• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Buck變換器的降階擴(kuò)張狀態(tài)觀測(cè)器與無(wú)抖振滑??刂?/h1>
    2021-07-01 09:38:28王書旺李生權(quán)
    控制理論與應(yīng)用 2021年6期
    關(guān)鍵詞:能源動(dòng)力降階華南理工大學(xué)

    王書旺 ,李生權(quán) ,哀 薇 ,李 娟

    (1.揚(yáng)州大學(xué) 電氣與能源動(dòng)力工程學(xué)院,江蘇 揚(yáng)州 225127;2.華南理工大學(xué) 自動(dòng)化科學(xué)與工程學(xué)院,廣東 廣州 510640)

    1 Introduction

    DC-DC buck converters are widely used in industrial control systems,such as electric vehicle,aerospace industry,renewable energy generation system,DC motor drives,etc.,since such converters are power electronic devices utilized to adapt the output/input voltages between the sources and load[1].It is difficult to control the converter in some situations,since a DC-DC buck converter is also a time-varying and nonlinear system due to the switching operation of the power electronics converter and the existence of some phenomenon such as chaos and bifurcation[2].Additionally,the excellent tracking performance of DC-DC buck converter is difficult to achieve due to different kinds of disturbance,variable circuit parameters and uncertain external load.The electronic parameters uncertainties exist in DC-DC buck converters inevitably,which bring great challenges to the advanced control strategies needing accurate model information[3].Thus,dynamic uncertainties are deemed as the main disturbance sources resulting in a large deviation between theoretical and actual output voltages.Different types of disturbances and modeling errors can also present severe challenges of high efficient and precision control performances for DC-DC buck converters [4].Therefore,a variety of control strategies have been explored to improve the tracking performances of DC-DC buck converter systems,such as backstepping control algorithm,adaptive control,model predictive control,intelligent control approaches,disturbance estimation based control methods,sliding mode control(SMC),and so on[5-8].These control strategies can actually improve the disturbance rejection ability of DC-DC converters in different aspects.It also can be found that the excellent robustness of the above control methods can be achieved by sacrificing the other control performances,such as the tracking performance,fast dynamical response,etc.Unfortunately,the practical applications of sliding mode control method are limited because of the disadvantages of the sensitiveness of mismatched disturbances and chattering phenomenon,since the total disturbances are conservatively reduced with large switching gains than the amplitudes of the disturbances.A type-2 fuzzy modeling method with an adaptive sliding mode controller has been proposed to attenuate the disturbances and uncertainties of the system[9].In addition,the high frequency chattering can also result in serious damage to real industrial control systems,which produces undesirable highly nonlinearity of the system dynamics.The chattering caused by sign function also involves extremely high control activity and increases electric power consumption resulting in great waste for DC-DC buck systems [10-11].Some strategies are proposed to reduce the effect of chattering in sliding mode control system.One of the most common solution to chattering problem is the boundary layer approach[12].The SMC with the boundary layer consists of a smooth function instead of the sign function.In addition,a super-twisting based on high-order sliding mode control law uses integrator to attenuate chattering[13].In[14],a SMC method based on a strict feedback nonlinear model is developed to attenuate chattering by changing the sign function into a continuous function.A novel fractional-order sliding surface based on an adaptive equivalent control law is designed to attenuate chattering and drive the system trajectories to the predefined sliding surface in finite sampling steps[15].

    The traditional sliding mode control law has discontinuous term which attenuates the disturbances and leads to chattering,simultaneously.The disturbance estimation technologies are introduced to eliminate the external disturbance and uncertainty,which are the keys to solve the chattering problem.In recent years,the disturbance-observer-based-control (DOBC)method compensating the internal and external disturbances by a feedforward part has been widely applied in industrial control systems[16].The main advantage of DOBC is that it can improve the robustness of the closed-loop system without sacrificing the nominal control performance.Considering input voltage and load uncertainties in a DC-DC converter system,a nonlinear disturbance observer-based(NDOB)sliding mode control with a novel sliding surface have been developed to counteract the mismatched disturbance[17].Disturbance observer composite integral sliding mode control(ISMC)can eliminate high frequency chattering by introducing a low pass filter for the DC-DC buck system with mismatched disturbance[18].

    Extended state observer(ESO)is considered as another practical disturbance estimation method and has been widely used in the real industrial control systems,which introduces a concept of total disturbance including external environmental disturbances and internal uncertainties [19].The controller based on extended state observer named active disturbance rejection control (ADRC) can estimate both system states variables and total disturbances by simple computations,then the observed value of disturbances can be furtherly employed to compensate in the feedforward channel to improve the performance of system.A linear-ADRC(LADRC) has been proposed in [20] to make the controller design and parameter tuning more practical,since the ADRC method has been used in industry control widely,such as,permanent magnet synchronous motor (PMSM) servo system,mechanical arm system,wind energy conversion system[21-26].In[27],a voltage tracking control method based on an active disturbance rejection control(ADRC)is proposed to improve the robustness of the H-bridge DC-DC converter system under matched disturbance.The ESO-based control method defines the uncertainties and changes in system dynamics including external environmental disturbances and internal uncertainties as a total disturbance,which makes the control method unique in concept and simple in engineering with superior performance.In addition,the chattering caused by SMC can also be attributed to total disturbance and compensated by ESO,while large observer bandwidth of ESO would be chosen to obtain the satisfactory disturbance rejection performance [28].In [29],a reduce-order ESO (RESO) is been designed to reduce the gains of observer to solve the problem of the weak noise reduction performance caused by the large observer bandwidth gain.Considering the pulse width modulation-based DC-DC buck converter system subject disturbances and uncertainties,a composite control method based on sliding mode control and ESO technique is developed in[30],but the large gains of observer and switching function are not mentioned.Along the research direction,an enhanced ESO method is proposed to deal with mismatched disturbances in DC-DC buck converter system,so the SMC has the ability to attenuate the disturbance without having to change the control structure of feedback part[31].Unfortunately,the chattering phenomenon caused by the relatively large switching gain is also not been considered in the reference.

