• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Event-triggered sliding mode load frequency control for multi-area interconnected power systems under deception attacks

    2021-06-24 04:49:16LiuXinghuaBaiDandanSunBaorenWenJiayanLvWenjunLiKun

    Liu Xinghua, Bai Dandan, Sun Baoren, Wen Jiayan, Lv Wenjun, Li Kun

    1. School of Electrical Engineering, Xi’an University of Technology, Xi’an 710054, China; 2. Huaneng Chaohu Power Generation Co. LTD, Chaohu 238000, China; 3. School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545616, China; 4. School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China; 5. Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China

    Abstract: In this paper, the problem of sliding mode load frequency control (LFC) is probed for the multi-area interconnected power system under deception attacks. In the case of deception attacks, a Luenberger observer is designed to generate state estimation of the multi-area power systems. An event-triggered mechanism is introduced to reduce the frequency of controller updates and communication between nodes. Sufficient conditions are proposed to achieve asymptotical stability by utilizing sliding mode control and Lyapunov-Krasovskii (L-K) functional method. Then the sliding mode controller is synthesized to ensure that the trajectory of the closed-loop system can be driven onto the prescribed sliding surface. Finally, the effectiveness of the design scheme is verified by a three-area interconnected power system.

    Keywords: Load frequency control, deception attacks, sliding mode control, event-triggering mechanism

    1 Introduction

    Small changes in frequency will have serious impact on the interconnected power grid. One reason is that it is difficult to estimate the frequency variation caused by a load, and the second is the area exchange on the tie-line power changes, which will bring challenges to the stability of the frequency[1]. Load frequency control (LFC) is an important means to solve the power grid frequency change caused by load variation. Its main function is to ensure the stability of the load frequency of the multi-area interconnection power systems[2]. Frequency stability is an important index of power quality of the power systems[3]. The target of LFC is mainly realized by adjusting the frequency deviation value of the grid and the exchange power value of the tie-line. However, any sudden change of the load may lead to the deviation frequency, which will then seriously affect the stable operation of the systems. Therefore, to ensure the power quality and system stability, an LFC system is required to adjust the frequency of the systems to the rated value and maintain the exchange power of the regional tie-line as the planned value.

    In recent years, with the rapid development of computer network and communication technology, an important type of network control systems (NCS) has been formed. On the one hand, these developments can improve the monitoring efficiency of the power systems and promote information communication. On the other hand, this also leads to the possibility of network attacks on the power systems, and brings challenges to the network security. Hence, it is urgent to analyze the network attacks and study the network security under the network attacks[4-10]. The deception attack is an attack approach in which the attackers impersonate a normal user to gain access to the target or obtain key information, which belongs to such attack techniques as obtaining passwords, malicious codes and the network deception. Deception attacks will affect the stability of power systems operation, and cause systems to breakdown in serious cases. In references[4-6], an advanced resilience event-triggered LFC scheme is proposed, which can reduce the communication burden while resisting DoS attacks in terms of the defense effect and the average trigger period. In references[7-9], , the multi-area LFC power systems under hybrid network attacks, including DoS attacks and deception attacks are studied, and a switching system model with DoS attacks and stochastic deception attacks is established. The stabilization problem of the distributed network control systems under stochastic deception attacks is studied and a decentralized mixed sampling-data strategy is proposed in reference[10] by using the hybrid nondirectional triggering mechanism.

    In view of the above network attacks, there exist the robust control[11,12], sliding mode control(SMC)[13-15], fuzzy control[16], static feedback output control[17]and other methods. A robust state observer is designed[12], which can be used as a detection monitor with guaranteed performance. In reference [13], the finite time convergence problem of the sliding mode variable structure control is considered for a class of uncertain multivariable linear systems, where an exponential nonlinear convergent sliding hypersurface is proposed and its corresponding control scheme is provided. Huang et al[14]establish an adaptive integral sliding-mode control for cyber-physical systems against a class of actuator attacks. Tang et al[15]propose a position sliding mode control for DC-motor position tracking based on a high-gain observer. Compared with other control strategies, the sliding mode control can be independent of object parameters and has no need of online system identification, which shows insensitivity to parameter changes and disturbances.

