• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measure of riskiness based on RDEU model

    2021-06-24 04:49:58GuoChuanfengDuXinzeWuQinyuMaoTiantian

    Guo Chuanfeng, Du Xinze, Wu Qinyu, Mao Tiantian*

    1. School of Data Science, University of Science and Technology of China, Hefei 230026, China;2. School of Management, University of Science and Technology of China, Hefei 230026, China

    Abstract: Motivated by References[3,4], we introduce a new measure of riskiness based on the rank-dependent expected utility (RDEU) model. The new measure of riskiness is a generalized class of risk measures which includes the economic index of riskiness of Reference[3] and the operational measure of riskiness of Reference[4] as special cases. We probe into the basic properties as a measure of riskiness such as monotonicity, positive homogeneity and subadditivity. We study its applications in comparative risk aversion as well. In addition, we present a simulation to illustrate the results.

    Keywords: measure of riskiness; RDEU model; distortion function

    1 Introduction

    People want to quantify the risk of a decision, far beyond the expectation or variance. Even though many contributions have been made in this area[1,2], no one ever constructed a perfect risk measure both satisfying all the desired properties and applicable in economics. Reference[3] introduced a new measure of riskiness and proved several desired properties. They defined the risk of a specific gamble, which yields both positive and negative outcomes, with the same measurement unit as gambles. However, the risk, according to them, is totally based on the distribution of a gamble about which one may doubt whether others take the gamble as serious as him.

    Almost all the measures of riskiness are objective, without the interference of decision-makers[4]. However, a risky asset may be taken as riskless to someone but, as, at the same time, too risky to be accepted by others. In this paper, based on the rank-dependent expected utility (RDEU) model, we propose a measure of riskiness of ``gambles″ (risky assets) that is subjective: it depends on both the gamble and the one who is considering investing. Even though we have a huge step up, the subjective measure is still ideal to use. Meanwhile, the measure is applicable to all the bounded gambles, making the comparison of different gambles easier.

    The RDEU theory is proposed by References[5,6] in which the expectation can be defined as rank-dependent, which permits the analysis of phenomena associated with the distortion of subjective probability and applies better in real than simply weighted expectations, according to References[7,8].

    For the discussion of the distortion function, named after the intuition that the expectation is “distorted”, it can be concave: this rank-dependent way of modeling pessimism and optimism was suggested before by Reference[5]. It was described in full by Reference[6], which can be convex, and even a mixed pattern of both[8].

    In this paper, we apply a new model to the index of riskiness and obtain desired properties. It is natural that some of them are no longer satisfied. However, after assuming the distortion function to be concave, almost all of the properties still hold. Besides, we extend the definition of risks to nearly all gambles, even with no loss, without loss of desired properties.

    The rest of the paper is organized as follows. In Section 2, we introduce some preliminaries, such as the RDEU model. In Section 3, we introduce the new risk measure of riskiness based on the RDEU model. Section 4 shows our main results. In Section 5, we present a simulation to illustrate the results.

    2 Preliminaries

    2.1 The RDEU model

    The rank-dependent expected utility (RDEU) model is one of classic models in the economical behavior theory introduced by References[5,6]. A decision decision-maker behaves in accordance with the RDEU model if the decision-maker is characterized by an increasing and continuous utility functionu:R→R and a probability-perception functionh: [0,1]o[0,1], that is,his increasing withh(0)=0 andh(1)=1. Such a decision-maker prefers the random variableYto the random variableXif and only if

    Vu,h(Y)≥Vu,h(X),

    whereVu,h(Y), also denoted byVu,h(G), is the RDEU functional or the Quiggin-Yaari functional ofY[5,6]given by

    (1)

    HereGis the cumulative distribution function (CDF) ofY. Any decision maker in the REDU model makes decision according to the RDEU functionalVu,his denoted by a (u,h)-decision-maker.

    It is well-known that the RDEU model has the classic expected utility (EU) model and the Yarri′s dual theory as its special case. Specifically, if the probability-perception functionh(s)=s,s∈[0,1], then the RDEU functional reduces to the classic expected utility functional.

    Throughout the paper, the utility functionuis the von Neumann-Morgenstern utility function for money. We confine the utility functionuin the following set

    If the utility function is the linear function (identical function), that is,u(x)=x,x∈R, then the RDEU functional reduces to the Yarri’s dual utility

    (2)

    One important property of distorted expectation is that Eh(aX+b)=aEh(X)+bholds for real numbersa≥0 andb∈R. However, Eh(X+Y)=Eh(X)+Eh(Y) may not be true for random variablesXandY, and it will hold ifXandYare comonotonic. In the bivariate setting, a random vector (X;Y) is comonotonic if there exists increasing functionsfandgsuch thatX=f(X+Y) andY=g(X+Y) almost surely. This fact leads to problems when dealing with the portfolio investment, a linear combination of different risky assets. Thus, additional presumptions are necessary for the distortion functionh. Throughout the paper, the distortion functionhis assumed in the following set

    H={h:[0,1]→[0,1]|h(0)=0,h(1)=1,

    his concave and has no jump at zero}.