    A sliding mode control method based on reducedorder extended state observer (SMC-RESO) aiming at the chattering caused by the large gain of SMC and the noise amplified by the large bandwidth observer gain of ESO,is proposed to achieve the excellent voltage tracking performance the DC-DC buck converter system in this paper.The key features of the proposed strategy are as follows:1) A novel state space model based on the tracking error between the expected and the actual voltages is designed to define the matched disturbances and mismatched disturbances as a uniform matched total disturbance.Therefore,the amplitudes of total disturbance to be attenuated by the sliding mode control can be reduced by the novel mathematical model;2) The proposed sliding mode control method can significant reduce chattering without losing the robustness of the system;3) A RESO is introduced to reduce the estimated burden of ESO by a small bandwidth gain,so the high frequency noise amplified by the large gain can be solved with the proposed control method.This paper is organized as follows.The description of the nominal system mathematical model with chattering attenuation is given in Sec.2.A composite RESO-based SMC controller is proposed in the Sec.3.In addition,the stability of the proposed control method will be shown in Sec.4.In Sec.5,numerical simulation results are presented to compare the proposed RESO based SMC against the tradition ESO based SMC.Finally,Sec.5 concludes the work.

    2 Mathematical model of a DC-DC buck converter

    Operation mode of a PWM-based DC-DC buck converter can be shown in Fig.1.The current of the inductance and the voltage of the capacitance cannot change suddenly,so the DC-DC buck converter dynamic mathematical model with two switching modes can be deduced as follows:

    Fig.1 Average model circuit of buck converter

    Case 1The switch is on

    Case 2The switch is off

    whereE,VTandVDare the input voltage,a MOSFET which can be turned on and off according to the input duty ratioμ ∈[0,1],and the circuit diode,respectively.The circuit parametersL,RandCrepresent circuit inductor,circuit load resistance and circuit capacitor,respectively.The currentiLand voltagevsare the current flowing through the inductor and the voltage of the load(i.e.,the output voltage),respectively.The load resistance and input voltage are usually time-varying,when the converters are applied in different operating conditions in practical situations.The nominal values of the load resistance are assumed toR0.Therefore,the average mathematical model can be described by following Eq.(3):

    The system mathematical model can be rewritten as follows with definition of tracking errore1=vr-vs

    whered1(t)=represents the ratio of the change in load current to the capacitor.Due to the output voltage both ends of the capacitor,the current flowing through the load resistance cannot change suddenly,so is differentiable.The following equation can be obtained with definition ofe2=:

    whered2=In addition,external disturbances and modeling error should be taken into consideration for improving the control performance.Parameterd3(t) is used to represent the uncertainties of the system,such as the modeling errors and the variation of electronic component parameters.So,the statesatisfies the following equation:

    Equation(5)can be further rewritten as the following simple form with the total disturbanceDwhich can be defined asD=-d2(t)+(t)+d3(t).

    The integral series standard form of buck converter should be conveniently obtained to design the controller and analyze the ESO.So,system control input can be defined as following.

    In addition,the system model can be further described as a state space model in Eq.(8) with the proposed control input in Eq.(7).

    Considering the error between the actual total disturbancesDand their estimated values,system(8)can also be further deduced as Eq.(9)withv=u-and

    3 SMC-RESO controller design

    3.1 Reduce-order extended state observer design

    The control method proposed in this paper is the sliding mode controller mainly based on Eq.(9).The robustness of the system is guaranteed by the characteristic that the sliding mode controller is insensitive to matched disturbance.The system variables that cannot be obtained directly such as ˙e1,are estimated and given by observer technology.Compared with nonlinear extended state observer(NLESO),LESO has advantage of easy parameter adjustment.Therefore,a third-order linear ESO(LESO)is commonly designed for a secondorder system(9)as follows:

    wheree0is defined as the tracking error of the observer.The bandwidth of LESO(10)is expressed by.The estimated values ofe1andcan be defined asz1andz2,respectively.The extended state variablez3of LESO is the estimation of the total disturbanceD,i.e.,?D.In addition,a second-order RESO is proposed to reduce the bandwidth of the observer due to the system statee1which can be measured directly.Based on the system Eq.(9),the RESO is designed as follows:

    whereβ1,β2are defined as the gains of the RESO,ζ2,ζ3denote the states of the RESO.The outputs of RESO are,which represent the estimate value ofandD,respectively.Bandwidth method has been applied in the parameters tuning,soβ1=2ω0,β2=.The bandwidth of the RESO (11) is expressed byω0.The speed of RESO tracking system disturbances and dynamic uncertainties can be improved by abandoning the estimation of system first order state.

