• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Time-varying Delays on the Stability of a Class of Stochastic Competitive System

    2021-06-30 00:08:42ZHAOJinxing趙金星SHAOYuanfu邵遠夫
    應用數(shù)學 2021年3期
    關鍵詞:金星

    ZHAO Jinxing(趙金星),SHAO Yuanfu(邵遠夫)

    (1.School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China;2.College of Science,Guilin University of Technology,Guilin 541004,China)

    Abstract:A class of stochastic competitive system with time-varying delays is proposed in this paper.By use of the theory of neutral differential equation and constructing suitable functional,we are concerned with the globally asymptotical stability and stability in probability of the equilibrium state.Finally,some numerical simulations are given to validate our main results.

    Key words:Time-varying delay;Equilibrium state;Asymptotical stability;Stability in probability

    1.Introduction

    For biological system,the existence and stability of equilibrium point or periodic solution is very valuable for people to understand and control dynamic system,which is basic and the most important dynamical behavior.Many researchers have obtained many nice results.[1-4]

    In general,time delays usually appear in population system[5-6].There are many kinds of time delays,such as constant delays[6],distributed delays[7-8]and time-varying delays[9-10,17].For example,LIU[17]proposed a two-species competitive system with time-varying delays as follows:

    For the deterministic system(1.1),let

    For the latter study,we assume that(1.1)has a unique positive equilibrium point as follows:

    On the other hand,population system is often subject to environmental fluctuation,and hence,it is necessary to consider stochastic effects in the process of mathematical modeling[11-18].Many stochastic systems have been investigated,such as stochastic competitive system[11],stochastic cooperative system[12].Meanwhile,time delays often appear and bring important influence to the dynamics of stochastic systems[13-18].

    In real world,stochastic perturbations are complex and presented as many forms.For example,the authors[11,13]show that,stochastic perturbations of the state variables around their steady-state are of Brownian white noise,which are proportional to the distance ofx1,x2from the equilibrium statex*=()Trespectively.Consequently,we firstly propose the following stochastic competitive system with time-varying delays:

    with initial data

    wherexi(t)stands for the population size of theith species at timet,ri>0 is the growth rate ofxi(t).Parametersa11,a12,a21,a22are positive and represent the intra-specific competitive coefficient,anda13>0,a23>0 are the interspecific competitive rates ofx1(t)andx2(t),respectively.τj(t)>0 is time-varying delay,is positive and continuous function defined on[-τ,0];denotes the intensity of white noise,ωi(t)t>0is the standard independent Brownian motion defined on a complete probability space(Ω,F(xiàn),F(xiàn)t≥0,P),i=1,2.

    Further,stochastic perturbations of state variables are proportional to the product ofx1,x2and their distance from equilibrium stateandwhich may refer to[14,17].Considering this kind of stochastic influence,we have the following stochastic model with timevarying delays proposed by LIU[17].

    where the meanings of all parameters are as before.

    In view of the importance of equilibrium state for dynamical system,in this paper,our main aim is to investigate the effect of time delays on the equilibrium state of(1.2)and(1.3),respectively.

    The rest work of this paper is organized as follows.In Section 2,we give some definitions,notations and some important lemmas.Section 3 focuses on the main results such as global attactivity and the stability in probability.Some numerical examples are given in Section 4 to validate our theoretical results.Finally a brief conclusion and discussion are given in Section 5 to conclude the paper.

    2.Preliminaries

    Let{Ω,σ,P}be a probability space,{ft,t≥0}be a family ofσ-algebras,ft∈σ.Consider the following neutral stochastic differential equation:

    whereHis the space off0-adapted functionsφ(s)∈Rn,s≤0 andxt(s)=x(t+s),s≤0,ω(t)ism-dimensionalft-adapted Brownian process,a(t,φ),b(t,φ)aren-dimensional vector andn×m-dimensional matrix,respectively.Define||φ||0=sups≤0|φ(s)|,and||φ||1=sups≤0E{|φ(s)|2},where E denotes the mathematical expectation.

    Definition 2.1The zero solution of(2.1)is said to be stable in probability if for any?,ε>0,there exists a numberδ>0 and the solutionx(t)=x(t,φ)such thatP{|x(t,φ)|>?}<εfor any initial functionφ∈HsatisfyingP{||φ0||≤δ}=1,wherePis the probability of an event.