    We will also denoteh′ by the left derivative of distortion functionh. There are some examples of distortion functions, and Figure 1 presents a more intuitive picture.

    Figure 1. (a) A concave distortion function; (b) A distortion function concave for small probability and convex for moderate and high probabilities.

    Figure 2. The scale function for (a) with and (b) with a linear h. The riskiness is 2.79 for (a) and is 1.69 for (b).

    (Ⅰ) Proportional hazard transform function[10], with the distortion function

    (Ⅱ) Dual-power function[11], with the distortion function

    h(x)=1-(1-x)ν,ν≥1.

    (Ⅲ) Wang’s transform weighting function, known as the WT weighting function[12], it is applied widely into the pricing of financial derivatives for its fine properties. It is usually represented by

    h(x)=Φ(Φ-1(x)+α),α∈R,

    whereΦ(x) is the cumulative distribution function of a standard normal distribution.

    2.2 Comparative risk aversion

    Risk aversion is an important concept in the decision theory. We use the notation Reference[3] to describe the comparative risk aversion. Agentsiandjare going to decide whether to accept or reject such a gamble.

    Definition 2.1(Ⅰ) A (u,h)-decision maker in the RDEU model accepts gambleXat the wealth levelwif

    Vu,h(w+X)>u(w).

    3 Measure of riskiness based on the RDEU model

    In this section, we will introduce a new measure of riskiness based on the RDEU model. To this end, we confine the gambles to some subsets of the family of all gambles.

    Definition 3.1For a given distortion functionhwe define

    G={X:Xis bounded and P(X=0)<1}

    and

    Gh={X|Eh(X)>0, P(X<0)>0}.

    The condition Eh(X)>0 is due to that people will not hesitate to reject a gamble that they think would be nonprofitable, while violating the condition P(X<0)>0 means that the gamble brings no loss at all.

    For a utility functionu, a distortion functionhand a gambleX, we define

    fu,h,X(α):=f(α)=Eh(u(αX))

    on [0,∞], which is called a scale function throughout the paper. Then,f∈C2[0,∞] which meansfis second order continuously differentiable. In the following, we state some basic properties for the scale function.

    Theorem 3.1Suppose that the utility functionu∈U has an upper bound andh∈H. ForX∈Gh, the scale functionf(α)=Eh(u(αX)) is concave on [0,∞) withf(0)=0. Moreover, there exists a real numberρu,h(X)>0 uniquely determined by

    f(1/ρu,h(X))=Ehu(X/ρu,h(X))=0

    (3)

    ProofIt is clear thatf(0)=Eh[u(0)]=0. Note thatf′(0)=Eh(Xu′(0))=Eh(X)>0 because ofX∈Gh. Hence, there exists anαsmall enough such thatf(α)>0. Meanwhile,f″(α)=Eh(X2u″(αX))≤0 meansfis concave on the positive axis.

    Assuming now thatp0=P(X<-)>0 and P(|X|≤M)=1, letX0be a gamble that yieldsMwith probability 1-p0and -withp0. It is obvious thatFX0(x)≤FX(x) for allx. Then

    h(p0)u(-α)+(1-h(p0))u(αM).

    Thus, the scale functionf(α) becomes non-positive forαlarge enough sinceuhas an upper bound. Up to now, we obtain three observations of the functionf:

    (Ⅰ)f(0)=0 andf′(0)>0;

    (Ⅱ)fis concave on [0,∞);

    (Ⅲ) There exists anαlarge enough such thatf(α)<0.

    Hence, there exists a uniqueρu,h(X)>0 such that equation (3) holds.

    Here, we setu(x)=1-e-xfor allx∈R. LetXyield 6 with probability 0.2, 2 with probability 0.3 and -1 with probability 0.5. Checking that it meets all the requirements, for differenth, we draw its scale function in Figure 2.

    Figure 3. Estimated riskiness of distribution X1 (wave line) with real riskiness (beeline).

    Figure 4. Estimated riskiness of distribution X2 (wave line) with real riskiness (beeline).

    Figure 5. Estimated riskiness of distribution X3 (wave line) with real riskiness (beeline).

    Definition 3.2Foru∈U andh∈H, the measure of riskiness based on (u,h)-RDEU model is defined by a functionalρu,h:G→[0,+∞] as the following way

    For the case Ehu(X)≤0, a decision maker with distortion functionhwon’t take it. Thus, we set its riskiness to be +∞. For another case that P(X<0)=0, people accepts the gamble violating the condition with absolutely no loss. For this one, we set its riskiness to be 0 because nobody would be afraid of it for any reasons.

    Example 1(Ⅰ) Ifhis the identical function, i.e.,h(p)=pforp∈[0,1] andu(x)=1-exp(-x) forx∈R. The measure of riskinessρu,hreduces to the case introduced in Reference[3].

    (Ⅱ) Ifhis the identical function andu(x)=log(1+x) forx∈R. The measure of riskinessρu,hreduces to the case introduced in Reference[4].

    (Ⅲ) Ifu(x)=x-1 forx∈R, we haveρu,h(X)=Eh(X) for allX∈Gh.

