• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Line Search Method with Dwindling Filter Technique for Solving Nonlinear Constrained Optimization

    2021-06-30 00:07:42PEIYonggang裴永剛KONGWeiyue孔維悅DONGLanting董蘭婷
    應用數(shù)學 2021年3期

    PEI Yonggang(裴永剛),KONG Weiyue(孔維悅),DONG Lanting(董蘭婷)

    (Engineering Laboratory for Big Data Statistical Analysis and Optimal Control,College of Mathematics and Information Science,Henan Normal University,Xinxiang 453000,China)

    Abstract:In this paper,a different line search filter algorithm is proposed for solving nonlinear equality constrained optimization.The optimality condition of the nonlinear optimization problem is regarded as a new filter pair which is embedded in the backtracking line search framework.By adding a dwindling function to the step acceptance criteria,the thickness of the filter’s envelope is getting smaller and smaller when the step size decreases.So the line search trial step size in becomes more flexible to accept.And the dwindling filter do not make the trial step be denied by current iteration point.Under some reasonable assumptions,the global convergence of the algorithm is proved.Some preliminary numerical experiment results are reported.

    Key words:Nonlinear constrained optimization;Line search;Dwindling filter method;Global convergence.

    1.Introduction

    Nonlinear constrained optimization is one of the most fundamental models in scientific calculation because of the wide use of optimization in science,engineering,economics,industry and so on.[1]The filter method is proposed originally by Fletcher and Leyffer[2]for solving constrained optimization.It has become another popular approach to balance the two competing goals of minimization of the objective function and the satisfaction of the constraints in constrained optimization algorithms.The main idea of filter method and some related convergence results of filter methods are outlined in[3].Filter technique is usually embedded in line search or trust region framework for solving nonlinear constrained optimization.W¨achter and Biegler[4]proposed a filter line search method and prove its global convergence and local convergence.Many variants of line search filter methods are researched.Based on trust-region framework,there are also a lot of research on filter methods(see,e.g.,[5-6]).Recently,Leyffer and Vanaret[1]presented an augmented Lagrangian filter method.

    CHEN and SUN[7]proposed a dwindling filter line search method for unconstrained optimization by combining the dwindling multidimensional filter and a second-order line search method.The sequence generated by the algorithm converges to a second-order critical point.GU and ZHU presented dwindling filter methods for nonlinear equality constrained optimization and nonlinear inequality constrained optimization separately in[8]and[9].They also derived a new affine scaling trust region algorithm with dwindling filter for linearly constrained optimization in[10]and developed dwindling filter idea to nest in trust region framework for solving nonlinear optimization in[9].In[10],GU and ZHU presented a three-dimensional dwindling filter algorithm and prove its convergence.Arzani and Peyghami[11]proposed an algorithm equipped with a dwindling multidimensional nonmonotone filter for solving largescale positive definite generalized eigenvalue problems.They also presented a dwindling nonmonotone filter method with derivative-free spectral residual for solving large-scale systems of equations.

    In this paper,we focus on nonlinear equality constrained optimization.A different line search dwindling filter method is introduced,which aims to obtain the stationary point of nonlinear equality constrained optimization.The search direction is computed based on the null space method in each iteration.Then,the first-order optimality condition of the nonlinear programming is used as a new filter pair.By adding a dwindling function to the step acceptance criteria,the envelope of the filter becomes thinner and thinner with the decrease of the step size.Then the filter can filter out more unwanted points and reduce the storage of the trial points.Therefore,the calculation cost can be lessened.It is not required to compute the objective function in every iteration.The algorithm only needs to determine the gradient of the objective function and the Hessian of Lagrange function(or an approximation to this Hessian).The proof of global convergence is given.The preliminary numerical results are presented to show the feasibility of the algorithm.

    The outline of this paper is as follows.In Section 2,we state the line search filter approach.The global convergence of the algorithm is proved in Section 3.Finally,we report some numerical experiments in Section 4.

    The notation of this paper is as follows.Norm‖·‖denotes a fixed vector norm and its compatible matrix norm unless otherwise noted.For brevity,we use the convention(x,y)=(xT,yT)Tfor vectorsx,y.Given two vectorsv,w∈Rn,we define the convex segment[v,w]:={v+t(w-v):t∈[0,1]}.Finally,we denote byO(tk)a sequence{vk}satisfying‖vk‖≤βtkfor some constantβ>0 independent ofk,and byo(tk)a sequence{vk}satisfying‖vk‖≤βktkfor some positive sequence{βk}with=0.

    2.A Line Search Filter Approach

    Consider the following nonlinear programming(NLP)

    where the objective functionf(x):Rn→R and the equality constraintsc(x):Rn→Rmwithm<nare sufficiently smooth.

    The Karush-Kuhn-Tucker(KKT)conditions for the NLP(2.1)are

    where we denote withA(x):=?c(x)the transpose of the Jacobian of the constraintsc,and withg(x):=?f(x)the gradient of the objective function.The vectorycorresponds to the Lagrange multipliers for the equality constraints(2.1b).Under certain constraint qualifications,such as linear independence of the constraint gradients,the KKT conditions are the first order optimality conditions for NLP(2.1).

    Given an initial estimatex0,the proposed algorithm of this paper generates a sequence of improved estimatesxkof the solution for the NLP(2.1).In every iterationk,the next iterate point can be determined if the search directionpkand step sizeαkhave worked out,i.e,xk+1:=xk+αkpk,whereαk∈(0,1].