    3.2 Sliding mode control design

    The novel modeling method proposed in this paper has two advantages.Firstly,the mismatched disturbance can be transformed into matched disturbance,since it is unnecessary to consider the types of total disturbances in the design of SMC controller for DC-DC buck converter system.Additionally,the disturbance,i.e.,observer error between the actual total disturbances and their estimated values,should be attenuated by SMC in Eq.(9),which is smaller than that in Eq.(8).Therefore,the sliding mode surface is defined as follows:

    whereλis a designed constant of sliding mode surface.Exponent reaching law Eq.(13) is selected to improve the rapidity of sliding mode control and reduce chattering,simultaneously:

    whereηis the parameter of sign function to be designed.The control coefficientkrepresents the rate that system reaches at the sliding mode surface.The disturbance rejection ability and the approaching rate can satisfy practical requirements by choosing appropriate values ofηandk.So the derivative of sliding mode function is deduced as follows:

    According to Eqs.(13) and (14),the sliding mode control law can be obtained as following Eq.(15).

    The design of switching gainη′in the control law satisfiesη′≥||+|η|.The magnitude of chattering depends on the value of.The chattering free can be achieved when disturbance is approximately to zero with accurate estimated total disturbance by RESO.Therefore,the SMC-RESO control law is deduced as follows by achieving ˙e1,information from RESO:

    Appropriate parameters can be selected to satisfy the different requirements.The disturbance rejection ability of the closed-loop system can be improved by increasing the bandwidth of RESO.The switching gainηin exponent reaching law can select 0 when the total disturbance is estimated accurately by RESO.Meanwhile,parametersλandkare used to improve the rapidity of the system.According to Eq.(7),the duty ratio can be deduced from Eq.(16):

    The SMC-RESO control system for DC-DC buck system is shown in Fig.2.It can be found in Fig.2 that only the output voltagevsneeds to be measured.Therefore,the proposed SMC-RESO control method is beneficial to the application of practical engineering,because the inductance current is not a value that must be measured in the controller design for DC-DC buck converter system.The modeling errors caused by electronic components in Eq.(17) will be summarized asd3(t).Meanwhile,the ESO will regard it as the total disturbance.The results of modeling errors added to the system will be shown in the simulation.

    Fig.2 Control system structure based on the proposed control method for DC-DC buck converter

    Lemma 1[32]Considering a non-linear system=F(x,w) with the condition of input-to-state stable (ISS),if the inputs satisfy→0,then the states satisfy

    4 Stability analysis

    4.1 Convergence analysis RESO

    whereρ=-ω0<0,as long asβ2e1-is bounded.The poles of the system will stay in the left-half complex plane,that is to sayε2,ε3will gradually converge to zero.Therefore,it can be proved that the designed observer is globally convergent.

    4.2 Proof of sliding mode controller stability

    The closed-loop control system of DC-DC buck circuit consists of Eqs.(9)-(16).The stability of the sliding mode controller can be proved by using Lyapunov stability criterion with following Lyapunov function:

    The following Eq.(22) can be obtained by taking derivative of along dynamics Eq.(14).

    By substituting Eq.(15)into Eq.(22),Eq.(22)can be further rewritten as Eq.(23):

    According to Assumption 1,the total disturbances including mismatched and matched uncertainties and disturbances are bounded,so the state variableε3in Eq.(29)is also a bounded variable.

    whereη′is the designed switching gain of sign function which satisfiesη′≥|η|+||>|η|+|ε3|≥0(η≥0).The designed composite controller satisfies Lyapunov stability criterion according to Eq.(24).Therefore,the system can reach the sliding mode surface from any initial condition in finite time with an appropriateη′.The sliding motion is described as Eq.(25)when system state variables move on the sliding mode surfaces=0:

    Equation (26) can be obtained by substituting into Eq.(25):

    The following Eq.(27) can be further deduced along Eq.(26):

    5 Simulation and analysis

    The simulation verification is based on MATLAB/SIMULINK with the proposed average mathematical model in this paper.The desired output voltage value is set to be 5 V and the DC-DC buck converter circuit parameters is shown in Table 1.To compare the disturbance rejection ability of SMC-RESO and SMC-ESO methods,the external disturbances and internal uncertainties in actual DC-DC converter have been studied in this section.First,the load resistance changing from 100 Ω to 130 Ω and 75 Ω at 2 s and 4 s is regarded as the external disturbance in Fig.3.A pulse signal with 1 V value is added to the input voltage at 2 s to take the modeling errors into consideration.The impulse disturbances are also added to the inductance and capacitance which changes from 4.7 mH to 2.2 mH at 4 s and changes from 1000 μF to 400 μF at 6 s,respectively.The response curve of modeling errors is shown in Fig.4.In addition,it is inevitable that the measurement noise caused by sensors exists in practical industry,therefore,random noise is added into the output voltage.The comparison results of noise rejection ability between SMC-ESO and SMC-RESO are shown in Fig.5.Finally,the chattering attenuation ability with the proposed modeling method is shown in Fig.6 by choosing different switching gains.