    The third one of the above examples illustrates that the constraint ofuin Theorem 3.1 is not necessary to guarantee that equation (3) has an unique solution. For some feasible utility functionu,ρu,hcan be the Yarri’s dual utility.

    4 Main results

    It follows directly from the definition that two axiomatic characterizations are identical to those of Reference[3]. Hence, the similar results are also obtained for the distorted riskiness.

    4.1 Basic properties for the measure of riskiness

    Definition 4.1For any two lotteries with cumulative distribution functionsFandG, respectively. We sayFfirst-order stochastic dominatesG, denoted byF1G, if for any increasing functionu

    Proposition 4.1Foru∈U with a upper bound andh∈H, the measure of riskiness based on RDEU model has following properties:

    (Ⅰ) Monotonicity with respect to the first-order stochastic dominance: ForX,Y∈G, ifX?1Y, thenρu,h(X)≥ρu,h(Y).

    (Ⅱ) Positive Homogeneity:ρu,h(λX)=λ{(lán)ρu,h(X) forλ>0 andX∈G;

    (Ⅲ) Subdilution:ρu,h(Xp)≥ρu,h(X) holds forp∈(0,1] andX∈G, whereXpis a compound gamble that yieldsXwith probabilitypand 0 with probability 1-p;

    ProofWe first consider the properties ofρu,hon Gh. ForX,Y∈Ghsuch thatX?1Y, we have 0=Ehu(X1/ρu,h(X))≤Ehu(Y/ρu,h(X)). Recall the properties of scale function in Theorem 3.1, we obtain 1/ρu,h(Y)≥1/ρu,h(X), and hence,ρu,h(X)≥ρu,h(Y). The positive homogeneity is trivial by the definition ofρu,h.

    To prove the subdilution, first note thatX∈GhimpliesXp∈Ghforp∈(0,1]. We use the third form of the rank-dependent expectation for this part. i.e.

    whereMis the bound ofX. For the diluted gambleXp, one writes the CDFFXp(x) aspFX(x)+(1-p)I[0,∞](x). Thus,

    fXp(α)=Ehu(αXp)=

    (1-p)I[0,∞](x))du(αx)≤

    (1-p)h(I[0,∞](x))du(αx)=

    pfX(α).

    For gambles on G, one can easily verify the monotonicity, positive homogeneity and subdilution ofρu,hafter classification discussions.

    4.2 Measure of riskiness for CARA utility function

    The exponential utility function is the only one class of utility functions such that the Arrow-Pratt coefficient is constant, that is, the utility function with constant absolute risk aversion[13]. In this section, we set the utility functionu(x) to be 1-exp(-x). For convenience, we denote byRhthe measure of riskiness in this case, i.e.

    Rh(X):=ρu,h(X).

    In the following, more properties ofRhwill be found. To present the result, we need the following lemma which is coming from Reference[14].

    (Ⅱ)Φ(q)≥ 0,q∈[0,1].

    Proposition 4.2The following two properties hold for gamblesX1,X2∈G.

    (Ⅰ) Subadditivity:Rh(X1+X2)≤Rh(X1)+Rh(X2), ifX1+X2∈G;

    (Ⅱ) Convexity:Rh(λX1+(1-λ)X2)≤λRh(X1)+(1-λ)Rh(X2) ifλX1+(1-λ)X2∈G.

    To this end, we turn to prove the next two inequalities hold

    (4)

    (5)

    Note that formula (4) is equivalent to

    Sinceh′(q) is non-negative andex-1≥xfor allx∈R, to prove formula(4), we only need to show that

    or, equivalently,

    Next assume thatX1,X2∈G andX1+X2∈G. There are just two kinds of potential violation ofRh(X1+X2)≤Rh(X1)+Rh(X2):

    (ⅰ)Rh(X1+X2)=∞ butRh(X1) andRh(X2) are positive and finite;

    (ⅱ)Rh(X1)=0 andRh(X1+X2)>Rh(X2).

    Here we define G*={X:Xis bounded}. For the first one, note that the mapping Eh: G*→R satisfies the subadditivity, i.e., Eh(X1+X2)≥Eh(X1)+Eh(X2) for allX1,X2∈G*(see e.g., Theorem 2.2 in Reference[15]. SinceRh(X1) andRh(X2) are positive and the finite it follows that Eh(X1),Eh(X2)>0, we have Eh(X1+X2) is finite. The second case can’t happen sinceRhis monotonic with respect to first-order stochastic dominance.

    (Ⅱ)The convexity follows immediately from thatRhis positively homogeneous.

    4.3 The necessary of concavity of distortion function

    As someone doubts whether the presumptions of distortion functionhcan be revised, we claim that concavity is necessary for subadditivity property. We prove it in the following part that there is some violation of subadditivity unlesshis concave on [0,1].