    As for the search direction,we have following system(see[12]):

    Here,Ak:=A(xk),gk:=g(xk),andck:=c(xk).The symmetric matrixHkdenotes the Hessianof the Lagrangian

    of the NLP(2.1),or an approximation to this Hessian.Here,we require that

    The vectoryk+1is some estimate of the optimal multipliers corresponding to the equality constrains(2.1b),and its updating formula will be given later(see(2.6)).

    Assume that the projection of the Hessian approximationsHkonto the null space ofare uniformly positive definite.Using the methods in[12],pkcan be decompose into

    where matricesYk∈Rn×mwhose columns span the range space ofAk,and the columns of matricesNk∈Rn×(n-m)form an orthonormal basis matrix of the null space of.

    Substituting(2.5)into(2.3),the following system can be obtained to solvepYandpN:

    We can chooseYk=Ak,which is valid forYkwhenhas full row rank.Then a multiplier updating formula as below:

    Along this directionpk,the largest step size should be found to satisfy descent condition.Finally,the sequence{xk}of iterates converge to a stationary point of the NLP(2.1).In this paper we consider a backtracking line search procedure to compute the largest step size.A decreasing sequence of step sizesαk,l∈(0,1](l=0,1,2,...)is tried until a certain kind acceptance criterion is satisfied.In the remainder of this section we describe how the filter acceptance criterion can be applied to the line search framework.

    According to the first-order optimality condition,the filter pair is defined as(θ(x),ω(x,y)),where

    The underlying idea is to interpret the NLP(2.1)as a biobjective optimization problem with two goals:minimizing the constraint violationθ(x)and minimizing the first order criticality measureω(x,y)until they tend to zero.In the filter mechanism,the constraint violation measure is more important,because the optimal solution of NLP problem must be feasible.For both measurements,the trail pointxk(αk,l)can be accepted if it reduces either of the filter pair,i.e.,ifθ(xk(αk,l))<θ(xk)orω(xk(αk,l),yk+1)<ω(xk,yk+1).For convenient,we denoteω(xk)=ω(xk,yk+1).Note that this criterion is not very demanding and therefore generally allows for a larger step size.However,this simple concept is not enough to ensure global convergence.Based on previous experience(see[5]),we have following descent criterion.

    A trial step sizeαk,lprovides sufficient reduction with respect to the current iteratexk,if

    or

    holds for fixed constantsγθ,γω∈(0,1).In a practical implementation,the constantsγθ,γωtypically are chosen to be small.Theμ(α)in this decent criterion is a dwindling function which is the same as the one defined by CHEN and SUN[7]or GU and ZHU[8].

    Definition 2.1μ(α):[0,1]→R is a dwindling function if it is a monotonically increasing and continuous function such thatμ(α)=0 if and only ifα=0.

    In this paper,we suppose that the dwindling functionμ(α)satisfies

    i.e.,μ(α)=o(α).For example,we may chooseμ(α)=α2orμ(α)=.

    Sometimes,the descent criterion(2.7)may cause the algorithm to converge to a feasible but not optimal point.In order to prevent it,the following switching conditions should be given:

    with fixed constantsδ>0,φ>1,τ≥1,where

    If the condition(2.8)holds,the steppkis a descent direction.In order to make the current step sizeαk,lacceptable,we require thatαk,lsatisfies the Armijo-type condition

    As we have known,the switching condition ensures that for the optimality enforced by the Armijo condition(2.10)is sufficiently large compared to the current constraint violation.Therefore,it prevents a trial point from making only a small progress when it is far away from the feasible region.

    For two measuresθandω,a trial point may improve one and worsen the other one.It happens between two such trial points.For preventing this cycle(like methods in[2,4]),a filter is defined as a setFk?[0,∞)×R containing all(θ,ω)-pairs that are prohibited in iterationk.We say that a trial pointxk(αk,l)is acceptable to the current filterFkif

    During the algorithm we require that the current iteratexkis always acceptable to the current filterFk.After some new iteratesxk+1have been accepted,the current filter can be augmented by

    If the filter is not augmented,it remains unchanged,i.e.,F(xiàn)k+1:=Fk.ThenFk?Fk+1holds for allk.

    In the algorithm,if a trial pointxk(αk,l)does not satisfy the switching condition(2.8)but satisfies acceptance criterion(2.7),we need use(2.12)to augment filter.If a trial point makes the switching condition(2.8)hold and then makes the Armijo-type condition(2.10)hold,the filter remains unchanged.If the filter has been augmented in iterationk,xkensures to provide sufficient reduction for one of the measures.

    The computed trial stepαk,lmay be smaller than

    whereγα∈(0,1].Then there is no admissible step size can be found.So the algorithm switches to a feasibility restoration phase,whose purpose is to find a new iteratexk+1that satisfies(2.7)and is also acceptable to the current filter by trying to decrease the constraint violation.Our approach is to compute a new iteratexk+1by decreasing the infeasibility measureθsuch thatxk+1satisfies the sufficient decrease conditions(2.7)and is acceptable to the filter,i.e.,(θ(xk+1),ω(xk+1)).This process can be called the feasibility restoration phase.In(2.13),γαis a safety factor.It is useful to avoid invoking the feasibility restoration phase unnecessarily in a practical implementation.

    We are now ready to state the overall algorithm for solving the NLP(2.1)formally.

    Algorithm I

    Given

    Set constantsθmax∈(θ(x0),∞];γθ,γω∈(0,1);δ>0;γα∈(0,1];φ>1;τ≥1;ηω∈.

    Initialize

    Initialize the starting pointx0,the initial filter

    the multipliery0and the iteration counterk=0.