    Table 1 Parameters of the DC-DC buck converter

    Similar rapidity is chosen for two methods to show the advantages of the sliding mode method proposed in this paper.The parameters in SMC-ESO controller are chosen asλ=50,k=0,η=0,ω=100,while the parameters in SMC-RESO controller are selected asλ=80,k=0,η=0,ω=80.The output voltage response curves under the load disturbance and modeling error are shown in Fig.3.It is observed that the modeling error can be attenuated effectively by the two ESO based control method.In addition,the SMCRESO controller produce a better convergence rate than that of the SMC-ESO controller when the two control methods achieve the similar rapidity.This is because the first-order statee1can be measured directly,so the total disturbance can be estimated more quickly.Although the bandwidth of ESO is the same as that of RESO,but the observer gain of ESO is much larger than that of RESO.Therefore,the impact of the high frequency noise on the DC-DC buck system can be reduced by RESO.

    Fig.3 Response curves under SMC-RESO controller and SMC-ESO controller when the load resistance is changed

    It is impossible to keep the electronic parameters of the DC-DC buck system invariant,so the modeling errors should be taken into consideration.Fig.4 shows the response curve of the SMC-ESO controller and SMCRESO controller under the modeling errors.It is clear that the SMC-RESO controller has strong disturbance rejection ability when the input voltage changes.It also can be found that the SMC-RESO controller can keep invariable when the inductance and capacitance change greatly,while the SMC-ESO controller is difficult to attenuate these disturbances.It is necessary to take the high frequency noise into consideration,because the measurement noise unavoidably exists in the actual industry control systems.Appropriate parameters are chosen to make SMC-ESO and SMC-RESO have similar rapidity.To have a fair comparison,the bandwidth of ESO and RESO are selected as 80.The response curves of output voltages are shown in Fig.5.It can be found in Fig.5 that the sensitivity of noise has been significantly improved by RESO method because the observer gain of RESO is litter than tradition ESO method.In Fig.6,to verify the chattering attenuation ability of the modeling method proposed in this paper,three switching gainsη=0,5,10 are chosen to compare the duty ratioμchattering amplitude,respectively.It can be observed that the disturbance rejection ability is similar in three cases,but chattering is close to zero whenη=0.Compared to the casesη=5,10,the voltage tracking curve has chattering free feature whenη=0.The larger switching gain is,the greater the chattering amplitude and the worse the tracking performance.This advantage directly guarantees the chattering attenuation ability of the SMC-RESO method.The tracking error state space model proposed in this paper is also another significant factor to attenuate the chattering in SMC.The response curve of output voltage under the tradition SMC controller and SMC-ESO controller is shown in Fig.7.The traditional SMC controller parameters areλ=20,η=50,while the SMC-ESO controller parameters areλ=10,η=0,ω=70.It can be found that the SMC-ESO controller under the proposed modeling method achieve a better chattering attenuation result without loss robustness.

    Fig.4 Response curves under SMC-RESO controller and SMC-ESO controller with modeling errors

    Fig.5 Response curves under SMC-RESO controller and SMC-ESO controllers with measurement noise

    Fig.6 Control curve of duty ratio μ under different switching gains

    Fig.7 Response curves under SMC-ESO controller and tradition SMC controller

    It can be seen from the comparative verifications that the chattering of the traditional SMC controller can be reduced effectively under the proposed tracking error state space model.In addition,the proposed SMCRESO control method also has better disturbance and high frequency noise rejection performance than SMCESO method.

    6 Conclusions

    A SMC-RESO controller based on a novel tracking error state space model is proposed to improve the voltage tracking performance of a DC-DC buck with system uncertainties.The superiority of the proposed control method is systematically analyzed,then the tracking performances of SMC-RESO method and SMCESO method are compared by simulation results for a DC-DC buck converter subject total disturbances in this paper.In addition,the simulation results of several cases show that the proposed SMC-RESO controller with the novel modeling method can attenuate the chattering and also possess the robustness.In the future,the experiments can be carried out after the establishment of the experimental platform.

    猜你喜歡
    能源動(dòng)力降階華南理工大學(xué)
    新工科背景下冶金與能源交叉專業(yè)“傳輸原理”教學(xué)
    廣元八二一能源動(dòng)力有限責(zé)任公司
    單邊Lipschitz離散非線性系統(tǒng)的降階觀測(cè)器設(shè)計(jì)
    本期作者
    世界建筑(2018年5期)2018-05-25 09:51:38
    當(dāng)機(jī)器人遇上人工智能——記華南理工大學(xué)自動(dòng)化科學(xué)與工程學(xué)院副教授張智軍
    基于卓越工程師培養(yǎng)計(jì)劃的專業(yè)英語(yǔ)教學(xué)模式研究
    焦唯、王琪斐美術(shù)作品
    王雁、謝盼盼藝術(shù)作品
    降階原理在光伏NPC型逆變微網(wǎng)中的應(yīng)用研究
    基于Krylov子空間法的柔性航天器降階研究