    Lemma 2.1Systems(1.2)and(1.3)have a unique global positive solution ont>-τfor any initial data given above,respectively.

    Remark 2.1The proof is very standard and is omitted here.Readers may refer to[17].

    Lemma 2.2[19]If there exists a functionalV(t,x)such that

    for any functionφ∈HsatisfyingP{||φ||0≤δ}=1,andδ>0 is sufficiently small positive constant,then the zero solution of(2.1)is stable in probability.

    For the latter discussion,we give a technical assumption.

    Assumption 2.1Assume the derivatives of all delays satisfy the following condition:

    For simplicity,we denotef(t)byfand apply the following notations in the later.

    3.Delay Effects on The Equilibrium State

    In this section,we study the time delay effects on the dynamical behaviors of the equilibrium state of(1.2).Lety1(t)=x1(t)2(t)=x2(t)then(1.2)is transformed to the following equivalent system:

    By transformation,the stability of equilibrate state of(1.2)is equivalent to the stability of zero solution of(3.1).Consequently,in order to study the stability of the equilibrate state of(1.2),we only need to study the stability of zero solution of(3.1).

    By use of the definition of derivative,we have

    and

    Therefore,(3.1)is equivalent to the following system.

    Firstly,we consider the linear case of(3.2)as follows.

    For the system(3.3),we have the following result.

    Assumption 3.1

    where the matrixC=(cij)>B=(bij)meanscij>bijfor anyi=1,···,n,j=1,···,m.

    Theorem 3.1If Assumption 3.1 holds,then the zero solution of(3.3)is globally asymptotically stable,almost surely.

    ProofFirstly,we define two functions as follows:

    and

    Applying the it?o formula toV1andV2,we have

    Define

    and

    Clearly,using Assumption 3.1,we haveLV<0 along all trajectories inexcept the equilibrium state.Hence,by the stability theory of stochastic functional differential equations,the zero solution of(3.3)is globally asymptotically stable.This completes the proof.

    Theorem 3.2If Assumption 3.1 holds,then the zero solution of system(3.2)is stable in probability,that is,the equilibrium state of(1.2)is stable in probability.

    ProofFor the system(3.2),we define the same functionsV1,V2as before.We assume that there exists a numberδ>0 such that supt≥τ|xi(s)|<δ,i=1,2.Using the it?o formula and calculatingLV1,LV2along the system(3.2)respectively,we obtain

    Define

    By choosing sufficiently smallδ>0 satisfying Assumption 3.1,thenLV<0 holds.Therefore,by Lemma 2.2,the zero solution of(3.2)is stable in probability.The proof is completed.

    Next we begin the process of investigating the stability of system(1.3).Lety1(t)=Then(1.3)is transformed to the following equivalent system.

    Consequently,the stability of equilibrate state of(1.3)is equivalent to the stability of zero solution of(3.4).By transformation,(3.4)is equivalent to the following system:

    We consider the following linear case of(3.5).

    Assumption 3.2

    Theorem 3.3If Assumption 3.2 holds,then the equilibrium state of(3.5)is stable in probability,i.e.,the equilibrium state of(1.3)is stable in probability.

    ProofDefine two same functionalsV1,V2as before,using It?o’s formula and computingLValong(3.6),we have

    The rest of the proof is similar to Theorem 3.1 and Theorem 3.2,hence we omit it here.

    Remark 3.1System(1.3)was considered in[17].By constructing some functionals,the author discussed the global attractivity of equilibrium point.Similarly,we discuss the global attractivity of(1.3),but the method applied here is by constructing an neutral differential equation to get the suitable functional,which is very different from[17].Moreover,our result is related to the equilibrium state and presents the effects of time-varying delays on the dynamical behaviors of(1.3),which is also different from[17].On the other hand,we also establish the sufficient conditions of making equilibrium state keeping stable in probability,which is not discussed in[17].As the special case of(1.3),ifτ=0,we show the differences between Theorem 3.3 and Theorem 1 in[17]by giving a numerical example in the next section(see Fig.4.7).

    4.Numerical Simulations

    In this section,some numerical examples are given to verify our theoretical results.By applying the Milstein method[20]and writing Matlab codes,we give some numerical results as follows.