    Repeatuntilxksatisfies the KKT conditions(2.2)for someyk+1∈Rm

    Compute the search directionpkfrom(2.5);

    Compute multiplieryk+1with(2.6).

    Setαk,0=1 andl=0.

    Repeatuntil findxk(αk,l)is accepted by current filterFk

    End repeat

    Feasibility restoration phase

    Compute a new iteratexk+1.Augment the filter using(2.12)(forxk)and increase the iteration counterk=k+1.Go to the first“Repeat”.

    Algorithm I is well defined.In fact,in the second“Repeat”,it is clear that limlαk,l=0.Ifθ(xk)>0,it can be seen from(2.13)that0.So the algorithm either accepts a new iterate or switches to the feasibility restoration phase.On the other hand,ifθ(xk)=0 and the algorithm does not stop at a KKT point,then(gk-Akyk+1)THkpk<0(see Lemma 3.3 below).In that case,=0,and the Armijo condition(2.10)is satisfied,i.e.,a new iterate is accepted.

    3.Global Convergence

    In the remainder of this paper we denote some index sets.

    Z?N:the filter is augmented in the corresponding iterations,i.e.,

    R?Z:the feasibility restoration phase is invoked in the corresponding iterations.

    As is common for most line search methods,some reasonable assumptions are stated down below,which is necessary for the global convergence analysis of Algorithm I.

    Assumption G

    Let{xk}be the sequence generated by Algorithm I.Assume that the feasibility restoration phase always terminates successfully.

    (G1)There exists an open setC?Rnwith[xk,xk+pk]?Cfor allksuch thatfandcare differentiable onC,and their function values,as well as their first derivatives,are bounded and Lipschitz-continuous overC.

    (G2)The matricesHkapproximating the Hessian of the Lagrangian in(2.3)are uniformly bounded for allk.

    (G3)There exists a constantMH>0 such that

    (G4)There exists a constantMA>0 such that

    whereσmin(Ak)is the smallest singular value ofAk.

    In every iteration,it is possible to make sure that(3.1)is valid by monitoring and possibly modifying the eigenvalues of the reduced Hessian of(2.3)(see[13]).Similarly,we can guarantee that the entire sequence{Hk}is uniformly bounded.

    In the convergence analysis of the filter method,we employ

    as the criticality measure.Ifθk→0 andχ(xki)→0,then there exists ay*such that the KKT conditions(2.2)are satisfied for(x*,y*).

    Let us prove the global convergence of Algorithm I in detail.

    Firstly,we give some preliminary results.

    Lemma 3.1Suppose Assumption G holds.Then there exist constantsMp,My,Mm>0,such that

    for allkandα∈(0,1].

    ProofFrom(G1)we have that the right-hand side of(2.3)is uniformly bounded.Additionally,Assumptions(G2),(G3)and(G4)guarantee that the inverse of the matrix in(2.3)exists and is uniformly bounded for allk.Consequently,the solution of(2.3)((pk,yk+1)T)is uniformly bounded,i.e.,‖pk‖≤Mpand‖yk+1‖≤My.From(2.9),we can getmk(α)/α=(gk-Akyk+1)THkpk.So|mk(α)|≤Mmα.

    Lemma 3.2Suppose Assumption(G1)holds.Then there exist constantsCθ,Cω>0 such that for allkandα∈(0,1]

    ProofThe proof of(3.4a)can be found in Lemma 3.3 from[14].

    Next,we give the proof of(3.4b).From the second order Taylor expansions,

    So the conclusion is proved.

    Next,we show that feasibility restoration phase of Algorithm I is well defined.Unless the feasibility restoration phase terminates at a stationary point of the constraint violation it is essential that reducing the infeasibility measureθ(x)eventually leads to a point that is acceptable to the filter.This is guaranteed by the following lemma which shows that no(θ,ω)-pair corresponding to a feasible point is ever included in the filter.

    Lemma 3.3Suppose Assumption G holds.If{xki}is a subsequence of iterates for whichχ(xki)≥?1with constants?1>0 independent ofi.Then there exists?2>0 independent ofi,we have

    for alliandα∈(0,1].Then,

    for allkandα∈(0,1].

    ProofIfθ(xki)=0,butχ(xki)>0,Algorithm I would not terminated.From(2.3)and(3.3),

    so

    where?2=i.e.,(3.5)holds.

    The proof of(3.6)is by induction.From initialize of Algorithm I,it is clear that the statement is valid forki=0 becauseθmax>0.Suppose the statement is true forki.Ifθ(xki)>0 and the filter is augmented in iterationk,it is clear from the update rule(2.12)that Θki+1>0,sinceγθ∈(0,1).On the other hand,ifθ(xki)=0,we have gotmki(α)<0 for allα∈(0,1].So the switching condition(2.8)is true for all trial step sizes.Therefore,algorithm always makesαkihave been accepted then it must have thatαkisatisfies(2.10).Consequently,the filter is not augmented.Hence,Θki+1=Θki>0.

    Lemma 3.4Suppose Assumption G holds.Then the trial pointxk(αk,l)could not be rejected byxkifαk,lis sufficiently small.

    ProofThere are two cases.

    Case 1(θ(xk)>0).Following directly from the second order Taylor expansion ofθ(x),we have

    Sinceμ(αk,l)=o(αk,l)asl→0,θ(xk(αk,l))≤θ(xk)-μ(αk,l)γθθ(xk)holds for sufficiently smallαk,l,i.e.,(2.7a)is satisfied.