    Proposition 4.3Suppose the distortion function has no jump at zero, the validity of subadditivity forceshto be concave.

    where -x1<-δ<0<δ

    Ehu(αX)=h(p1)u(-αx1)+

    (1-h(p2))u(αx2)+

    Meanwhile, the derivative offat zero is

    f′(0)=-x1h(p1)+x2(1-h(p2))-

    As we can see, the marginal distributions of bothX1andX2are the same as that ofX, so they have the same riskinessesr. Noting that

    One can calculate the riskiness ofX1+X2with the similar method. The distorted expectation ofX1+X2isu(-2x1).h(p1)+u(2x2)(1-h(p2)). With a useful fact thatu(x)≤xfor allxonR, we findu(-2x1)h(p1)+u(2x2)(1-h(p2))≤-2x1h(p1)+2x2(1-h(p2))=0, which indicates that gambleX1+X2has infinite riskiness. We can conclude thatRh(X1+X2)=∞ >2r=2Rh(X)=Rh(X1)+Rh(X2), a violation of subadditivity.

    4.4 Application in comparative risk aversion

    Mentioned by Reference[3], duality implies that less risk-averse agents accept riskier gambles. Once they share the same distortion function, duality holds for the two agents.

    To prove Theorem 4.1, we denoteρ(w) by the Arrow-Pratt coefficient of absolute risk aversion for an agent with the utility functionuat wealth levelw, i.e.,ρ(w)=-u″(w)/u′(w). Besides, we need some extra lemmas, some of which are the direct results in Reference[3].

    Lemma 4.2(Lemma 2 in Reference[3]) For someδ>0, suppose thatρi(w)>ρj(w) at eachwwith |w|<δ, thenui(w)

    From Lemma 4.2, we can immediately get the following corollary.

    Corollary 4.1(Corollary 3 in Reference[3]) Ifρi(w)≤ρj(w) for allw, thenui(w)≥uj(w) for allw.

    Given the changes compared with the definitions by Reference[3], some lemmas also need to be generalized.

    Lemma 4.3Ifρi(0)>ρj(0), there is a gambleXthat agentjaccepts at 0 but agentirejects at 0.

    ProofBy the precondition that utility function is twice continuously differentiable,ρ(w) is continuous. There existsδ>0 such thatρi(w)>ρj(w) for all |w|<2δ. For -δ≤x≤δ,letXXbe a gamble yieldingx-δandx+δwith probabilityp0∈(0,1) and 1-p0, respectively, wherep0satisfiesh(p0)∈(0,1). By lemma 4.2, we can getui(w)≤uj(w) for all |w|<2δ, where the equation is satisfied if and only ifw=0. Then denote Ehkuk(XX)-uk(0) bygk(x) fork=i,j. One can compute fork=i,jthat

    h(p0)uk(x-δ)+(1-h(p0))uk(x+δ).

    Under the condition thatui(w)≤uj(w), inequalitygi(x)0 andgk(-δ)=h(p0)uk(-2δ)<0. Thus, it follows from the continuity and monotonic ofgkthat there exists somex0between -δandδsuch thatgi(x0)≤0

    Lemma 4.4Ifρi(wi)>ρj(wj), then there is a gambleXsuch that agentjaccepts atwjbut agentirejects atwi.

    Now we assumeiaccepts the gambleX1, then we need to show thatjaccepts the gambleX2. By definition, Ehui(X1)>0, thus

    resulting inβi<α1. Then one getsβj≤βi<α1≤α2. Hence,βj<α2. The following inequality holds

    Thus, the duality axiom is satisfied whenX1,X2∈Gh. Suppose nowRh(X2)=0, so thatX2∈G andP(X2<0)=0. It is obvious thatEhuj(X2)>uj(0)=0. Finally, we will show thatiacceptsX1at 0 andRh(X1)≥Rh(X2) implyRh(X2)<∞. Otherwise, we haveRh(X1)=∞, which impliesX1∈G with Eh(X1)≤0. However, it follows from Jessen′s inequality that

    Ehui(X1)≤ui(Eh(X1))≤0.

    This meansirejectsX1at 0, yielding a contradiction.

    5 Simulation

    We can check with computer that their risk value are respectively 2.77, ∞ and 0. Figures 3,4 and 5 show how the calculated riskinesses approaches the real riskinesses.

    Figure 6. Estimated riskiness of normal distribution with mean 1 and standard deviation 1 under a linear distortion function.

    Figure 7. Estimated riskiness of normal distribution with mean 1 and standard deviation 1 under the WT distortion function.

    However, it is computational expensive to solve such an equation with a largenin practice for a continuously distributed random variable. By the enlightment of the generalized method of moments, computing the numeric solution can be seen as an optimization problem.

    whereWis the inverse of var(Y), estimated by

    Suppose a continuous distribution is a normal distribution with mean 1 and standard deviation 1, we can then compute that the riskiness of such an random varible is 0.5 with a linear distortion function and 1 with the WT distortion function. Figures 6 and 7 show how the calculated estimators approach the real riskiness.