    寂寞人妻少妇视频99o| 日本与韩国留学比较| 搡女人真爽免费视频火全软件| 黄色视频,在线免费观看| 插阴视频在线观看视频| 91精品国产九色| 联通29元200g的流量卡| 国产高潮美女av| 99久久中文字幕三级久久日本| 免费看美女性在线毛片视频| 美女 人体艺术 gogo| 亚洲欧美日韩高清在线视频| 全区人妻精品视频| 国产精品一区二区三区四区久久| 精品一区二区三区视频在线| 欧洲精品卡2卡3卡4卡5卡区| 黄色日韩在线| 男女下面进入的视频免费午夜| 欧美性猛交╳xxx乱大交人| 性色avwww在线观看| 蜜桃久久精品国产亚洲av| 欧美激情国产日韩精品一区| av国产免费在线观看| 听说在线观看完整版免费高清| 人妻少妇偷人精品九色| 国产伦精品一区二区三区四那| 不卡一级毛片| 色哟哟·www| 午夜精品在线福利| 99久久精品一区二区三区| 精品一区二区三区人妻视频| 国产精品一区二区三区四区久久| 国产成人aa在线观看| 久久久a久久爽久久v久久| 欧美最新免费一区二区三区| 国产私拍福利视频在线观看| 99久国产av精品国产电影| 欧美另类亚洲清纯唯美| 观看免费一级毛片| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲电影在线观看av| 少妇人妻一区二区三区视频| 99在线人妻在线中文字幕| 日本爱情动作片www.在线观看| 日韩亚洲欧美综合| 99热这里只有精品一区| 18+在线观看网站| 插逼视频在线观看| 亚洲精品成人久久久久久| 哪里可以看免费的av片| 卡戴珊不雅视频在线播放| 毛片一级片免费看久久久久| 国产精品美女特级片免费视频播放器| 在线观看av片永久免费下载| 在线观看av片永久免费下载| 国产精品无大码| 亚洲成人精品中文字幕电影| 亚洲精品成人久久久久久| 免费电影在线观看免费观看| 国产精品,欧美在线| 九色成人免费人妻av| 成人特级av手机在线观看| 激情 狠狠 欧美| 18禁在线播放成人免费| 国产成人a∨麻豆精品| 一本久久精品| 午夜激情欧美在线| 欧美激情国产日韩精品一区| 亚洲美女视频黄频| 午夜福利视频1000在线观看| 老女人水多毛片| 亚洲人成网站在线播放欧美日韩| 哪个播放器可以免费观看大片| 国产精品三级大全| 最近中文字幕高清免费大全6| 中文精品一卡2卡3卡4更新| 国产精品一及| 看非洲黑人一级黄片| av免费在线看不卡| 国产男人的电影天堂91| 欧美性猛交黑人性爽| 嫩草影院新地址| 性色avwww在线观看| 午夜福利视频1000在线观看| 欧美xxxx性猛交bbbb| 校园春色视频在线观看| 99热精品在线国产| 亚洲国产日韩欧美精品在线观看| 99视频精品全部免费 在线| 亚洲精品久久久久久婷婷小说 | 午夜视频国产福利| 国产午夜精品论理片| 欧美+日韩+精品| 一级黄色大片毛片| 又粗又爽又猛毛片免费看| 2022亚洲国产成人精品| 久久久成人免费电影| 99在线人妻在线中文字幕| 国产视频首页在线观看| 毛片一级片免费看久久久久| 国产精品嫩草影院av在线观看| 一卡2卡三卡四卡精品乱码亚洲| 婷婷亚洲欧美| 中文精品一卡2卡3卡4更新| 国产精品美女特级片免费视频播放器| 亚洲性久久影院| 美女大奶头视频| 91久久精品国产一区二区成人| 欧美高清性xxxxhd video| 免费av不卡在线播放| 99久久中文字幕三级久久日本| 日韩亚洲欧美综合| 亚洲无线观看免费| 日韩制服骚丝袜av| 一进一出抽搐动态| 九草在线视频观看| 久久人人爽人人爽人人片va| 女人被狂操c到高潮| 看免费成人av毛片| 国产亚洲91精品色在线| 少妇熟女欧美另类| 欧美最新免费一区二区三区| 99在线人妻在线中文字幕| 国产人妻一区二区三区在| 免费黄网站久久成人精品| 伊人久久精品亚洲午夜| 国产亚洲5aaaaa淫片| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲精品自拍成人| 久久久久久久久大av| 天美传媒精品一区二区| 久久午夜福利片| 国产精品久久视频播放| 在线免费观看不下载黄p国产| 亚洲欧美精品综合久久99| 日韩大尺度精品在线看网址| 天堂av国产一区二区熟女人妻| 国产精品1区2区在线观看.