    To sum up, this paper studies the LFC problem of the multi-area interconnected power systems under deception attacks. So far, this paper is the first to use the event-triggered sliding mode control to solve such problems. The main contributions of this paper are described below.

    (Ⅰ) The event-triggered sliding mode LFC under deception attacks is modeled, which lays a foundation for studying the security of multi-area interconnected power systems.

    (Ⅱ) Aiming at the security problem of the multi-area interconnected power systems, the event-triggered sliding mode LFC strategy is proposed in this paper to realize the stable operation of the systems under deception attacks, which can avoid a lot of unnecessary data transmission and effectively save network resources.

    (Ⅲ) The simulated results of a three-area interconnected power system in a simulation case show the effectiveness of the proposed strategy.

    The rest of this paper is organized as follows. In Section 2, we present the dynamic model of the event-triggered sliding mode LFC under deception attacks. In Section 3, we analyze the stability of the system and carries on the accessibility analysis. A simulation case is used to verify the proposed method in Section 4. Finally, Section 5 concludes this paper.

    NotationsThe following notations are used throughout this paper. E{·} represents mathematical expectations. diag{·} represents the diagonal matrix. Let ‖x‖ and ‖A‖ be the Euclidean norm of a vectorxand a matrixA, respectively. For a symmetric block matrix, we use * to denote the terms introduced by symmetry. We use Rnto denote then-dimensional Euclidean space. sym(A) representsA+AT.

    2 System description and preliminaries

    The system model

    Firstly, the dynamic model of multi-area power systems is described as follows[8]

    (1)

    B=diag[B1,…,BN],C=diag[C1,…,CN],

    The state variablesΔfi,ΔPtie-,ΔPmi,ΔPvi, andΔPdiare the systems frequency deviation value, tie-line power deviation value, mechanical power deviation value, regulator position value and load of theisubregion, respectively.Ri,Mi,Di,TchiandTgiare the velocity sag coefficient, the generator moment of inertia, the generator damping coefficient, the steam capacity time constant and the governor time constant, respectively.βiis the conversion factor between systems power and frequency. It should be noted that the area control error (ACE) of each regioniis not only related to the frequency deviation, but also related to the power exchange of the tie-line between regions, which is defined as follows

    ACEi=βiΔfi+ΔPtie-i.

    We also consider deception attacks, which completely replace the transmitted data with malicious attack signals, thus destroying the transmission of data. This paper assumes that deception attacks occurred randomly, by the statistical property with the given Bernoulli random variableα(t)∈{0,1} in guarantee, the expectation of Eα(t)=α0. We can derive the damage measurement value as

    whereν(t)=-y(t)+ζ(t) for the deception attack signals sent by the attacker,ζ(t) is an energy constrained signal belonging toL2[0,∞].α(t) is a stochastic variable conforming to Bernoulli distribution

    Prob{α(t)=1}=Eα(t):=α0;

    Prob{α(t)=0}=1-Eα(t):=1-α0;

    whereα0∈[0,1] represents the probability of deception attacks. Therefore, after the systems is attacked by deception attacks, the model was rewritten as

    (2)

    It is worth noting that the Bernoulli stochastic variableα(t) can characterize the stochastic occurrence of deception attacks. More specifically, ifα(t)=1, the outputy(t)=α(t)ζ(t), which means that deception attacks occurs during transmission. Ifα(t)=0, the outputy(t)=Cx(t), indicating that the sampling measurement was successfully transmitted to the sliding mode controller.

    2.2 The event-triggered the sliding mode load frequency control

    Generally, NCS adopts a periodic control strategy, which refers to sampling at equal intervals at discrete time points. At two adjacent time points, the control signal remains unchanged due to the effect of zero-order hold (ZOH). The periodic sampling control is easy to be realized by using existing sampling theorems, but it also has many disadvantages. For example, a large number of useless sampled data will be generated, which will increase the network transmission load and occupy the network communication resources. The event-triggered mechanism can decide whether to transmit data according to judgment rules, which can effectively save the occupation of network resources, reduce the power consumption of network nodes, and thus increasing the service life of network nodes. The basic idea of its design is that, on the premise of ensuring that the systems meets the performance conditions, when the transmitted system signal meets the conditions set in the event generator, the signal is successfully sent once.