    国产亚洲欧美98| 久久久久国内视频| 国产伦人伦偷精品视频| 99国产综合亚洲精品| 亚洲美女视频黄频| 波多野结衣高清无吗| 亚洲一区二区三区色噜噜| 亚洲 欧美 日韩 在线 免费| 国产高清视频在线播放一区| 亚洲18禁久久av| 国产精品 国内视频| 在线看三级毛片| 人妻丰满熟妇av一区二区三区| 欧美日韩精品网址| 国产一区在线观看成人免费| 黄频高清免费视频| 国产成人av教育| 91老司机精品| 两性午夜刺激爽爽歪歪视频在线观看 | 无遮挡黄片免费观看| 国产欧美日韩精品亚洲av| a级毛片在线看网站| 亚洲免费av在线视频| 免费在线观看日本一区| 久久婷婷成人综合色麻豆| av在线播放免费不卡| 听说在线观看完整版免费高清| 好男人在线观看高清免费视频| 欧美中文综合在线视频| av免费在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 午夜亚洲福利在线播放| 在线看三级毛片| 国产激情偷乱视频一区二区| 91字幕亚洲| 亚洲国产欧洲综合997久久,| 1024手机看黄色片| 国产99久久九九免费精品| 三级男女做爰猛烈吃奶摸视频| 18禁黄网站禁片免费观看直播| 黄色视频,在线免费观看| 欧美日韩福利视频一区二区| 脱女人内裤的视频| 亚洲成人久久性| 亚洲,欧美精品.| 老鸭窝网址在线观看| 久久草成人影院| 91在线观看av| 精品久久久久久,| 午夜福利免费观看在线| 十八禁人妻一区二区| 成人亚洲精品av一区二区| 国产伦一二天堂av在线观看| 成人三级黄色视频| cao死你这个sao货| 黄色丝袜av网址大全| 国语自产精品视频在线第100页| 欧美日韩黄片免| 亚洲精品一卡2卡三卡4卡5卡| 一本一本综合久久| 色播亚洲综合网| 欧美在线一区亚洲| 午夜精品在线福利| 桃红色精品国产亚洲av| 桃红色精品国产亚洲av| 午夜老司机福利片| av超薄肉色丝袜交足视频| 后天国语完整版免费观看| 91av网站免费观看| 国产伦一二天堂av在线观看| 国产激情偷乱视频一区二区| 国产亚洲精品综合一区在线观看 | 这个男人来自地球电影免费观看| 黄频高清免费视频| 国产精品久久久久久久电影 | 欧美在线黄色| 婷婷六月久久综合丁香| 亚洲熟妇中文字幕五十中出| 欧美日韩乱码在线| a在线观看视频网站| bbb黄色大片| svipshipincom国产片| 窝窝影院91人妻| netflix在线观看网站| av福利片在线观看| 999精品在线视频| 欧美av亚洲av综合av国产av| 黄片小视频在线播放| 亚洲性夜色夜夜综合| 国模一区二区三区四区视频 | 欧美日韩亚洲国产一区二区在线观看| 久久 成人 亚洲| 久久久久久免费高清国产稀缺| 精品久久久久久,| 亚洲成人国产一区在线观看| 一级片免费观看大全| 欧美色欧美亚洲另类二区| 人妻久久中文字幕网| 国产免费男女视频| 国产主播在线观看一区二区| 久久久久九九精品影院| 亚洲精品av麻豆狂野| 每晚都被弄得嗷嗷叫到高潮| 听说在线观看完整版免费高清| 成年免费大片在线观看| 岛国在线免费视频观看| 亚洲国产精品sss在线观看| 一夜夜www| 欧美中文日本在线观看视频| 757午夜福利合集在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品久久国产高清桃花| 啦啦啦观看免费观看视频高清| 麻豆久久精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 美女 人体艺术 gogo| 亚洲av片天天在线观看| 中文字幕人成人乱码亚洲影| 亚洲黑人精品在线| 夜夜躁狠狠躁天天躁| 久热爱精品视频在线9| 99re在线观看精品视频| 亚洲性夜色夜夜综合| 免费搜索国产男女视频| 国产精品电影一区二区三区| 在线十欧美十亚洲十日本专区| 精品电影一区二区在线| 国产又色又爽无遮挡免费看| 天堂√8在线中文| 免费人成视频x8x8入口观看| 国产成人av教育| 老司机午夜福利在线观看视频| 国产激情久久老熟女| 国产激情欧美一区二区| 又黄又粗又硬又大视频| 免费在线观看影片大全网站| 三级国产精品欧美在线观看 | 亚洲片人在线观看| 欧美在线黄色| 亚洲男人天堂网一区| 亚洲无线在线观看| 亚洲狠狠婷婷综合久久图片| 国产高清有码在线观看视频 | 日日爽夜夜爽网站| 欧美激情久久久久久爽电影| 久久久久久免费高清国产稀缺| 两个人免费观看高清视频| 亚洲国产欧美人成| 两性夫妻黄色片| 日韩欧美在线二视频| 久久精品国产综合久久久| 精品国产超薄肉色丝袜足j| 日韩欧美精品v在线| 国产精品免费一区二区三区在线| 