | 麻豆国产97在线/欧美| 国产精品98久久久久久宅男小说| 亚洲中文字幕日韩| 1000部很黄的大片| 精品人妻偷拍中文字幕| 制服丝袜大香蕉在线| 亚洲av不卡在线观看| 亚洲精品在线美女| 我的女老师完整版在线观看| 中文乱码字字幕精品一区二区三区| 国产成人午夜福利电影在线观看| 国产黄色免费在线视频| av在线天堂中文字幕| av线在线观看网站| 你懂的网址亚洲精品在线观看| 又粗又硬又长又爽又黄的视频| 大香蕉97超碰在线| 中文字幕人妻熟人妻熟丝袜美| 精品熟女少妇av免费看| 麻豆国产97在线/欧美| 国产 精品1| 国产又色又爽无遮挡免| 国产黄色免费在线视频| 精品久久久久久久末码| 亚洲三级黄色毛片| 亚洲精品日韩av片在线观看| 禁无遮挡网站| 波多野结衣巨乳人妻| 日产精品乱码卡一卡2卡三| 久久影院123| 蜜桃久久精品国产亚洲av| 九草在线视频观看| 亚洲欧洲国产日韩| 成年人午夜在线观看视频| 国产成人午夜福利电影在线观看| 精品人妻偷拍中文字幕| 五月玫瑰六月丁香| 最后的刺客免费高清国语| 日本一本二区三区精品| 国产爱豆传媒在线观看| 国产精品女同一区二区软件| 极品教师在线视频| 天天一区二区日本电影三级| 亚洲av.av天堂| 亚洲精品成人av观看孕妇| 亚洲国产精品999| 97人妻精品一区二区三区麻豆| 97热精品久久久久久| 九九爱精品视频在线观看| 99精国产麻豆久久婷婷| 2018国产大陆天天弄谢| 亚洲精品第二区| 天天一区二区日本电影三级| 中国三级夫妇交换| 在线免费十八禁| 十八禁网站网址无遮挡 | 国产一级毛片在线| 天堂网av新在线| 亚洲成色77777| 精品久久久久久久久av| 亚洲综合精品二区| 99热这里只有精品一区| 成人高潮视频无遮挡免费网站| 男女边摸边吃奶| 亚洲一级一片aⅴ在线观看| 91在线精品国自产拍蜜月| 成年av动漫网址| 亚洲性久久影院| 美女国产视频在线观看| 六月丁香七月| 国产日韩欧美亚洲二区| 欧美精品一区二区大全| 亚洲精品久久午夜乱码| 在线观看人妻少妇| 国产免费一级a男人的天堂| 麻豆国产97在线/欧美| 欧美成人精品欧美一级黄| 日本黄大片高清| 一级二级三级毛片免费看| 国产在线一区二区三区精| 1000部很黄的大片| 欧美性感艳星| 欧美一级a爱片免费观看看| 亚洲一区二区三区欧美精品 | 久久这里有精品视频免费| 日本色播在线视频| 国产成人免费无遮挡视频| 成人综合一区亚洲| 亚洲熟女精品中文字幕| 激情 狠狠 欧美| 亚洲人成网站在线播| 天堂中文最新版在线下载 | 成人无遮挡网站| 国产91av在线免费观看| 天天躁夜夜躁狠狠久久av| 性色avwww在线观看| 日本-黄色视频高清免费观看| 97在线视频观看| 久久精品国产亚洲av天美| 久久久久久九九精品二区国产| 听说在线观看完整版免费高清| 18禁动态无遮挡网站| 国产高潮美女av| av在线播放精品| 青春草视频在线免费观看| 亚洲天堂av无毛| 国产亚洲精品久久久com| 人人妻人人爽人人添夜夜欢视频 | 美女内射精品一级片tv| av在线老鸭窝| 日产精品乱码卡一卡2卡三| 男男h啪啪无遮挡| 欧美97在线视频| 中文欧美无线码| 午夜老司机福利剧场| 可以在线观看毛片的网站| 亚洲成人精品中文字幕电影| 亚洲精品国产av成人精品| 人人妻人人看人人澡| 最近最新中文字幕免费大全7| 狂野欧美白嫩少妇大欣赏| 看免费成人av毛片| 高清av免费在线| 极品教师在线视频| 亚洲自拍偷在线| 三级国产精品片| 老司机影院毛片| 亚洲色图综合在线观看| 久久这里有精品视频免费| av免费观看日本| 99久久精品国产国产毛片| 亚洲无线观看免费| 免费播放大片免费观看视频在线观看| 男人爽女人下面视频在线观看| 国产伦在线观看视频一区| 亚洲综合色惰| 一级黄片播放器| 免费大片黄手机在线观看| 99久久中文字幕三级久久日本| 狂野欧美白嫩少妇大欣赏| 日韩国内少妇激情av| 一本色道久久久久久精品综合| 99热6这里只有精品| 伦理电影大哥的女人| 啦啦啦在线观看免费高清www| 婷婷色av中文字幕| 九九在线视频观看精品| 久久久久久久午夜电影| 亚洲国产成人一精品久久久| 麻豆久久精品国产亚洲av| 欧美性猛交╳xxx乱大交人| 