    Figure 1 shows the control systems based on the event-triggered. As can be seen from Figure 1, to reduce the amount of data transmission, we added an event detector based on the Luenberger observer in the sliding mode controller channel. The following is the trigger condition of the event-triggered mechanism based on Luenberger observer

    Figure 1. The control system with an event-triggered.

    Figure 2. Control input trajectory of the three-area interconnected power system.

    Figure 3. State trajectory of the three-area interconnected power system.

    (3)

    (4)

    whereikh=tkh+lh,l∈N.ikh∈(tkh,tk+1h],tk(k=0,1,2,…),tk+1handtkhare respectively the sampling time of two adjacent signals transmitted to the controller that meet the trigger condition, the trigger matrixΦis a positive definite matrix to be solved,his the sampling period of LFC, and the event-triggered parameterσis a preset constant. In simple terms, when trigger condition (3) is met, it will trigger once and data will be updated. Otherwise, it will not trigger.

    The Luenberger observer is designed as

    (5)

    α(t)ζ(t)]+Fω(t)

    (6)

    According to the observer function, we design the sliding surface as

    (7)

    whereKandXare coefficient matrices. SelectKto makeA+BKsatisfy Hurwitz matrix, and the design ofXsatisfiesBTXBis a non-singular matrix.

    Substitute equation (7) into equation (5), we get

    BTXL[(1-α(t))Ce(t)+α(t)ζ(t)]

    (8)

    [(1-α(t))Ce(t)+α(t)ζ(t)]

    (9)

    Defineη(t)=t-ikh, by using equation (4) and substituting the equivalent input (9) into the observer equation (5), we can obtain the event-triggered SMC dynamic equation as

    (L-B(BTXB)-1BTXL)[(1-α(t)Ce(t)+α(t)ζ(t)]=

    From what has been discussed above, the sliding mode LFC model based on sample error is as

    (10)

    For the convenience of later calculation, the formula (10) is divided into the following two parts.

    (11)

    (12)

    Definition 2.1The main purpose of this paper is to analyze the stability of multi-area LFC systems under deception attacks, and design the sliding mode controller. When the following conditions are met, the closed-loop system (10) are asymptotically stable, and the disturbance suppression level ofH∞isγ.

    (Ⅰ) Whenω(t)=0 andζ(t)=0, the system (10) are asymptotically stable;

    (Ⅱ) Under zero initial conditions, for any non-zeroω(t)∈L2[0,∞] andζ(t)∈L2[0,∞], if the following inequality is true, then the multi-area power system (10) satisfy the performance ofH∞and the disturbance suppression level isγ.

    Lemma 2.1[18]For any real vectoru,vand a symmetric positive matrixQwith compatible dimensions, the following inequality is true.

    uTv+vTu≤uTQu+vTQ-1v.

    3 Main results

    By introducing the lemma and mathematical derivation above, we first give the stability analysis ofH∞of the sliding mode load frequency control model of multi-area interconnection power systems under deception attacks, and give the sufficient condition of the asymptotic stability as shown in Theorem 3.1 and Theorem 3.2. The reachability analysis is then given in Theorem 3.3.

    3.1 System stability analysis

    Theorem 3.1For given level of disturbance rejectionγ>0, scalarα0≥0, the closed-loop system (10) asymptotically stable, and meet theH∞performance, if there exist appropriate dimensions of the positive definite matricesQ1,Q2,W1,W2,L, symmetric positive definite matrixXand matricesU,Nwith appropriate dimensions to make the following inequality is established.

    (13)

    (14)

    where

    Γ11=Γ111-Γ112-Γ113,

    Σ1=sym{XA}+Q1,Σ2=σΦ,

    Σ3=sym{XA}-(1-α0)XLC+W1,

    Ξ2=diag{Q2,-Q2,-W2,-W2,

    ProofFirst, the L-K functional is constructed as

    Then we have

    2eT(t)XAe(t)-2(1-α0)eT(t)XLCe(t)-

    2α0eT(t)XLζ(t)+2eT(t)XFω(t)+

    Apply Lemma 2.1 and we get

    (1-α0)eT(t)CTLTXLCe(t),

    -2α0xT(t)XB(BTXB)-1BTXLζ(t)≤

    Define

    By using the inverse convex method in reference[20] to deal with the expected cross terms, we can get

    Remark 1In this paper, the inverse convex method in reference[20] and the free weighted matrix method are used to deal with the integral coupling term, which greatly reduce the conservatism of the closed-loop system (10).