    Leta11=1.8,a12=0.5,a13=0.3,a21=1.5,a22=0.3,a23=0.5,r1=2,r2=2.5,τ1(t)=An easy computation yieldsA=3.99,A1=2.85,A2=4.75=0.7143=1.1905=1/5=2/5=2/5=a11-α1=1.175,β2=a21-α3=1.

    Ifσ1=0.6,σ2=0.6,τ=0.04,thenΔ1=1.646,Δ2=1.0309,=1.8929,=0.9047,ξ1=2.3687,ξ2=1.4,ζ1=1.889,ζ2=2,and

    By verification,Assumption 3.1 holds,and hence,Theorem 3.1 and Theorem 3.2 imply that the system(1.2)is globally attractive and stable in probability(see Fig.4.1).

    Fig.4.1 Time series of x1(t)and x2(t)of(1.2)with σ1=0.6,σ2=0.6,τ=0.04.(a)Equilibrium point of system(1.2),(b)Time series of x1(t)and ,(c)Time series of x2(t)and x*2,(d)time series of x1(t)and x2(t)

    Ifσ1=3,σ2=6 and other parameters keep unchanged,then Assumption 3.1 does not hold,hence the system(1.2)may be unstable(see Fig.4.2).

    Fig.4.2 Time series of x1(t)and x2(t)of(1.2)with σ1=3,σ2=6,τ=0.04,which shows x2 is extinct and the system is unstable

    Similarly,if other parameters are as before andτ=8,then Assumption 3.1 does not hold and the system(1.2)may be also unstable(see Fig.4.3).

    Fig.4.3 Time series of x1(t)and x2(t)of(1.2)with σ1=0.6,σ2=0.6,τ=8,which shows species x1(t)and x2(t)are unstable

    For the system(1.3),ifσ1=0.6,σ2=0.6,τ=0.04,and other parameters are as before.By verification,Assumption 3.2 holds and(1.3)is stable(see Fig.4.4).

    Fig.4.4 Time series of x1(t)and x2(t)of(1.3)with σ1=0.6,σ2=0.6,τ=0.04.(a)Time series of x1(t)and ,(b)Time series of x2(t)and (c)Time series of x1(t)and x2(t)

    Ifσ1=6,σ2=6,τ=0.04,orσ1=0.6,σ2=0.6,τ=8,and other parameters keep unchanged,then Assumption 3.2 does not hold,and the system(1.3)may be unstable(see Fig.4.5 and Fig.4.6,respectively).

    Fig.4.5 Time series of x1(t)and x2(t)of(1.3)with σ1=3,σ2=6,τ=0.04,which shows x2 is extinct and the system is unstable

    Fig.4.6 Time series of x1(t)and x2(t)of(1.3)with σ1=0.6,σ2=0.6,τ=8,which shows species x1(t)and x2(t)are unstable

    If there is no delays,i.e.,=0,τ=0(i=1,2,3,4).Seta11=0.9,a12=0.6,a13=0.3,a21=0.8,a22=0.5,a23=0.3,r1=1,r2=1,σ1=σ2=0.9,then=0.5376=0.6452.By computation,the conditions of Theorem 1 in[24]do not hold,hence we can not obtain the global attarctivity.But it is clear that

    which meets the condition of Theorem 3.3,therefore,the system is globally attractive and stable in probability,which is illustrated in Fig.4.7.

    Fig.4.7 Time series of x1(t)and x2(t)of(1.3)with σ1=0.6,σ2=0.6,τ=0.(a)Equilibrium points of system(1.3)without delays,(b)Time series of x1(t)and x2(t)without delays

    5.Conclusion and Discussion

    In this paper,we consider a class of stochastic competitive system with time-varying delays.Theorem 3.1 gives the sufficient conditions assuring the global stability of the equilibrium state.Theorem 3.2 and Theorem 3.3 show that under some conditions,the equilibrium state of(1.2)and(1.3)are stable in probability,respectively.Our obtained results show that time-varying delays have some significant effects on the globally asymptotic stability of positive equilibrium state.Whereas in practice,multi-species system often appears and exhibits more complex dynamical behaviors.For multi-species system,we believe that there may be some similar results,which is interesting and left for our work in the future.