    Case 2(θ(x)=0).From Lemma 3.2 and Lemma 3.3,

    Therefore,ω(xk(αk,l))≤ω(xk)-μ(αk,l)γωθ(xk)holds for sufficiently smallαk,l,i.e.,(2.7b)is satisfied.

    Under Assumptions G,the sequenceθ(xk)converges to zero can be proved.That is to say,all limit points of{xk}are feasible(see Lemma 3.5,Lemma 3.6 and Theorem 3.1).Consider from whether the filter is augmented a finite number of times or not.

    Lemma 3.5Suppose that Assumption G holds.If the filter is augmented only a finite number of times,i.e.,|Z|<∞.Then

    ProofChooseKsuch that for all iterationsk≥Kthe filter is not augmented in iterationk.From the filter augmenting in Algorithm I we then have that for allk≥Kboth conditions(2.8)and(2.10)are satisfied forαk.We now distinguish two cases,where.

    Case 1τ>1.From(2.8)it follows withMmfrom Lemma 3.1 that

    Hence,we can get(αk)τ-1>δτ-1[θ(xk)]φ(τ-1)Mτ(1-τ)mand

    This implies

    Case 2τ=1.From(2.8)we haveδ[θ(xk)]φ<-mk(αk)such that from(2.10)we immediately obtain

    In either case,we have for allthat

    Sinceω(xK+i)is bounded below asi→∞,the series on the right-hand side in the last line is bounded,which in turn implies(3.7).

    The following lemma considers a subsequence{xki}withki∈Zfor alli,and its proof is borrowed from the method of[5].

    Lemma 3.6Let{xki}be a subsequence of iterates generated by Algorithm I such that the filter is augmented in iterationki,i.e.,ki∈Zfor alli.Furthermore,assume that there exist constantscω∈R andCθ>0 such that

    for alli(for example,if Assumption(G1)holds).It then follows that

    The previous two lemmas are prepared for the proof of the following theorem.

    Theorem 3.1Suppose Assumption G holds.Then

    ProofThe proof is similar to Lemma 8 in[15].

    The next lemma shows that the Armijo condition(2.10)is satisfied under certain condition that there exists a step length bounded away from zero.

    Lemma 3.7Suppose Assumption G holds.Let{xki}be a subsequence.There exists a certain constant>0 such that for allkiandα≤

    ProofLetMpandCωbe the constants from Lemmas 3.1 and 3.2.It then follows for allwithand from(3.5)that

    which implies(3.10).

    The previous Theorem 3.1 has proved that a series of points generated by Algorithm I make the constraint violation tend to zero.Next,we prove that Assumption G guarantees that the optimality measureχ(xk)is not bounded away from zero,i.e.,if{xk}is bounded,at least one limit point is a first order optimal point for the NPL(2.1).(see Lemma 3.8 and Theorem 3.2).

    Lemma 3.8Suppose that Assumption G holds and that the filter is augmented only a finite number of times,i.e.,|Z|<∞.Then

    The proof of Lemma 3.8 is based on Lemma 8 in[4]by using the new filter pair.

    In order to find the acceptable step size of the current filter(see(2.11)),we establish a bound of step size as follows.

    Lemma 3.9Suppose Assumption G holds.Let{xki}be a subsequence andmki(α)≤-α?2for a constant?2>0 independent ofkiand for allα∈(0,1].Then there exist constantsc2,c3>0 such that

    for allkiandα≤min{c2,c3θ(xki)}.

    The proof of Lemma 3.9 is similar to Lemma 9 in[4].So,it is omitted.

    The last lemma explains that the filter is eventually not augmented when the iteration corresponds to a subsequence with only nonoptimal limit points.This result is used in the proof of the main global convergence theorem to yield a contradiction.

    Lemma 3.10Suppose Assumption G holds.Let{xki}be a subsequence of{xk}withχ(xki)≥?for a constant?>0 independent ofki.Then there existsK∈N such that for allki≥Kthe filter is not augmented in iterationki,i.e.,kiZ.

    Lemma 3.10 can be proved by using the idea of Lemma 10 in[4].

    Based on the lemmas and theorem above,we prove the most important conclusion of this paper,that is,the global convergence result of Algorithm I.

    Theorem 3.2Suppose Assumption G holds.Then

    and

    In other words,all limit points are feasible,and if{xk}is bounded,then there exists a limit pointx*of{xk}which is a first order optimal point for the equality constrained NLP(2.1).

    Proof(3.11a)follows from Theorem 3.1.In the case of the filter is augmented only a finite number of times,(3.11b)has been proved by Lemma 3.8.Otherwise,there exists a subsequence{xki}such thatki∈Zfor alli.Now suppose that lim supi χ(xki)>0.Then there exist a subsequence{xkij}of{xki}and a constant?>0 such that limj θ(xkij)=0 andχ(xkij)>?for allkij.Applying Lemma 3.10 to{xkij},we see that there is an iterationkij,in which the filter is not augmented,i.e.,kijZ.This contradicts the choice of{xki}such that limi χ(xki)=0,which proves(3.11b).

    4.Numerical Results

    In this section,we report the numerical results of Algorithm I which have been performed on a desktop with Intel(R)Core(TM)i5-8250 CPU.Algorithm I is implemented as a MATLAB code and run under MATLAB version 9.2.0.518641(R2017a).

    The selected parameter values are:?=10-6,γθ=10-5,γω=10-5,δ=10-2,γα=10-4,φ=2.01,τ=1.1,ηω=0.25,τ1=0.25;τ2=0.75,The computation terminates when max{‖gk-Akyk+1‖2,‖c(xk)‖}≤?is satisfied.The update ofBkis implemented by using the methods recommended in Section 4.4 and Section 4.5 in[16].