    According to the proposed event-triggered equations (3) and (4) can be guaranteed

    From what has been discussed above, we can conclude that

    γ2EωT(t)ω(t)+ζT(t)ζ(t)}≤

    γ2E{ωT}(t)ω(t)+{ζT}(t)ζ(t)}.

    Integrate both sides of this equation and we have

    γ2[ωT(t)ω(t)+ζT(t)ζ(t)]dt}.

    For zero initial condition, we can get

    In addition, whenω(t)=0 andζ(t)=0, we get the following inequality.

    (15)

    Then there is a positive scalarε>0 to make the following inequality true.

    (16)

    Forω(t)≠0 andζ(t)≠0, we prove that the closed-loop systems (10) under zero initial conditions hasH∞stable performance.

    Since the nonlinear coupling termXLis included in Theorem 3.1, the observer gainLcannot be directly calculated. Therefore, the following theorem provides a method to determine the observer gain matrixL. We defineY=XL, soL=X-1Y. After linearization, we can get the following theorem.

    (17)

    (18)

    where

    Ξ2=diag{-Q2,-Q2,-W2,-W2},

    From the above theorems, we can get the event-triggered sliding mode LFC systems is asymptotically stable underH∞norm boundγ, and the observer gain isL=X-1Y.

    3.2 Accessibility analysis

    In this section, we will further probe the accessibility of a given sliding surfaces(t)=0. A set of sufficient conditions are given to ensure that the state trajectory of the closed loop system (10) enters the sliding domain near the specified sliding surfaces(t)=0 in a finite time.

    Theorem 3.3For the closed-loop system (10), the sliding surface of form equation(7) is designed, and the uncertain matrixX,Lis obtained from the Theorem 3.2. Then, under the action of the following controller, the trajectory of the systems can reach the sliding surface in a finite time

    (19)

    whereτ>0 is a constant, sgn(·) is a symbolic function,δ(t) is expressed as

    δ(t)=‖(BTXB)-1‖[‖BTXLζ(t)‖+

    2‖BTXLCe(t)‖]

    (20)

    ProofThe lyapunov function is designed as

    (21)

    According to the formula (8), it can be obtained

    BTXL[(1-α(t))Ce(t)+α(t)ζ(t)]

    (22)

    Substitute equation(19) into equation(22), then

    BTXB[-τs(t)-δ(t)·sgn(s(t))]+

    ‖BTXLζ(t)‖+2‖BTXLCe(t)‖

    (23)

    Then substitute equation(23) into equation(21), we have

    -τ‖s(t)‖2-sT(t)δ(t)·sgn(s(t))+

    ‖s(t)‖(BTXB)-1(‖BTXLζ(t)‖+

    2‖BTXLCe(t)‖)≤-τ‖s(t)‖2.

    Obviously, fors(t)≠0, it is proved by the inequality (24) that the state trajectory of system(10) can be forced onto the sliding surfaces(t)=0 in a finite time.

    Remark 2The controller (19) designed by us can make the movement trajectory of system (10) reach the sliding surface in a finite time, which has strong robustness against the disturbance and deception attacks.

    4 The simulation case

    In this section, to prove the effectiveness of the proposed event-triggered SMC scheme in a networked multi-area power system, an example of three-area power system is presented. Table 1 shows the parameters of the associated three-area interconnected power systems[7].

    Table 1. Three-area power system parameters.

    We can describe the systems parameter matrix as

    B=diag{B1,B2,B3},

    C=diag{C1,C2,C3},F=diag{F1,F2,F3}.

    Then the specific parameter matrix of each region can be obtained from Table 1, which will not be described here.