| 午夜福利在线在线| 丰满的人妻完整版| a级毛片a级免费在线| 国内精品宾馆在线| 99热这里只有精品一区| 成人午夜精彩视频在线观看| 高清午夜精品一区二区三区 | 色尼玛亚洲综合影院| 免费无遮挡裸体视频| 美女黄网站色视频| 桃色一区二区三区在线观看| 插逼视频在线观看| 欧美日韩乱码在线| 中文在线观看免费www的网站| 我的老师免费观看完整版| 亚洲最大成人av| 国产精品蜜桃在线观看 | 欧美精品国产亚洲| 嫩草影院新地址| 欧美3d第一页| 国内精品久久久久精免费| 日本-黄色视频高清免费观看| 亚洲欧美精品专区久久| 亚洲最大成人av| 日韩一区二区三区影片| a级一级毛片免费在线观看| 久久久午夜欧美精品| 亚州av有码| 国产成人影院久久av| 成熟少妇高潮喷水视频| 精品少妇黑人巨大在线播放 | 国内少妇人妻偷人精品xxx网站| 国产成人91sexporn| 最近视频中文字幕2019在线8| 一本久久中文字幕| 欧美高清性xxxxhd video| 91狼人影院| 国产精品1区2区在线观看.| 日韩欧美 国产精品| 五月伊人婷婷丁香| 综合色av麻豆| 亚洲国产精品成人久久小说 | 久久婷婷人人爽人人干人人爱| 国模一区二区三区四区视频| 亚洲欧美成人精品一区二区| 高清日韩中文字幕在线| 成人鲁丝片一二三区免费| 女同久久另类99精品国产91| a级毛片a级免费在线| 九九爱精品视频在线观看| 91久久精品电影网| 夜夜爽天天搞| 亚洲精华国产精华液的使用体验 | 成人一区二区视频在线观看| 国内揄拍国产精品人妻在线| 美女 人体艺术 gogo| h日本视频在线播放| 国产男人的电影天堂91| 99久久人妻综合| 日韩一本色道免费dvd| 女人十人毛片免费观看3o分钟| 亚洲在线自拍视频| 美女大奶头视频| 在现免费观看毛片| 黄色日韩在线| 乱人视频在线观看| 国产乱人偷精品视频| 国产三级中文精品| 日韩欧美精品免费久久| 色5月婷婷丁香| 99热网站在线观看| 国产麻豆成人av免费视频| a级一级毛片免费在线观看| 国内少妇人妻偷人精品xxx网站| 欧美精品国产亚洲| 欧美色视频一区免费| 天堂影院成人在线观看| 国语自产精品视频在线第100页| 91aial.com中文字幕在线观看| 搡老妇女老女人老熟妇| 好男人在线观看高清免费视频| 国产久久久一区二区三区| 九草在线视频观看| 大型黄色视频在线免费观看| www.色视频.com| 日日摸夜夜添夜夜爱| a级毛色黄片| 免费av观看视频| 中文欧美无线码| 欧美日韩乱码在线| 成人亚洲精品av一区二区| 寂寞人妻少妇视频99o| 69人妻影院| 日韩大尺度精品在线看网址| 亚洲综合色惰| 一卡2卡三卡四卡精品乱码亚洲| ponron亚洲| 毛片一级片免费看久久久久| 亚洲性久久影院| av又黄又爽大尺度在线免费看 | 天堂影院成人在线观看| 26uuu在线亚洲综合色| 国产真实乱freesex| 大香蕉久久网| 黄色视频,在线免费观看| 国产成人精品一,二区 | 国产精品电影一区二区三区| 99热网站在线观看| 中文字幕免费在线视频6| 亚洲精品亚洲一区二区| 亚洲婷婷狠狠爱综合网| 黄色配什么色好看| 色综合站精品国产| 久久久精品大字幕| 丰满人妻一区二区三区视频av| 久久草成人影院| 99久久久亚洲精品蜜臀av| 美女内射精品一级片tv| 国内精品一区二区在线观看| 一级毛片久久久久久久久女| 18+在线观看网站| 亚洲av免费在线观看| 欧美极品一区二区三区四区| 亚洲欧美日韩无卡精品| 中文字幕精品亚洲无线码一区| 成人亚洲欧美一区二区av| 少妇裸体淫交视频免费看高清| 久久久a久久爽久久v久久| 五月伊人婷婷丁香| 久久精品国产99精品国产亚洲性色| 人妻夜夜爽99麻豆av| 国产成人a∨麻豆精品| 中文资源天堂在线| 淫秽高清视频在线观看| 欧美潮喷喷水| 天堂√8在线中文| 色尼玛亚洲综合影院| 国产精品无大码| 国产精品一区www在线观看| 波野结衣二区三区在线| 欧美激情在线99| 国产精品人妻久久久久久| 在线免费观看的www视频| 精品日产1卡2卡| 国产极品天堂在线| 日韩 亚洲 欧美在线| 在线观看免费视频日本深夜| 一个人观看的视频www高清免费观看| 国产精品不卡视频一区二区| 天堂√8在线中文| 精品人妻一区二区三区麻豆| 日本色播在线视频| 日本黄色片子视频| 日本五十路高清| 亚洲国产精品成人久久小说 | 少妇熟女欧美另类| 国产高潮美女av| 午夜免费激情av| 伦理电影大哥的女人| 最近视频中文字幕2019在线8| 99精品在免费线老司机午夜| 又粗又硬又长又爽又黄的视频 | 亚洲精品久久久久久婷婷小说 | 国产一级毛片在线| 欧美日韩在线观看h| 欧美xxxx性猛交bbbb| 国产午夜福利久久久久久| 国产精品久久视频播放| 欧美最新免费一区二区三区| 