    The results are reported in Table 4.1 where the test problems are numbered in the same way as in[17]and in[18],respectively.For example,HS49 is the problem 49 in[17]and S335 is the problem 335 in[18].The CPU times in Tab.4.1 are counted in seconds.In these tables,NIT and NG are the numbers of iterations and the numbers of computation of the gradient.In our algorithm,NIT and NG are equal.Furthermore,we compare the numerical experiment results of Algorithm I with the algorithm without dwindling function.To see the results more clearly,we use the logarithmic performance profiles(see Tab.4.2 and Fig.4.1).It can be observed that Algorithm I with dwindling function performs better than that without dwindling function.

    Fig.4.1 The comparison of Algorithm and the algorithm without dwindling function

    Tab.4.1 Numerical results of Algorithm I

    Tab.4.2 The comparison of whether there exists a dwindling function

    5.Conclusion

    We have introduced a dwindling filter line search method for solving nonlinear equality constrained optimization.The global convergence analysis for this algorithm is presented under some reasonable assumptions.The preliminary numerical experiments show its practical performance.The comparison of numerical experiment data shows that the algorithm in this paper has good effect.However,the analysis of local convergence rate is absent.That is what we are working on.

    成人鲁丝片一二三区免费| 久久久久久国产a免费观看| eeuss影院久久| av播播在线观看一区| 一级黄片播放器| 日韩高清综合在线| 99九九线精品视频在线观看视频| 亚洲成人精品中文字幕电影| 日本猛色少妇xxxxx猛交久久| 午夜亚洲福利在线播放| 中文乱码字字幕精品一区二区三区 | 色尼玛亚洲综合影院| 一级黄片播放器| 一卡2卡三卡四卡精品乱码亚洲| 真实男女啪啪啪动态图| 麻豆成人av视频| 亚洲三级黄色毛片| 久久久精品大字幕| 国产精品久久电影中文字幕| 成人无遮挡网站| 亚洲五月天丁香| 日韩av在线大香蕉| 亚洲最大成人手机在线| 一二三四中文在线观看免费高清| 国内精品一区二区在线观看| 国产精品不卡视频一区二区| 男人狂女人下面高潮的视频| 亚洲国产精品久久男人天堂| 中文资源天堂在线| 日本黄大片高清| 免费播放大片免费观看视频在线观看 | 亚洲成人精品中文字幕电影| 亚洲精品久久久久久婷婷小说 | 九九热线精品视视频播放| 日日摸夜夜添夜夜爱| 国产人妻一区二区三区在| 免费看日本二区| 韩国高清视频一区二区三区| 欧美另类亚洲清纯唯美| 九九爱精品视频在线观看| 超碰97精品在线观看| 1024手机看黄色片| 日韩亚洲欧美综合| 嫩草影院入口| 熟女电影av网| 欧美日韩综合久久久久久| 亚洲成av人片在线播放无| 看黄色毛片网站| 日韩在线高清观看一区二区三区| 免费看光身美女| 22中文网久久字幕| 免费看a级黄色片| 97人妻精品一区二区三区麻豆| 淫秽高清视频在线观看| 女人被狂操c到高潮| 午夜精品一区二区三区免费看| 天堂中文最新版在线下载 | 伦理电影大哥的女人| 午夜a级毛片| 69av精品久久久久久| 欧美成人精品欧美一级黄| 久久精品国产亚洲av涩爱| 国产三级在线视频| 午夜亚洲福利在线播放| 国产av一区在线观看免费| 欧美区成人在线视频| 丰满人妻一区二区三区视频av| 男人的好看免费观看在线视频| 老女人水多毛片| 