    In our simulation, the synchronous power coefficient is set toT12=0.2 (pu/rad) ,T13=0.12 (pu/rad) ,T23=0.25 (pu/rad) , the sampling period is set toh=0.01s, the rest of the parameter settings areα0=0.2 ,η(t)=0.1 . By solving the linear matrix inequality (17) in the Theorem 3.2, the coefficient matrixXand the observer gainL=X-1Yare obtained. According to the Theorem 3.3, the sliding mode controller is designed as equation(19). The simulation results are shown in Figures 2 to 6 below.

    Figure 4. The observation trajectory of the three-area interconnected power system.

    Figure 5. Error trajectories of the three-area interconnected power system.

    Figure 6. The trigger frequency under the event-triggered mechanism.

    5 Conclusion

    The sliding mode LFC problem of the multi-area power systems under deception attacks was studied in this paper. An appropriate integral sliding surface and a Lyapunov-Krasovskii functional with double integrals have been constructed. Sufficient conditions for the exponential mean square stability withH∞performance have been derived by combining the characteristics of the LFC multi-area power systems and the event-triggered mechanism under deception attacks. Then the sliding mode controller has indicated that the trajectory of the closed-loop dynamic system can be driven to the specified sliding surface. Numerical simulated results have shown the applicability and effectiveness of the control scheme.