    猜你喜歡
    金星
    逃離金星全記錄
    第六章 飛向金星
    小學科學(2019年2期)2019-03-14 13:33:04
    第六章 飛向金星
    第六章 飛向金星
    金星面面觀
    去金星要花多長時間?
    金星探測“黑科技”來啦
    軍事文摘(2017年16期)2018-01-19 05:10:07
    金星西大距
    金星合土星
    太陽系最亮的類地行星:金星
    太空探索(2014年12期)2014-07-12 15:17:10
    2018国产大陆天天弄谢| 日本av手机在线免费观看| 日日爽夜夜爽网站| 精品欧美一区二区三区在线| 欧美人与性动交α欧美精品济南到| 亚洲一码二码三码区别大吗| 免费观看av网站的网址| 亚洲成色77777| 一二三四社区在线视频社区8| 亚洲图色成人| 国产亚洲精品第一综合不卡| 国产在线一区二区三区精| 麻豆乱淫一区二区| 丁香六月天网| 看免费成人av毛片| 香蕉丝袜av| 免费看十八禁软件| 亚洲欧洲精品一区二区精品久久久| 国产老妇伦熟女老妇高清| 十八禁高潮呻吟视频| 19禁男女啪啪无遮挡网站| 亚洲精品日韩在线中文字幕| 9色porny在线观看| 一区二区三区激情视频| 尾随美女入室| 国产黄频视频在线观看| 亚洲情色 制服丝袜| 一级黄色大片毛片| 欧美老熟妇乱子伦牲交| 婷婷色麻豆天堂久久| 国产97色在线日韩免费| 免费一级毛片在线播放高清视频 | 亚洲熟女精品中文字幕| 国产精品亚洲av一区麻豆| 欧美大码av| 下体分泌物呈黄色| 赤兔流量卡办理| 视频区欧美日本亚洲| 在线观看免费日韩欧美大片| 久久国产精品人妻蜜桃| 韩国高清视频一区二区三区| 亚洲av美国av| 美女大奶头黄色视频| 国产男人的电影天堂91| 老司机在亚洲福利影院| 女性生殖器流出的白浆| 日韩人妻精品一区2区三区| 啦啦啦在线观看免费高清www| 老司机深夜福利视频在线观看 | 99精国产麻豆久久婷婷| 成人国产av品久久久| 色综合欧美亚洲国产小说| 高清欧美精品videossex| 97在线人人人人妻| 免费观看人在逋| 99久久精品国产亚洲精品| 精品少妇内射三级| 日本91视频免费播放| 国产有黄有色有爽视频| 少妇的丰满在线观看| 精品久久久精品久久久| videos熟女内射| 黑丝袜美女国产一区| 少妇人妻久久综合中文| 国产精品熟女久久久久浪| 国产一区有黄有色的免费视频| 国产熟女欧美一区二区| 最新在线观看一区二区三区 | 亚洲成av片中文字幕在线观看| 免费高清在线观看视频在线观看| 丰满迷人的少妇在线观看| 一边摸一边做爽爽视频免费| 欧美精品高潮呻吟av久久| 老汉色av国产亚洲站长工具| 午夜福利在线免费观看网站| 久久精品国产亚洲av高清一级| 又大又爽又粗| 中文字幕人妻熟女乱码| 在线av久久热| 亚洲情色 制服丝袜| 一区二区三区四区激情视频| 啦啦啦在线免费观看视频4| 丰满少妇做爰视频| 精品福利观看| 97精品久久久久久久久久精品| 一级黄色大片毛片| 99久久人妻综合| 乱人伦中国视频| 人妻 亚洲 视频| 人妻一区二区av| 成年人免费黄色播放视频| 久久中文字幕一级| 日本色播在线视频| 久久久久精品国产欧美久久久 | 狠狠精品人妻久久久久久综合| 欧美激情极品国产一区二区三区| 国产麻豆69| 人妻人人澡人人爽人人| 亚洲国产看品久久| 欧美亚洲 丝袜 人妻 在线| 精品第一国产精品| 男人舔女人的私密视频| 狠狠婷婷综合久久久久久88av| 各种免费的搞黄视频| 欧美性长视频在线观看| 国产午夜精品一二区理论片| 国产黄频视频在线观看| 99久久99久久久精品蜜桃| 中文字幕制服av| 