国产探花极品一区二区| 国产成人精品久久久久久| 欧美一区二区精品小视频在线| 最近中文字幕2019免费版| 熟女人妻精品中文字幕| 最近中文字幕高清免费大全6| 亚洲婷婷狠狠爱综合网| 黑人高潮一二区| 欧美一区二区亚洲| 在线免费观看不下载黄p国产| 免费黄色在线免费观看| 亚洲美女搞黄在线观看| 亚洲av成人精品一区久久| 国产免费又黄又爽又色| 国产毛片a区久久久久| 国产精品久久久久久久电影| 三级国产精品欧美在线观看| av免费观看日本| 亚洲国产欧洲综合997久久,| 偷拍熟女少妇极品色| 狂野欧美激情性xxxx在线观看| 国产高清视频在线观看网站| 亚洲精品国产成人久久av| 国产高清有码在线观看视频| 国产精品久久久久久精品电影小说 | 偷拍熟女少妇极品色| 国产淫片久久久久久久久| 久久人妻av系列| 看片在线看免费视频| 国产精品不卡视频一区二区| 国产精品一区二区在线观看99 | 国产探花极品一区二区| 精品国产露脸久久av麻豆 | 高清午夜精品一区二区三区| 神马国产精品三级电影在线观看| 看非洲黑人一级黄片| 亚洲内射少妇av| 国语对白做爰xxxⅹ性视频网站| 秋霞在线观看毛片| 国产在线一区二区三区精 | 精华霜和精华液先用哪个| 色哟哟·www| 18禁裸乳无遮挡免费网站照片| 欧美3d第一页| 啦啦啦观看免费观看视频高清| 国产精品一区二区三区四区免费观看| 永久免费av网站大全| 亚洲欧美成人综合另类久久久 | 少妇熟女aⅴ在线视频| 亚洲国产高清在线一区二区三| 精品午夜福利在线看| 成人av在线播放网站| 久久久久久久久中文| 国产一区二区三区av在线| 久久6这里有精品| 亚洲人成网站在线播| 网址你懂的国产日韩在线| 欧美日本亚洲视频在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产在线男女| 日韩成人伦理影院| 搞女人的毛片| 欧美激情国产日韩精品一区| 午夜福利在线在线| 我要搜黄色片| 国产v大片淫在线免费观看| 国产免费男女视频| 精品久久久久久久久亚洲| 美女xxoo啪啪120秒动态图| 欧美激情在线99| 熟女人妻精品中文字幕| 啦啦啦观看免费观看视频高清| 91久久精品电影网| 久久久成人免费电影| 噜噜噜噜噜久久久久久91| 久久韩国三级中文字幕| 久久久色成人| 亚洲一区高清亚洲精品| 亚洲在线观看片| 国产成人精品久久久久久| 国产免费福利视频在线观看| av在线观看视频网站免费| 欧美另类亚洲清纯唯美| 精品99又大又爽又粗少妇毛片| 国产久久久一区二区三区| 中国美白少妇内射xxxbb| 精品酒店卫生间| 欧美bdsm另类| 狠狠狠狠99中文字幕| 亚洲国产精品成人久久小说| 久久人妻av系列| 全区人妻精品视频| 99热网站在线观看| 国产精华一区二区三区| 欧美高清性xxxxhd video| 国产精品不卡视频一区二区| www日本黄色视频网| 亚洲精品色激情综合| 超碰av人人做人人爽久久| 狂野欧美白嫩少妇大欣赏| 久久精品国产鲁丝片午夜精品| 天天一区二区日本电影三级| 欧美日本视频| 身体一侧抽搐| av免费在线看不卡| 午夜亚洲福利在线播放| 成年免费大片在线观看| 亚洲欧美成人精品一区二区| 国产女主播在线喷水免费视频网站 | 日韩一区二区视频免费看| 日韩欧美在线乱码| 久久久午夜欧美精品| 高清av免费在线| 秋霞在线观看毛片| 男女那种视频在线观看| 女人久久www免费人成看片 | 狠狠狠狠99中文字幕| 人妻系列 视频| 高清毛片免费看| 波多野结衣巨乳人妻| ponron亚洲| 亚洲国产欧美在线一区| 在现免费观看毛片| 内地一区二区视频在线| 免费无遮挡裸体视频| 亚洲欧洲国产日韩| 午夜亚洲福利在线播放| 干丝袜人妻中文字幕| 一个人看视频在线观看www免费| 国产av在哪里看| 嫩草影院精品99| 国产精品熟女久久久久浪| 亚洲美女搞黄在线观看| 亚洲无线观看免费| 小说图片视频综合网站| 色综合亚洲欧美另类图片| 日本av手机在线免费观看| 国产91av在线免费观看| 99久久九九国产精品国产免费| 婷婷色综合大香蕉| 一夜夜www| 国产亚洲一区二区精品| 大又大粗又爽又黄少妇毛片口| 岛国毛片在线播放| 在线观看一区二区三区| 免费观看人在逋| 亚洲久久久久久中文字幕| 欧美激情国产日韩精品一区| 男人舔奶头视频| 少妇裸体淫交视频免费看高清| a级毛色黄片| 欧美激情国产日韩精品一区| 3wmmmm亚洲av在线观看| 六月丁香七月| 国产精品国产三级国产专区5o | 国产精品,欧美在线| 亚洲国产精品成人综合色| 亚洲av不卡在线观看| 国产精品一区二区在线观看99 | 久久久久国产网址| 国产女主播在线喷水免费视频网站 | 日韩欧美 国产精品| 草草在线视频免费看| 97热精品久久久久久| 精品久久久久久成人av| 成年版毛片免费区| 少妇人妻一区二区三区视频| 综合色av麻豆| 国产精品熟女久久久久浪| 一级毛片aaaaaa免费看小| 亚洲精品aⅴ在线观看| 亚洲自偷自拍三级| 在线观看美女被高潮喷水网站| 啦啦啦啦在线视频资源| 国产午夜精品一二区理论片| 中文天堂在线官网| 一边亲一边摸免费视频| 成人av在线播放网站| 麻豆成人av视频| 日产精品乱码卡一卡2卡三| 男女国产视频网站| 