欧美日韩乱码在线| 嫁个100分男人电影在线观看| 可以免费在线观看a视频的电影网站| 国产在线精品亚洲第一网站| 天天一区二区日本电影三级| 久久欧美精品欧美久久欧美| 老汉色av国产亚洲站长工具| 最近在线观看免费完整版| 国产探花在线观看一区二区| 久久久水蜜桃国产精品网| 麻豆国产97在线/欧美 | 欧美中文日本在线观看视频| 可以免费在线观看a视频的电影网站| 亚洲成a人片在线一区二区| 久久精品影院6| 欧美一区二区国产精品久久精品 | 久久久久国产精品人妻aⅴ院| www日本在线高清视频| 两性午夜刺激爽爽歪歪视频在线观看 | xxx96com| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩一区二区三| 制服丝袜大香蕉在线| 亚洲人成电影免费在线| 日本一本二区三区精品| 国产精品国产高清国产av| 国产真人三级小视频在线观看| 久久久精品欧美日韩精品| 99在线视频只有这里精品首页| 欧洲精品卡2卡3卡4卡5卡区| av免费在线观看网站| 久久精品国产亚洲av香蕉五月| 搡老妇女老女人老熟妇| 精品久久蜜臀av无| 91在线观看av| 亚洲自拍偷在线| 搡老妇女老女人老熟妇| 99久久精品国产亚洲精品| 一级毛片高清免费大全| 国产99白浆流出| 国产私拍福利视频在线观看| 一边摸一边抽搐一进一小说| 成人三级做爰电影| 亚洲国产精品合色在线| 啦啦啦免费观看视频1| 国产三级黄色录像| 国产区一区二久久| 色综合婷婷激情| 18禁黄网站禁片免费观看直播| 母亲3免费完整高清在线观看| 亚洲天堂国产精品一区在线| 免费在线观看影片大全网站| 麻豆国产97在线/欧美 | 精品高清国产在线一区| 亚洲全国av大片| 九九热线精品视视频播放| 欧美中文日本在线观看视频| 国产乱人伦免费视频| 美女午夜性视频免费| 母亲3免费完整高清在线观看| 中文在线观看免费www的网站 | 在线观看免费日韩欧美大片| 最新美女视频免费是黄的| 999久久久精品免费观看国产| 宅男免费午夜| 最近在线观看免费完整版| 窝窝影院91人妻| 亚洲av成人不卡在线观看播放网| av有码第一页| 操出白浆在线播放| 法律面前人人平等表现在哪些方面| 欧美性长视频在线观看| 一级a爱片免费观看的视频| 国产精品av久久久久免费| 精品欧美一区二区三区在线| 久久精品国产综合久久久| 亚洲欧美日韩无卡精品| 极品教师在线免费播放| 精品一区二区三区四区五区乱码| 日韩欧美在线乱码| 国产99白浆流出| 在线免费观看的www视频| 欧美成人一区二区免费高清观看 | 亚洲av电影不卡..在线观看| 午夜精品一区二区三区免费看| 一级片免费观看大全| 嫁个100分男人电影在线观看| 亚洲人与动物交配视频| 99热这里只有是精品50| 国产精品一区二区三区四区免费观看 | 淫秽高清视频在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲欧洲精品一区二区精品久久久| 国产av麻豆久久久久久久| 国产爱豆传媒在线观看 | 女同久久另类99精品国产91| 日韩成人在线观看一区二区三区| 亚洲成人国产一区在线观看| 国语自产精品视频在线第100页| 神马国产精品三级电影在线观看 | 午夜免费激情av| 中文在线观看免费www的网站 | 这个男人来自地球电影免费观看| 国产久久久一区二区三区| 久热爱精品视频在线9| 99久久精品热视频| 一级片免费观看大全| 国产高清videossex| 手机成人av网站| 99久久精品热视频| 桃红色精品国产亚洲av| 久久人妻av系列| 婷婷精品国产亚洲av| 国产精品久久久久久精品电影| 久久久久九九精品影院| 精品国产乱子伦一区二区三区| 久久婷婷成人综合色麻豆| 嫩草影院精品99| 国内精品久久久久精免费| 欧美色欧美亚洲另类二区| 欧美黑人巨大hd| 91麻豆av在线| 又黄又爽又免费观看的视频| 搡老岳熟女国产| 啪啪无遮挡十八禁网站| 亚洲男人的天堂狠狠| 亚洲午夜精品一区,二区,三区| 国产高清激情床上av| 嫁个100分男人电影在线观看| 国产人伦9x9x在线观看| 国产午夜福利久久久久久| 老汉色av国产亚洲站长工具| 欧美人与性动交α欧美精品济南到| 国产激情偷乱视频一区二区| 午夜免费成人在线视频| 大型av网站在线播放| 国产aⅴ精品一区二区三区波| 亚洲 欧美 日韩 在线 免费| 国产精品九九99| 日本一区二区免费在线视频| 国产伦一二天堂av在线观看| 国产精品av视频在线免费观看| 午夜福利视频1000在线观看| 中文字幕高清在线视频| 欧美+亚洲+日韩+国产| 露出奶头的视频| 又大又爽又粗| 