少妇被粗大的猛进出69影院| 在线天堂中文资源库| 成在线人永久免费视频| 国产成人精品久久二区二区91| 天天躁夜夜躁狠狠久久av| bbb黄色大片| 91麻豆av在线| 青青草视频在线视频观看| 黄色a级毛片大全视频| 咕卡用的链子| 欧美日韩精品网址| 欧美日韩黄片免| 久久精品国产a三级三级三级| 日本91视频免费播放| 视频区欧美日本亚洲| 只有这里有精品99| 亚洲色图 男人天堂 中文字幕| 久久精品久久久久久噜噜老黄| 成人国产av品久久久| kizo精华| 五月开心婷婷网| 黄频高清免费视频| 一级,二级,三级黄色视频| 午夜av观看不卡| 桃花免费在线播放| 欧美精品av麻豆av| 2021少妇久久久久久久久久久| 在线观看免费视频网站a站| 超色免费av| 免费在线观看日本一区| 精品人妻1区二区| 久久人妻熟女aⅴ| 丰满人妻熟妇乱又伦精品不卡| 久久精品久久久久久久性| 亚洲av日韩精品久久久久久密 | 国产一级毛片在线| 欧美激情高清一区二区三区| 亚洲av电影在线观看一区二区三区| 纯流量卡能插随身wifi吗| 久久国产精品大桥未久av| 大片电影免费在线观看免费| 每晚都被弄得嗷嗷叫到高潮| 国产成人精品无人区| 在线观看国产h片| 国产高清视频在线播放一区 | 少妇的丰满在线观看| 97精品久久久久久久久久精品| 亚洲国产日韩一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇一区二区三区视频日本电影| 国产av精品麻豆| 国产亚洲欧美精品永久| 午夜精品国产一区二区电影| 美女大奶头黄色视频| 午夜免费鲁丝| 巨乳人妻的诱惑在线观看| 国产男人的电影天堂91| 每晚都被弄得嗷嗷叫到高潮| 亚洲av欧美aⅴ国产| 欧美久久黑人一区二区| 在线观看人妻少妇| 欧美成狂野欧美在线观看| 好男人视频免费观看在线| 国产xxxxx性猛交| 久久99精品国语久久久| 亚洲av片天天在线观看| 亚洲人成网站在线观看播放| 成人国语在线视频| 一边摸一边做爽爽视频免费| 国产伦人伦偷精品视频| 人人妻人人添人人爽欧美一区卜| 男女无遮挡免费网站观看| 国产精品成人在线| 欧美性长视频在线观看| 精品少妇黑人巨大在线播放| 亚洲国产中文字幕在线视频| 日韩制服丝袜自拍偷拍| 中国美女看黄片| av在线播放精品| 天天躁狠狠躁夜夜躁狠狠躁| 美女主播在线视频| 亚洲专区国产一区二区| 天天添夜夜摸| 精品少妇久久久久久888优播| 日本91视频免费播放| 日韩大码丰满熟妇| 夜夜骑夜夜射夜夜干| 亚洲人成网站在线观看播放| 国产成人一区二区三区免费视频网站 | 乱人伦中国视频| 国产免费福利视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 美女福利国产在线| 欧美日韩黄片免| 亚洲,欧美精品.| 国产成人影院久久av| 精品一区在线观看国产| 在线 av 中文字幕| 国产精品久久久久久精品古装| 国产真人三级小视频在线观看| av有码第一页| 下体分泌物呈黄色| 一区福利在线观看| 夫妻性生交免费视频一级片| 国产成人av教育| 日日摸夜夜添夜夜爱| 精品国产超薄肉色丝袜足j| 国产av一区二区精品久久| 国产福利在线免费观看视频| 久久热在线av| 国产日韩欧美在线精品| 国产欧美日韩综合在线一区二区| 久久人人爽人人片av| 国产精品.