麻豆精品久久久久久蜜桃| a级一级毛片免费在线观看| av在线蜜桃| 久久精品影院6| 午夜激情欧美在线| 国产成人freesex在线| 永久免费av网站大全| 久久精品综合一区二区三区| 少妇人妻精品综合一区二区| 少妇的逼水好多| 国产精品无大码| 成人漫画全彩无遮挡| 2021少妇久久久久久久久久久| 免费观看精品视频网站| 久久久午夜欧美精品| 国产高清视频在线观看网站| 性色avwww在线观看| 国产综合懂色| 精品一区二区三区人妻视频| 青春草国产在线视频| 成人午夜精彩视频在线观看| 亚洲第一区二区三区不卡| 青春草亚洲视频在线观看| 国产色婷婷99| 26uuu在线亚洲综合色| 三级毛片av免费| 日本免费在线观看一区| 亚洲国产精品成人综合色| 日韩成人伦理影院| 舔av片在线| 国产成人精品一,二区| 精品国产三级普通话版| 亚洲欧美精品综合久久99| 欧美又色又爽又黄视频| 熟女人妻精品中文字幕| 成人毛片a级毛片在线播放| 国产成人a∨麻豆精品| 国产精品人妻久久久久久| 亚洲国产欧洲综合997久久,| 久久久久久久亚洲中文字幕| 亚洲av.av天堂| 久热久热在线精品观看| 成人三级黄色视频| 麻豆精品久久久久久蜜桃| 91久久精品电影网| 在线免费十八禁| 高清午夜精品一区二区三区| 性色avwww在线观看| 不卡视频在线观看欧美| 中国国产av一级| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久精品电影| 国产一级毛片在线| 成人三级黄色视频| 久久草成人影院| 日日啪夜夜撸| 久久久久性生活片| 日韩av在线免费看完整版不卡| 毛片女人毛片| 亚洲国产高清在线一区二区三| 91精品伊人久久大香线蕉| 高清视频免费观看一区二区 | 国语对白做爰xxxⅹ性视频网站| 亚洲国产精品合色在线| 深爱激情五月婷婷| 欧美+日韩+精品| 成人特级av手机在线观看| 国产成人a区在线观看| 久久婷婷人人爽人人干人人爱| 久久精品国产99精品国产亚洲性色| 婷婷色麻豆天堂久久 | 久久国产乱子免费精品| 一级av片app| 久久欧美精品欧美久久欧美| 男人和女人高潮做爰伦理| 国产午夜精品一二区理论片| av又黄又爽大尺度在线免费看 | 熟女电影av网| 欧美激情在线99| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av一区综合| 欧美日本视频| 我要搜黄色片| 不卡视频在线观看欧美| 成人午夜高清在线视频| 一个人看视频在线观看www免费| 99九九线精品视频在线观看视频| 国产成人一区二区在线| 国产精品女同一区二区软件| 国产午夜精品论理片| 中文字幕熟女人妻在线| 色5月婷婷丁香| 最近视频中文字幕2019在线8| 波多野结衣巨乳人妻| 亚洲内射少妇av| 成人综合一区亚洲| 色哟哟·www| 可以在线观看毛片的网站| 国产成年人精品一区二区| 真实男女啪啪啪动态图| 国产男人的电影天堂91| 丝袜喷水一区| 国产精品人妻久久久影院| 国产在视频线在精品| 国产成人91sexporn| 亚洲不卡免费看| 久久亚洲精品不卡| 亚洲美女搞黄在线观看| 亚洲av.av天堂| 天堂影院成人在线观看| 亚洲一级一片aⅴ在线观看| 国产 一区 欧美 日韩| 色综合亚洲欧美另类图片| 久久久久久久久久久丰满| 九九久久精品国产亚洲av麻豆| 亚洲国产精品久久男人天堂| 国产私拍福利视频在线观看| 国产成人精品一,二区| 亚州av有码| 99热这里只有是精品50| 精品久久久久久久久av| 波多野结衣巨乳人妻| 成人特级av手机在线观看| 国产午夜精品一二区理论片| 久久综合国产亚洲精品| 黄色配什么色好看| 天天躁日日操中文字幕| 你懂的网址亚洲精品在线观看 | 久久久午夜欧美精品| 免费在线观看成人毛片| 久久99蜜桃精品久久| 桃色一区二区三区在线观看| 亚洲精品成人久久久久久| 中文字幕制服av| 日韩中字成人| 别揉我奶头 嗯啊视频| 国产成人91sexporn| 国产 一区 欧美 日韩| 黑人高潮一二区| 国产色婷婷99| 国产视频首页在线观看| 欧美日韩国产亚洲二区| 69av精品久久久久久| 网址你懂的国产日韩在线| 久久午夜福利片| 九九在线视频观看精品| 亚洲国产色片| 久久99精品国语久久久| 嘟嘟电影网在线观看| 日本色播在线视频| 九九爱精品视频在线观看| 亚洲综合色惰| 99热精品在线国产| 亚洲av电影在线观看一区二区三区 | 少妇人妻精品综合一区二区| 日韩欧美精品v在线| 嘟嘟电影网在线观看| 最新中文字幕久久久久| av黄色大香蕉| 少妇的逼好多水| 看黄色毛片网站| 欧美一区二区亚洲| 国产黄片美女视频| 91精品伊人久久大香线蕉| 精品不卡国产一区二区三区| 一本一本综合久久| 日韩av不卡免费在线播放| 国产精品国产三级国产专区5o | 十八禁国产超污无遮挡网站| 变态另类丝袜制服| 欧美日本视频| 卡戴珊不雅视频在线播放| 小说图片视频综合网站| av女优亚洲男人天堂| 亚洲精品自拍成人| 亚洲欧美精品综合久久99| 亚洲怡红院男人天堂| 又黄又爽又刺激的免费视频.