中文字幕熟女人妻在线| 国产成人影院久久av| 亚洲一区高清亚洲精品| 香蕉久久夜色| 欧美日韩黄片免| 看黄色毛片网站| 成人特级黄色片久久久久久久| 三级国产精品欧美在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 国产熟女xx| 亚洲av成人不卡在线观看播放网| 久久中文字幕人妻熟女| 国产v大片淫在线免费观看| 国产精品免费视频内射| 日韩欧美三级三区| 久99久视频精品免费| 国产亚洲精品综合一区在线观看 | 好男人在线观看高清免费视频| 成人精品一区二区免费| 国产亚洲精品第一综合不卡| 两个人视频免费观看高清| 午夜久久久久精精品| 午夜福利高清视频| 日韩欧美免费精品| 级片在线观看| 欧美日韩黄片免| 琪琪午夜伦伦电影理论片6080| 日本 欧美在线| 成熟少妇高潮喷水视频| 亚洲成人免费电影在线观看| 国产不卡一卡二| 小说图片视频综合网站| 精品人妻1区二区| 九九热线精品视视频播放| 久久久精品国产亚洲av高清涩受| 亚洲自偷自拍图片 自拍| 亚洲精品色激情综合| 久久久久性生活片| 老司机深夜福利视频在线观看| 亚洲男人天堂网一区| 亚洲人成伊人成综合网2020| 午夜激情av网站| 免费高清视频大片| 老司机午夜福利在线观看视频| 一区二区三区激情视频| 成在线人永久免费视频| 精品久久久久久成人av| 欧美日韩黄片免| 国产高清有码在线观看视频 | 日本成人三级电影网站| 色综合站精品国产| 在线观看日韩欧美| 亚洲va日本ⅴa欧美va伊人久久| 深夜精品福利| 狂野欧美激情性xxxx| 麻豆成人av在线观看| 舔av片在线| 亚洲av成人精品一区久久| 97人妻精品一区二区三区麻豆| 久久久久国内视频| 久久精品国产综合久久久| 久久天堂一区二区三区四区| 亚洲免费av在线视频| 国产一级毛片七仙女欲春2| 男女之事视频高清在线观看| 国产激情久久老熟女| 久久久久久人人人人人| 精品免费久久久久久久清纯| 久久午夜综合久久蜜桃| 久久久久亚洲av毛片大全| 大型av网站在线播放| 午夜久久久久精精品| 亚洲精品一区av在线观看| а√天堂www在线а√下载| 国产精品 欧美亚洲| 天天躁夜夜躁狠狠躁躁| 制服丝袜大香蕉在线| 国产探花在线观看一区二区| 国产又色又爽无遮挡免费看| 亚洲欧美激情综合另类| 久久婷婷成人综合色麻豆| 岛国在线免费视频观看| 欧美中文综合在线视频| 又粗又爽又猛毛片免费看| 欧美成人一区二区免费高清观看 | 男男h啪啪无遮挡| 欧美午夜高清在线| 91麻豆av在线| 三级国产精品欧美在线观看 | 日本a在线网址| 亚洲天堂国产精品一区在线| 美女免费视频网站| 久久久久久久精品吃奶| 丁香六月欧美| 一进一出好大好爽视频| 国产成人欧美在线观看| 国产精品1区2区在线观看.| 国产亚洲欧美在线一区二区| 亚洲国产中文字幕在线视频| 一区二区三区高清视频在线| 国产成人精品久久二区二区91| 国产精品一区二区免费欧美| 在线视频色国产色| 亚洲人成伊人成综合网2020| 欧美一级a爱片免费观看看 | aaaaa片日本免费| 国产精品乱码一区二三区的特点| 天堂√8在线中文| 桃色一区二区三区在线观看| 精品一区二区三区四区五区乱码| 国产精品1区2区在线观看.| 久久久国产精品麻豆| 99热这里只有精品一区 | 精品福利观看| 精品一区二区三区av网在线观看| 精品福利观看| 一个人免费在线观看的高清视频| 午夜成年电影在线免费观看| 99国产极品粉嫩在线观看| 动漫黄色视频在线观看| 色综合站精品国产| 精品无人区乱码1区二区| 一边摸一边做爽爽视频免费| a级毛片a级免费在线| 久久草成人影院| 日本黄色视频三级网站网址| 国产三级黄色录像| 日本在线视频免费播放| 精品久久久久久,| 在线看三级毛片| 久久久国产欧美日韩av| 精品久久久久久成人av| 91麻豆精品激情在线观看国产| 观看免费一级毛片| 亚洲国产欧美人成| 成人永久免费在线观看视频| 一个人观看的视频www高清免费观看 | 又大又爽又粗| 12—13女人毛片做爰片一| 亚洲人与动物交配视频| 精品久久久久久,| 人妻久久中文字幕网| 婷婷六月久久综合丁香| 亚洲在线自拍视频| 久久久国产精品麻豆| 国产亚洲精品一区二区www| 久久中文字幕一级| www日本在线高清视频| 一级片免费观看大全| 午夜两性在线视频| 国产成人aa在线观看| 悠悠久久av| 久久天躁狠狠躁夜夜2o2o| 欧美绝顶高潮抽搐喷水| 日本 欧美在线| 欧美三级亚洲精品| 午夜激情福利司机影院| 一级a爱片免费观看的视频| 国产精品久久电影中文字幕| 99精品欧美一区二区三区四区| 国内精品久久久久精免费| 