久久久| 亚洲国产中文字幕在线视频| 丝袜喷水一区| 久久精品久久久久久噜噜老黄| 九色亚洲精品在线播放| 久久女婷五月综合色啪小说| 黄色a级毛片大全视频| 亚洲第一av免费看| 人人妻人人澡人人看| 丝袜脚勾引网站| 久久久国产精品麻豆| 精品欧美一区二区三区在线| 精品人妻1区二区| 一区二区三区精品91| 男男h啪啪无遮挡| 十八禁高潮呻吟视频| 男女之事视频高清在线观看 | h视频一区二区三区| 最黄视频免费看| 精品福利观看| 亚洲七黄色美女视频| 看免费av毛片| 午夜免费男女啪啪视频观看| 精品欧美一区二区三区在线| 亚洲精品国产av蜜桃| 一级,二级,三级黄色视频| 丰满少妇做爰视频| 亚洲精品美女久久久久99蜜臀 | 看免费成人av毛片| 久久影院123| 久久国产精品男人的天堂亚洲| 一区在线观看完整版| 国产老妇伦熟女老妇高清| 国产免费现黄频在线看| 亚洲 欧美一区二区三区| 日韩精品免费视频一区二区三区| 日韩大片免费观看网站| 亚洲av成人不卡在线观看播放网 | 欧美久久黑人一区二区| 亚洲人成网站在线观看播放| 国产精品免费大片| 天天躁狠狠躁夜夜躁狠狠躁| av片东京热男人的天堂| 老汉色∧v一级毛片| 交换朋友夫妻互换小说| 2021少妇久久久久久久久久久| 欧美激情极品国产一区二区三区| 久久午夜综合久久蜜桃| 欧美变态另类bdsm刘玥| 一级片'在线观看视频| 成年av动漫网址| 大香蕉久久成人网| 美女国产高潮福利片在线看| 肉色欧美久久久久久久蜜桃| 好男人视频免费观看在线| 91精品三级在线观看| 免费久久久久久久精品成人欧美视频| 国产在线观看jvid| 免费不卡黄色视频| 欧美+亚洲+日韩+国产| 只有这里有精品99| 国产日韩欧美视频二区| 一级,二级,三级黄色视频| av不卡在线播放| 久久久国产精品麻豆| 91老司机精品| 国产成人一区二区在线| 精品一区在线观看国产| 考比视频在线观看| 国产男女内射视频| 国产xxxxx性猛交| 免费不卡黄色视频| 精品亚洲乱码少妇综合久久| 极品人妻少妇av视频| 欧美 日韩 精品 国产| 欧美在线一区亚洲| 啦啦啦视频在线资源免费观看| 国产亚洲精品第一综合不卡| 国产成人精品无人区| 美女扒开内裤让男人捅视频| 午夜两性在线视频| 国产精品九九99| 午夜激情久久久久久久| 亚洲欧美激情在线| 看十八女毛片水多多多| 免费在线观看日本一区| 日本黄色日本黄色录像| 天堂8中文在线网| 一区二区日韩欧美中文字幕| 男女边吃奶边做爰视频| 久久精品aⅴ一区二区三区四区| 女人精品久久久久毛片| av天堂在线播放| 别揉我奶头~嗯~啊~动态视频 | 深夜精品福利| 国产日韩一区二区三区精品不卡| 国产不卡av网站在线观看| 中文精品一卡2卡3卡4更新| 十八禁高潮呻吟视频| 狂野欧美激情性bbbbbb| 免费观看av网站的网址| 欧美性长视频在线观看| 男女免费视频国产| 国语对白做爰xxxⅹ性视频网站| 国产91精品成人一区二区三区 | 性少妇av在线| av在线app专区| 国产欧美日韩综合在线一区二区| 欧美亚洲日本最大视频资源| 香蕉国产在线看| 久久国产精品影院| 亚洲激情五月婷婷啪啪| 国产亚洲av高清不卡| 精品福利永久在线观看| 老司机在亚洲福利影院| 麻豆av在线久日| 男男h啪啪无遮挡| 19禁男女啪啪无遮挡网站| 黄色a级毛片大全视频| 亚洲国产精品999| www.熟女人妻精品国产| 国产精品久久久人人做人人爽| 一边亲一边摸免费视频| 考比视频在线观看| 欧美大码av| kizo精华| 天堂8中文在线网| 人人妻人人爽人人添夜夜欢视频| 精品少妇久久久久久888优播| 亚洲av美国av| 黄色怎么调成土黄色| 亚洲,欧美,日韩| 国产日韩一区二区三区精品不卡| 中文字幕人妻丝袜一区二区| 日日夜夜操网爽| 久久精品国产亚洲av涩爱| 久久久久久久久免费视频了| 欧美人与善性xxx| 亚洲国产精品一区三区| 深夜精品福利| 丁香六月欧美| 久久精品人人爽人人爽视色| 国产成人精品久久二区二区免费| 叶爱在线成人免费视频播放| 热99国产精品久久久久久7| 