好男人视频免费观看在线| 亚洲,欧美,日韩| 久久久精品94久久精品| 亚洲丝袜综合中文字幕| 国产成人福利小说| 99精品在免费线老司机午夜| 亚洲内射少妇av| 久久久久久久亚洲中文字幕| 国产精品,欧美在线| 日本三级黄在线观看| 黄片无遮挡物在线观看| 国产精品一二三区在线看| 欧美一区二区精品小视频在线| 春色校园在线视频观看| 亚洲中文字幕日韩| 成人特级av手机在线观看| 一卡2卡三卡四卡精品乱码亚洲| 一个人观看的视频www高清免费观看| 国产69精品久久久久777片| 午夜免费男女啪啪视频观看| 久久欧美精品欧美久久欧美| 最近中文字幕高清免费大全6| 国产中年淑女户外野战色| 国产伦在线观看视频一区| 日本黄大片高清| 亚洲精品粉嫩美女一区| 最近2019中文字幕mv第一页| 在线播放无遮挡| 神马国产精品三级电影在线观看| 亚洲精品色激情综合| 亚洲国产精品成人久久小说 | 激情 狠狠 欧美| 一本精品99久久精品77| 久久中文看片网| 亚洲图色成人| 99久久精品热视频| 亚洲天堂国产精品一区在线| 蜜臀久久99精品久久宅男| 欧美成人一区二区免费高清观看| 亚洲图色成人| h日本视频在线播放| 99热只有精品国产| 麻豆国产av国片精品| 亚洲精华国产精华液的使用体验 | 嘟嘟电影网在线观看| 国产黄片美女视频| 久久人人爽人人爽人人片va| 人妻系列 视频| 麻豆成人av视频| 高清日韩中文字幕在线| 免费观看的影片在线观看| a级一级毛片免费在线观看| 国产 一区精品| 一级毛片我不卡| 日韩成人伦理影院| 国产男人的电影天堂91| 国产久久久一区二区三区| 欧美日韩在线观看h| 好男人在线观看高清免费视频| 大香蕉久久网| 99九九线精品视频在线观看视频| 亚洲在线自拍视频| 免费观看a级毛片全部| 麻豆成人午夜福利视频| 在线观看免费视频日本深夜| 黄色视频,在线免费观看| 最近最新中文字幕大全电影3| 亚洲精品自拍成人| 18禁在线无遮挡免费观看视频| 免费av观看视频| 亚洲av成人av| 国产单亲对白刺激| 亚洲中文字幕日韩| 一级毛片久久久久久久久女| 国产综合懂色| 国内精品美女久久久久久| 色综合亚洲欧美另类图片| 夜夜夜夜夜久久久久| h日本视频在线播放| 国产成人91sexporn| 给我免费播放毛片高清在线观看| 亚洲性久久影院| 哪个播放器可以免费观看大片| 女人十人毛片免费观看3o分钟| 99热精品在线国产| 男人舔奶头视频| 一个人观看的视频www高清免费观看| 女人被狂操c到高潮| 国产老妇女一区| 最近视频中文字幕2019在线8| 久久人妻av系列| 男女下面进入的视频免费午夜| 午夜激情欧美在线| 国语自产精品视频在线第100页| 国产黄a三级三级三级人| 一级av片app| 你懂的网址亚洲精品在线观看 | 午夜a级毛片| 麻豆国产av国片精品| 亚洲欧美成人精品一区二区| 久久99热这里只有精品18| 最近的中文字幕免费完整| 特级一级黄色大片| 草草在线视频免费看| 亚洲国产色片| 亚洲欧美日韩东京热| 深夜精品福利| 性欧美人与动物交配| 亚洲欧美精品自产自拍| 听说在线观看完整版免费高清| 级片在线观看| 色噜噜av男人的天堂激情| 久久人人爽人人片av| 成人毛片60女人毛片免费| 亚洲av第一区精品v没综合| 尤物成人国产欧美一区二区三区| 欧美一区二区精品小视频在线| 两个人视频免费观看高清| 天堂影院成人在线观看| 亚洲精品久久久久久婷婷小说 | 麻豆国产97在线/欧美| 欧美高清性xxxxhd video| 最好的美女福利视频网| 好男人视频免费观看在线| 国产成人一区二区在线| 爱豆传媒免费全集在线观看| 最近2019中文字幕mv第一页| 搞女人的毛片| 深夜精品福利| 国产精品蜜桃在线观看 | 99九九线精品视频在线观看视频| 成人综合一区亚洲| 一区福利在线观看| 中文字幕精品亚洲无线码一区| 亚洲人成网站在线播放欧美日韩| 免费搜索国产男女视频| 亚洲欧美成人精品一区二区| 国产精品av视频在线免费观看| 99热这里只有是精品在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久久久免| 亚洲精品日韩在线中文字幕 | 身体一侧抽搐| 免费人成视频x8x8入口观看| 亚洲无线观看免费| 久久久精品94久久精品| 黄色欧美视频在线观看| 久久精品国产清高在天天线| 91精品国产九色| 免费看光身美女| 少妇人妻一区二区三区视频| 亚洲四区av| 午夜免费男女啪啪视频观看| 男女做爰动态图高潮gif福利片| 久久人人爽人人片av| 