久久久国产精品麻豆| 国产成+人综合+亚洲专区| 国产精品久久久久久人妻精品电影| 国产精品一区二区精品视频观看| 禁无遮挡网站| 嫩草影视91久久| 首页视频小说图片口味搜索| 久久精品aⅴ一区二区三区四区| 最新美女视频免费是黄的| 国产午夜精品久久久久久| 亚洲午夜理论影院| 69av精品久久久久久| 全区人妻精品视频| 中文字幕精品亚洲无线码一区| 国产成人系列免费观看| 日韩欧美在线二视频| 中文字幕人妻丝袜一区二区| 韩国av一区二区三区四区| 狠狠狠狠99中文字幕| 国产精品亚洲一级av第二区| 欧美日韩一级在线毛片| 国产野战对白在线观看| 色尼玛亚洲综合影院| 一二三四社区在线视频社区8| 中文字幕av在线有码专区| 18禁美女被吸乳视频| 亚洲欧美精品综合一区二区三区| 一级作爱视频免费观看| 亚洲成人精品中文字幕电影| 亚洲欧洲精品一区二区精品久久久| 国产av不卡久久| 国产伦在线观看视频一区| a级毛片在线看网站| 麻豆久久精品国产亚洲av| 国产视频内射| 他把我摸到了高潮在线观看| 天堂av国产一区二区熟女人妻 | 免费在线观看日本一区| 我要搜黄色片| 黑人巨大精品欧美一区二区mp4| 亚洲人成电影免费在线| 18禁黄网站禁片免费观看直播| 欧美大码av| videosex国产| 久久久久国产精品人妻aⅴ院| 午夜福利视频1000在线观看| av中文乱码字幕在线| 亚洲国产中文字幕在线视频| 日韩三级视频一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 18禁裸乳无遮挡免费网站照片| 好男人电影高清在线观看| 老司机午夜福利在线观看视频| 1024香蕉在线观看| 国产成人精品久久二区二区免费| 啪啪无遮挡十八禁网站| 一进一出抽搐gif免费好疼| 国产日本99.免费观看| 久久精品国产亚洲av香蕉五月| 日日爽夜夜爽网站| cao死你这个sao货| 国产精品综合久久久久久久免费| 特大巨黑吊av在线直播| 亚洲国产欧洲综合997久久,| 熟妇人妻久久中文字幕3abv| 一本久久中文字幕| 2021天堂中文幕一二区在线观| www.熟女人妻精品国产| 久久久久久大精品| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩一级在线毛片| 99re在线观看精品视频| 免费在线观看日本一区| 两个人视频免费观看高清| 亚洲精品中文字幕在线视频| 首页视频小说图片口味搜索| 日韩欧美三级三区| 久久精品亚洲精品国产色婷小说| 在线观看免费日韩欧美大片| 村上凉子中文字幕在线| 国产aⅴ精品一区二区三区波| 亚洲人成77777在线视频| 国产精品免费视频内射| 久久这里只有精品19| 久久99热这里只有精品18| 一级毛片精品| 欧美zozozo另类| 少妇粗大呻吟视频| 亚洲avbb在线观看| 国产一区二区在线av高清观看| 成人高潮视频无遮挡免费网站| tocl精华| 中文字幕人成人乱码亚洲影| 成人欧美大片| 99国产精品一区二区蜜桃av| ponron亚洲| www.精华液| 视频区欧美日本亚洲| av免费在线观看网站| 中文字幕精品亚洲无线码一区| 国产蜜桃级精品一区二区三区| 在线国产一区二区在线| 色精品久久人妻99蜜桃| 午夜免费成人在线视频| 久久人妻av系列| 91av网站免费观看| 色哟哟哟哟哟哟| 成熟少妇高潮喷水视频| 国产三级黄色录像| 国产精品免费视频内射| 日本撒尿小便嘘嘘汇集6| 国产精品免费一区二区三区在线| 国产精品亚洲美女久久久| 欧美成狂野欧美在线观看| 无遮挡黄片免费观看| 日韩大尺度精品在线看网址| 久久久久久久精品吃奶| 老司机靠b影院| 国产区一区二久久| 久久精品夜夜夜夜夜久久蜜豆 | 人人妻人人澡欧美一区二区| 人妻久久中文字幕网| avwww免费| 一本精品99久久精品77| 国产欧美日韩精品亚洲av| 后天国语完整版免费观看| 色综合婷婷激情| 黄色视频,在线免费观看| 欧美日韩瑟瑟在线播放| 午夜免费激情av| 中文亚洲av片在线观看爽| 麻豆成人午夜福利视频| 男人舔奶头视频| 欧美成人免费av一区二区三区| 久久精品国产清高在天天线| 人妻丰满熟妇av一区二区三区| 国产区一区二久久| 国产av在哪里看| 91麻豆av在线| 丰满的人妻完整版| 国产成人av激情在线播放| 亚洲无线在线观看| 欧美精品啪啪一区二区三区| 久久久久久久精品吃奶| 久久香蕉激情| 我的老师免费观看完整版| 午夜老司机福利片| 亚洲一区二区三区不卡视频| 午夜福利欧美成人| 午夜成年电影在线免费观看| 久久这里只有精品中国| 首页视频小说图片口味搜索| 少妇熟女aⅴ在线视频|