精品国产乱码久久久久久男人| 国产免费一区二区三区四区乱码| 大陆偷拍与自拍| 9191精品国产免费久久| 美女脱内裤让男人舔精品视频| 好男人视频免费观看在线| 午夜福利在线免费观看网站| 又黄又粗又硬又大视频| 交换朋友夫妻互换小说| 一级黄色大片毛片| 国产色视频综合| 超碰97精品在线观看| 亚洲熟女精品中文字幕| 好男人电影高清在线观看| 一区二区av电影网| 免费黄频网站在线观看国产| 欧美日韩亚洲国产一区二区在线观看 | 亚洲,欧美,日韩| 91老司机精品| 国产亚洲欧美在线一区二区| 色播在线永久视频| 欧美日韩亚洲综合一区二区三区_| 午夜91福利影院| 精品国产乱码久久久久久男人| 高清欧美精品videossex| 欧美xxⅹ黑人| 欧美精品亚洲一区二区| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产专区5o| 亚洲人成电影观看| 亚洲av综合色区一区| 日本av免费视频播放| 每晚都被弄得嗷嗷叫到高潮| 亚洲伊人久久精品综合| 久久国产精品男人的天堂亚洲| 欧美日韩亚洲国产一区二区在线观看 | 成在线人永久免费视频| 老司机亚洲免费影院| 国产精品久久久久久人妻精品电影 | 亚洲伊人久久精品综合| 少妇精品久久久久久久| 国产成人啪精品午夜网站| 久久久精品免费免费高清| 伦理电影免费视频| 老汉色av国产亚洲站长工具| 国产免费一区二区三区四区乱码| 国产免费福利视频在线观看| 亚洲精品第二区| 欧美精品一区二区免费开放| 亚洲精品国产av蜜桃| 日韩制服骚丝袜av| 精品国产一区二区三区四区第35| 国产视频首页在线观看| 亚洲国产日韩一区二区| 女人爽到高潮嗷嗷叫在线视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产精品成人久久小说| 最新的欧美精品一区二区| 一区二区三区激情视频| 亚洲欧洲国产日韩| 天天躁狠狠躁夜夜躁狠狠躁| 欧美少妇被猛烈插入视频| 人妻一区二区av| 国产av国产精品国产| 看十八女毛片水多多多| 热99国产精品久久久久久7| a级毛片在线看网站| 国产精品国产三级国产专区5o| 一区在线观看完整版| 黑人巨大精品欧美一区二区蜜桃| 各种免费的搞黄视频| 一区二区日韩欧美中文字幕| 黄色怎么调成土黄色| 色94色欧美一区二区| 欧美人与性动交α欧美软件| 亚洲国产欧美一区二区综合| 成人影院久久| 亚洲成人国产一区在线观看 | 性色av乱码一区二区三区2| 色婷婷久久久亚洲欧美| 超色免费av| 亚洲精品国产av蜜桃| 成人国产av品久久久| 国产无遮挡羞羞视频在线观看| 99香蕉大伊视频| 亚洲av在线观看美女高潮| 在线av久久热| 亚洲视频免费观看视频| 一区二区三区四区激情视频| 国产伦人伦偷精品视频| 亚洲熟女毛片儿| 免费观看a级毛片全部| 成人国产一区最新在线观看 | 免费在线观看完整版高清| 高清不卡的av网站| 国产亚洲精品久久久久5区| 亚洲午夜精品一区,二区,三区| 婷婷色麻豆天堂久久| 在线亚洲精品国产二区图片欧美| 可以免费在线观看a视频的电影网站| 午夜福利一区二区在线看| 青青草视频在线视频观看| 午夜福利免费观看在线| 国产老妇伦熟女老妇高清| 只有这里有精品99| 亚洲精品一区蜜桃| √禁漫天堂资源中文www| 深夜精品福利| 一区二区三区乱码不卡18| cao死你这个sao货| 黄色 视频免费看| 日韩制服骚丝袜av| 日韩欧美一区视频在线观看| 国产av国产精品国产| 国产伦人伦偷精品视频| 亚洲中文字幕日韩| 国产精品秋霞免费鲁丝片| 男人添女人高潮全过程视频| 国产精品一区二区免费欧美 | 女人精品久久久久毛片| 国产午夜精品一二区理论片| 