国产女主播在线喷水免费视频网站 | 久久久国产成人免费| 高清午夜精品一区二区三区 | 国内少妇人妻偷人精品xxx网站| 久久精品久久久久久久性| 亚洲欧美成人综合另类久久久 | 我的老师免费观看完整版| 99热全是精品| 日韩精品有码人妻一区| 免费观看精品视频网站| 日韩成人av中文字幕在线观看| 网址你懂的国产日韩在线| 男人的好看免费观看在线视频| 日韩人妻高清精品专区| 国产精品久久久久久久久免| 99热只有精品国产| 日韩成人伦理影院| 精品久久久久久久末码| 欧美精品一区二区大全| 婷婷色av中文字幕| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线观看播放| 狠狠狠狠99中文字幕| 日本黄色视频三级网站网址| 国产日本99.免费观看| 26uuu在线亚洲综合色| 亚洲人成网站高清观看| 一级二级三级毛片免费看| 99久久九九国产精品国产免费| 亚洲欧美清纯卡通| 中文字幕av成人在线电影| 女的被弄到高潮叫床怎么办| 国产男人的电影天堂91| 亚洲在久久综合| 最近手机中文字幕大全| 亚洲真实伦在线观看| 别揉我奶头 嗯啊视频| 九色成人免费人妻av| 不卡视频在线观看欧美| 亚洲av免费高清在线观看| 自拍偷自拍亚洲精品老妇| 99久久人妻综合| 男女边吃奶边做爰视频| 伦理电影大哥的女人| 精品欧美国产一区二区三| 日本五十路高清| 国产乱人偷精品视频| 成人特级av手机在线观看| 成年版毛片免费区| 亚洲国产色片| 色噜噜av男人的天堂激情| 国产色婷婷99| 日本免费a在线| 亚洲电影在线观看av| 夜夜夜夜夜久久久久| 91麻豆精品激情在线观看国产| 18+在线观看网站| 亚洲婷婷狠狠爱综合网| 国产三级中文精品| 亚洲国产精品国产精品| 亚洲精品国产成人久久av| 亚洲经典国产精华液单| 三级毛片av免费| 草草在线视频免费看| 午夜视频国产福利| 亚洲高清免费不卡视频| 亚洲精品日韩在线中文字幕 | 国产一区二区亚洲精品在线观看| 老熟妇乱子伦视频在线观看| 日韩 亚洲 欧美在线| 亚洲欧洲国产日韩| 成人午夜精彩视频在线观看| 天天躁日日操中文字幕| 亚洲av中文av极速乱| 免费黄网站久久成人精品| 有码 亚洲区| 看十八女毛片水多多多| 能在线免费观看的黄片| 搡女人真爽免费视频火全软件| 免费一级毛片在线播放高清视频| 欧美在线一区亚洲| 12—13女人毛片做爰片一| 欧美成人免费av一区二区三区| 国产国拍精品亚洲av在线观看| 欧美激情久久久久久爽电影| 亚洲成人久久爱视频| avwww免费| 波多野结衣巨乳人妻| 一区二区三区免费毛片| 久久欧美精品欧美久久欧美| 中文在线观看免费www的网站| 18禁在线播放成人免费| 日本-黄色视频高清免费观看| 亚洲精品456在线播放app| 国产亚洲91精品色在线| 99久久九九国产精品国产免费| 日韩 亚洲 欧美在线| 久久99热这里只有精品18| 91精品一卡2卡3卡4卡| 美女cb高潮喷水在线观看| 亚洲精品日韩av片在线观看| 免费观看精品视频网站| 少妇猛男粗大的猛烈进出视频 | 午夜精品国产一区二区电影 | 国产精品麻豆人妻色哟哟久久 | 久久久久久国产a免费观看| 黄色日韩在线| 成年免费大片在线观看| 亚洲国产欧洲综合997久久,| 色综合色国产| 一进一出抽搐动态| 亚洲av.av天堂| 日日摸夜夜添夜夜添av毛片| 亚洲精品国产av成人精品| 国产精品无大码| 青春草视频在线免费观看| 免费搜索国产男女视频| 欧美又色又爽又黄视频| 老师上课跳d突然被开到最大视频| 美女xxoo啪啪120秒动态图| 欧美三级亚洲精品| 91精品国产九色| 久久久久久国产a免费观看| 成人亚洲欧美一区二区av| 欧美3d第一页| 国产黄a三级三级三级人| 国产精品一区二区在线观看99 | 婷婷六月久久综合丁香| 日韩视频在线欧美| 黄色视频,在线免费观看| 少妇高潮的动态图| 欧美xxxx黑人xx丫x性爽| 国产午夜福利久久久久久| 久久久久性生活片| 久久精品久久久久久噜噜老黄 | 国产在视频线在精品| 波多野结衣高清作品| 国产精品野战在线观看| 超碰av人人做人人爽久久| 网址你懂的国产日韩在线| 一本一本综合久久| 欧美日本亚洲视频在线播放| 内地一区二区视频在线| 亚洲国产欧洲综合997久久,| 欧美日本视频| 99国产精品一区二区蜜桃av| 高清午夜精品一区二区三区 | 三级男女做爰猛烈吃奶摸视频| 老司机影院成人| 2021天堂中文幕一二区在线观| 亚洲精品乱码久久久v下载方式| 欧美精品国产亚洲|