九九爱精品视频在线观看| 成人毛片a级毛片在线播放| 国产成人免费无遮挡视频| 亚洲丝袜综合中文字幕| 搡女人真爽免费视频火全软件| 搡老乐熟女国产| 亚洲最大成人av| 午夜精品一区二区三区免费看| 成人国产麻豆网| 国产视频内射| 交换朋友夫妻互换小说| 欧美xxxx黑人xx丫x性爽| 免费av观看视频| 自拍欧美九色日韩亚洲蝌蚪91 | 在线观看国产h片| 亚洲av中文字字幕乱码综合| 国内揄拍国产精品人妻在线| 少妇熟女欧美另类| 亚洲经典国产精华液单| 久久综合国产亚洲精品| 联通29元200g的流量卡| 亚洲av.av天堂| 亚洲美女搞黄在线观看| 黄片无遮挡物在线观看| 国产精品99久久99久久久不卡 | 久久精品久久久久久久性| 成人毛片60女人毛片免费| 69av精品久久久久久| 高清视频免费观看一区二区| 国产成人福利小说| 老女人水多毛片| 搡女人真爽免费视频火全软件| 啦啦啦啦在线视频资源| 国内少妇人妻偷人精品xxx网站| 性插视频无遮挡在线免费观看| av在线亚洲专区| 精品久久国产蜜桃| 高清毛片免费看| 国产真实伦视频高清在线观看| 国产精品一区www在线观看| 精品国产一区二区三区久久久樱花 | av卡一久久| 人妻一区二区av| 国产成人福利小说| tube8黄色片| 在线观看一区二区三区| 99热这里只有是精品在线观看| av网站免费在线观看视频| 人妻少妇偷人精品九色| 99视频精品全部免费 在线| 亚洲aⅴ乱码一区二区在线播放| 91精品一卡2卡3卡4卡| 少妇的逼好多水| 国产日韩欧美亚洲二区| 3wmmmm亚洲av在线观看| 如何舔出高潮| 亚洲自拍偷在线| 国产视频内射| 2022亚洲国产成人精品| 国产美女午夜福利| 交换朋友夫妻互换小说| 2021少妇久久久久久久久久久| 欧美最新免费一区二区三区| 国产成人免费无遮挡视频| 国产毛片a区久久久久| 国产精品爽爽va在线观看网站| 免费看不卡的av| 麻豆国产97在线/欧美| 夜夜爽夜夜爽视频| 一级片'在线观看视频| 免费少妇av软件| 免费av毛片视频| 女人十人毛片免费观看3o分钟| 日韩一区二区视频免费看| 亚洲欧洲日产国产| 男女无遮挡免费网站观看| 自拍欧美九色日韩亚洲蝌蚪91 | 搡女人真爽免费视频火全软件| 欧美丝袜亚洲另类| 一级毛片黄色毛片免费观看视频| 18禁在线无遮挡免费观看视频| 日韩国内少妇激情av| 国产视频首页在线观看| 国产成人午夜福利电影在线观看| 777米奇影视久久| 成人美女网站在线观看视频| 97超视频在线观看视频| 亚洲av成人精品一区久久| 中文精品一卡2卡3卡4更新| 在线观看一区二区三区激情| 五月玫瑰六月丁香| 成人综合一区亚洲| 精品午夜福利在线看| 又爽又黄a免费视频| 亚洲欧美成人综合另类久久久| 国产爽快片一区二区三区| 免费观看a级毛片全部| 超碰97精品在线观看| 亚洲欧美精品专区久久| 超碰97精品在线观看| 精华霜和精华液先用哪个| 欧美日韩亚洲高清精品| 少妇丰满av| 日日啪夜夜爽| 国产精品人妻久久久影院| 夜夜爽夜夜爽视频| 欧美另类一区| 日韩,欧美,国产一区二区三区| 日日摸夜夜添夜夜爱| 国产精品一区二区在线观看99| 热99国产精品久久久久久7| 边亲边吃奶的免费视频| 日韩 亚洲 欧美在线| 亚洲精品日韩在线中文字幕| 乱系列少妇在线播放| 男女边摸边吃奶| 色婷婷久久久亚洲欧美| 三级国产精品欧美在线观看| 久久久久网色| 男人舔奶头视频| 成年免费大片在线观看| 国产黄频视频在线观看| 免费看日本二区| 亚洲熟女精品中文字幕| 在线亚洲精品国产二区图片欧美 | 一级毛片 在线播放| 国产亚洲av片在线观看秒播厂| 97超视频在线观看视频| 亚洲人成网站高清观看| 有码 亚洲区| 亚洲三级黄色毛片| 搡老乐熟女国产| 精品酒店卫生间| 五月天丁香电影| 久久99精品国语久久久| 99热这里只有精品一区| 国产精品一及| 午夜精品一区二区三区免费看| 国产成人精品婷婷| 国产欧美日韩精品一区二区| 欧美少妇被猛烈插入视频| 秋霞伦理黄片| 亚洲精品国产色婷婷电影| 91精品一卡2卡3卡4卡| 在线观看美女被高潮喷水网站| 国产探花极品一区二区| 丝袜美腿在线中文| h日本视频在线播放| 欧美xxxx黑人xx丫x性爽| 国产有黄有色有爽视频|