| 又粗又硬又长又爽又黄的视频| 免费一级毛片在线播放高清视频| 在线观看美女被高潮喷水网站| 少妇高潮的动态图| 美女cb高潮喷水在线观看| 亚洲精品aⅴ在线观看| 麻豆乱淫一区二区| 午夜a级毛片| 老女人水多毛片| 亚洲内射少妇av| 国产亚洲精品av在线| 国产高清有码在线观看视频| 插逼视频在线观看| 最近2019中文字幕mv第一页| 亚洲国产精品sss在线观看| 成人亚洲精品av一区二区| 日韩制服骚丝袜av| 午夜精品一区二区三区免费看| a级毛片免费高清观看在线播放| 亚洲,欧美,日韩| 欧美激情在线99| 中文亚洲av片在线观看爽| 老司机影院成人| 日日啪夜夜撸| 成年av动漫网址| 国产私拍福利视频在线观看| 成人午夜精彩视频在线观看| 免费观看性生交大片5| 老司机影院毛片| 国产片特级美女逼逼视频| 日产精品乱码卡一卡2卡三| 老司机福利观看| 免费av毛片视频| 夜夜爽夜夜爽视频| 黑人高潮一二区| 成人午夜精彩视频在线观看| 18禁在线无遮挡免费观看视频| 三级经典国产精品| 男人和女人高潮做爰伦理| 欧美又色又爽又黄视频| 欧美高清性xxxxhd video| 亚洲18禁久久av| 少妇的逼水好多| 最近视频中文字幕2019在线8| 黄色一级大片看看| 久久久色成人| 村上凉子中文字幕在线| 直男gayav资源| 国产男人的电影天堂91| 国产伦一二天堂av在线观看| 亚洲精品影视一区二区三区av| 1000部很黄的大片| 国产精品伦人一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩亚洲欧美综合| 国产精品无大码| 精品人妻一区二区三区麻豆| 久久久久久大精品| 白带黄色成豆腐渣| 国产真实乱freesex| 深夜a级毛片| 老师上课跳d突然被开到最大视频| 欧美一区二区国产精品久久精品| 大香蕉久久网| 中文乱码字字幕精品一区二区三区 | 久久精品夜夜夜夜夜久久蜜豆| 亚洲av成人精品一区久久| 中国国产av一级| 黄色日韩在线| 人妻少妇偷人精品九色| av免费观看日本| 十八禁国产超污无遮挡网站| 18禁在线播放成人免费| 在线天堂最新版资源| 少妇熟女欧美另类| 草草在线视频免费看| av专区在线播放| 久久6这里有精品| 亚洲av日韩在线播放| 超碰97精品在线观看| 美女黄网站色视频| 亚洲无线观看免费| 一本久久精品| 午夜福利在线在线| 精品人妻一区二区三区麻豆| 噜噜噜噜噜久久久久久91| 亚洲经典国产精华液单| 亚洲欧美中文字幕日韩二区| 欧美bdsm另类| 秋霞伦理黄片| 深爱激情五月婷婷| 日韩,欧美,国产一区二区三区 | 精品国产露脸久久av麻豆 | 最后的刺客免费高清国语| 国内少妇人妻偷人精品xxx网站| 亚洲精品456在线播放app| 日韩大片免费观看网站 | АⅤ资源中文在线天堂| 亚洲国产精品合色在线| 国产精品久久久久久精品电影小说 | 最近的中文字幕免费完整| 少妇被粗大猛烈的视频| 免费观看精品视频网站| 日日摸夜夜添夜夜爱| 国产精品综合久久久久久久免费| 中文字幕免费在线视频6| 色哟哟·www| 三级经典国产精品| 午夜激情福利司机影院| 免费av毛片视频| 91精品一卡2卡3卡4卡| 国模一区二区三区四区视频| 国产精品国产三级专区第一集| av黄色大香蕉| 深爱激情五月婷婷| 永久网站在线| 女的被弄到高潮叫床怎么办| 久久精品影院6| 岛国毛片在线播放| 国产黄色视频一区二区在线观看 | 一级毛片aaaaaa免费看小| 女人十人毛片免费观看3o分钟| 91久久精品电影网| 日本三级黄在线观看| 狂野欧美激情性xxxx在线观看| 成人亚洲欧美一区二区av| a级毛色黄片| 亚洲精品乱久久久久久| 欧美+日韩+精品| 日韩亚洲欧美综合| 男人舔女人下体高潮全视频| av专区在线播放| 18禁在线无遮挡免费观看视频| 久久久午夜欧美精品| 国产又黄又爽又无遮挡在线| 搡老妇女老女人老熟妇| 中文天堂在线官网| 久久久久久久久久久丰满| 成人漫画全彩无遮挡| 永久网站在线| 中文字幕免费在线视频6| 欧美性猛交黑人性爽| av天堂中文字幕网| 亚洲一区高清亚洲精品| 久久人人爽人人爽人人片va| 免费无遮挡裸体视频| 秋霞在线观看毛片| 亚洲av免费在线观看| 一个人看视频在线观看www免费| 亚洲国产色片| 久久久成人免费电影| av在线亚洲专区| 精品欧美国产一区二区三| 3wmmmm亚洲av在线观看| 中文字幕av在线有码专区| 久久久久九九精品影院| 精品人妻视频免费看| 秋霞伦理黄片| 一区二区三区乱码不卡18| 美女大奶头视频| a级一级毛片免费在线观看| 一级毛片我不卡| 亚洲成人精品中文字幕电影| 国产精品电影一区二区三区| 一个人观看的视频www高清免费观看| 久久欧美精品欧美久久欧美| 男女那种视频在线观看| 日日摸夜夜添夜夜爱| 日产精品乱码卡一卡2卡三| 国产成人精品一,二区| 一个人观看的视频www高清免费观看| 国产极品天堂在线| 国产精品麻豆人妻色哟哟久久 | av线在线观看网站| 亚洲av一区综合| 精品人妻偷拍中文字幕| 国产亚洲av片在线观看秒播厂 | 中文乱码字字幕精品一区二区三区 | 亚洲av福利一区| 亚洲经典国产精华液单| 成人鲁丝片一二三区免费| 国产亚洲午夜精品一区二区久久 | 久久久久久久久久久免费av| 建设人人有责人人尽责人人享有的 | 精品一区二区三区视频在线| 久久久成人免费电影| 免费看光身美女|