美女福利国产在线| 伊人亚洲综合成人网| 黄色 视频免费看| 18禁裸乳无遮挡动漫免费视频| 热99久久久久精品小说推荐| 国产免费视频播放在线视频| 国产福利在线免费观看视频| 黄色 视频免费看| 一本色道久久久久久精品综合| 亚洲视频免费观看视频| 亚洲av片天天在线观看| 日韩av在线免费看完整版不卡| 午夜精品国产一区二区电影| av网站在线播放免费| 在线精品无人区一区二区三| 亚洲自偷自拍图片 自拍| 免费高清在线观看视频在线观看| 十八禁高潮呻吟视频| 欧美少妇被猛烈插入视频| 五月开心婷婷网| 男人爽女人下面视频在线观看| 亚洲色图 男人天堂 中文字幕| 午夜福利视频在线观看免费| 黑人欧美特级aaaaaa片| 麻豆乱淫一区二区| 操美女的视频在线观看| 国产午夜精品一二区理论片| 99久久综合免费| 欧美在线一区亚洲| 纯流量卡能插随身wifi吗| 成人国产av品久久久| 亚洲精品国产av蜜桃| 午夜激情久久久久久久| 亚洲国产日韩一区二区| 男人爽女人下面视频在线观看| 一区在线观看完整版| 国产在线观看jvid| 精品少妇久久久久久888优播| 精品免费久久久久久久清纯 | 亚洲免费av在线视频| 国产精品久久久人人做人人爽| 国产成人a∨麻豆精品| 成在线人永久免费视频| 99国产精品一区二区三区| 欧美在线一区亚洲| 久热爱精品视频在线9| 免费看十八禁软件| 99热全是精品| 国产精品偷伦视频观看了| 亚洲中文字幕日韩| 亚洲天堂av无毛| 欧美亚洲日本最大视频资源| 男人操女人黄网站| 亚洲少妇的诱惑av| 搡老乐熟女国产| 老司机影院毛片| 少妇 在线观看| 亚洲av成人精品一二三区| 午夜福利乱码中文字幕| 精品少妇内射三级| 国产成人影院久久av| 国产野战对白在线观看| 丰满迷人的少妇在线观看| 一级毛片黄色毛片免费观看视频| 免费看av在线观看网站| 啦啦啦在线观看免费高清www| 成年人免费黄色播放视频| 亚洲国产精品成人久久小说| 国产成人av教育| 午夜免费男女啪啪视频观看| 欧美乱码精品一区二区三区| 久久性视频一级片| 国产xxxxx性猛交| 啦啦啦视频在线资源免费观看| 亚洲国产欧美一区二区综合| av天堂在线播放| 黑人欧美特级aaaaaa片| 亚洲国产精品一区二区三区在线| 三上悠亚av全集在线观看| 多毛熟女@视频| 久久国产精品大桥未久av| 建设人人有责人人尽责人人享有的| 亚洲精品乱久久久久久| 中文字幕人妻丝袜一区二区| 一边摸一边抽搐一进一出视频| 人人妻人人澡人人看| 蜜桃在线观看..| 欧美人与性动交α欧美软件| 观看av在线不卡| 久久久精品免费免费高清| 午夜91福利影院| 日本av免费视频播放| 精品视频人人做人人爽| 亚洲国产欧美网| 免费高清在线观看视频在线观看| 国产在线观看jvid| 国产成人免费无遮挡视频| 久久天躁狠狠躁夜夜2o2o | 多毛熟女@视频| 人体艺术视频欧美日本| 免费在线观看影片大全网站 | 精品亚洲成国产av| xxxhd国产人妻xxx| 久久免费观看电影| 国产亚洲av片在线观看秒播厂| 50天的宝宝边吃奶边哭怎么回事| 久久99一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 两个人看的免费小视频| 国产伦人伦偷精品视频| 国产爽快片一区二区三区| 在线观看国产h片| 高清黄色对白视频在线免费看| 亚洲专区中文字幕在线| 久久影院123| 99国产精品一区二区蜜桃av | 亚洲欧洲日产国产| 亚洲av电影在线进入| 婷婷色av中文字幕| 多毛熟女@视频| 香蕉丝袜av| 三上悠亚av全集在线观看| 制服人妻中文乱码| 大型av网站在线播放| 日本五十路高清| 一区二区三区四区激情视频| 丝袜人妻中文字幕|