    日韩 欧美 亚洲 中文字幕| 中文字幕精品免费在线观看视频| 亚洲成国产人片在线观看| 久久99精品国语久久久| 免费高清在线观看视频在线观看| 亚洲一码二码三码区别大吗| 最新的欧美精品一区二区| 国产欧美日韩综合在线一区二区| 极品人妻少妇av视频| 久久这里只有精品19| 最近最新中文字幕免费大全7| 啦啦啦在线观看免费高清www| 久久久久人妻精品一区果冻| 综合色丁香网| 久久 成人 亚洲| 卡戴珊不雅视频在线播放| 婷婷色综合www| 亚洲精品在线美女| 亚洲av成人不卡在线观看播放网 | 黄频高清免费视频| 欧美激情 高清一区二区三区| 啦啦啦 在线观看视频| 丁香六月天网| av女优亚洲男人天堂| 一区二区三区乱码不卡18| 久久久久视频综合| 久久99精品国语久久久| 十八禁人妻一区二区| 久久天堂一区二区三区四区| 国产无遮挡羞羞视频在线观看| 在线观看免费高清a一片| 亚洲国产欧美在线一区| 亚洲国产中文字幕在线视频| 国产99久久九九免费精品| 日本欧美国产在线视频| 午夜福利影视在线免费观看| 我要看黄色一级片免费的| 国产日韩欧美视频二区| 久久久久国产精品人妻一区二区| 久久久久精品性色| 我要看黄色一级片免费的| 色播在线永久视频| 精品卡一卡二卡四卡免费| 啦啦啦视频在线资源免费观看| 国产成人免费无遮挡视频| 亚洲精品日本国产第一区| 亚洲成人手机| 国产精品一二三区在线看| 婷婷色综合www| 最近中文字幕高清免费大全6| 国产亚洲午夜精品一区二区久久| 亚洲一区二区三区欧美精品| 精品国产露脸久久av麻豆| 大香蕉久久成人网| 视频在线观看一区二区三区| 亚洲熟女精品中文字幕| 女人精品久久久久毛片| 欧美精品av麻豆av| 成人18禁高潮啪啪吃奶动态图| 最近2019中文字幕mv第一页| 亚洲男人天堂网一区| 街头女战士在线观看网站| 中文字幕最新亚洲高清| 老司机靠b影院| 不卡视频在线观看欧美| e午夜精品久久久久久久| 久久精品国产综合久久久| 不卡视频在线观看欧美| 婷婷色综合大香蕉| 啦啦啦中文免费视频观看日本| 亚洲av综合色区一区| 国产成人午夜福利电影在线观看| 香蕉国产在线看| 日韩成人av中文字幕在线观看| 亚洲国产欧美日韩在线播放| 人人妻人人爽人人添夜夜欢视频| 91国产中文字幕| 久久综合国产亚洲精品| 亚洲专区中文字幕在线 | 一本—道久久a久久精品蜜桃钙片| 嫩草影院入口| 久久婷婷青草| 91aial.com中文字幕在线观看| 久久综合国产亚洲精品| 日日啪夜夜爽| 国产熟女欧美一区二区| 国产亚洲欧美精品永久| 性色av一级| 欧美日本中文国产一区发布| 成人国产av品久久久| 久久鲁丝午夜福利片| 男人操女人黄网站| 日韩欧美精品免费久久| 成人午夜精彩视频在线观看| 哪个播放器可以免费观看大片| 一二三四中文在线观看免费高清| 亚洲欧美色中文字幕在线| 满18在线观看网站| 久久综合国产亚洲精品| videos熟女内射| 黄频高清免费视频| 久久久久人妻精品一区果冻| 999久久久国产精品视频| 90打野战视频偷拍视频| 国产亚洲欧美精品永久| 国产黄色视频一区二区在线观看| 成年人免费黄色播放视频| 国产欧美日韩综合在线一区二区| 老司机深夜福利视频在线观看 | 一区二区av电影网| 国产无遮挡羞羞视频在线观看| 美女视频免费永久观看网站| 亚洲av在线观看美女高潮| 另类亚洲欧美激情| 国产在线免费精品| 亚洲av欧美aⅴ国产| av片东京热男人的天堂| 国产精品女同一区二区软件| 欧美成人精品欧美一级黄| 美女高潮到喷水免费观看| 亚洲欧洲国产日韩| 午夜激情av网站| 亚洲,欧美精品.| 日本色播在线视频| 99久国产av精品国产电影| 午夜免费观看性视频| 汤姆久久久久久久影院中文字幕| 精品卡一卡二卡四卡免费| 午夜影院在线不卡| 亚洲天堂av无毛| 好男人视频免费观看在线| 免费黄频网站在线观看国产| 久久精品亚洲av国产电影网| 日韩欧美精品免费久久| avwww免费| 国产精品国产三级专区第一集| 观看美女的网站| 免费黄网站久久成人精品| 香蕉丝袜av| 亚洲国产中文字幕在线视频| 久久久久久久国产电影| 人成视频在线观看免费观看| 我的亚洲天堂| 天天影视国产精品| 亚洲天堂av无毛| av国产久精品久网站免费入址| 在线观看一区二区三区激情| 亚洲美女黄色视频免费看| 91精品伊人久久大香线蕉| 免费黄频网站在线观看国产| 国产 一区精品| 日韩欧美精品免费久久| 一本一本久久a久久精品综合妖精| 99精品久久久久人妻精品| av国产久精品久网站免费入址| 国产淫语在线视频| 欧美日韩福利视频一区二区| 欧美国产精品va在线观看不卡| 亚洲人成网站在线观看播放| 亚洲伊人久久精品综合| 亚洲一区中文字幕在线| 色94色欧美一区二区| 国产成人欧美在线观看 | 精品亚洲成国产av| 成人手机av| 午夜日韩欧美国产| 黄片小视频在线播放| 亚洲欧美成人综合另类久久久| 老司机深夜福利视频在线观看 | 九九爱精品视频在线观看| 在线观看免费视频网站a站| 国产毛片在线视频| 在线观看免费高清a一片| 99热全是精品| 丝瓜视频免费看黄片| 免费高清在线观看日韩| 亚洲欧洲国产日韩| 国产成人啪精品午夜网站| 久久99热这里只频精品6学生| 建设人人有责人人尽责人人享有的| 久久久国产欧美日韩av| 80岁老熟妇乱子伦牲交| 精品国产一区二区三区久久久樱花| 国产精品秋霞免费鲁丝片| 亚洲av电影在线观看一区二区三区| 亚洲综合精品二区| 丰满饥渴人妻一区二区三| 岛国毛片在线播放| 日本色播在线视频| av一本久久久久| 精品国产国语对白av| 中文字幕制服av| 中文字幕另类日韩欧美亚洲嫩草| 午夜老司机福利片| 精品国产一区二区三区四区第35| 日韩欧美一区视频在线观看| 欧美人与善性xxx| 国产有黄有色有爽视频| 亚洲av中文av极速乱| 在线观看免费日韩欧美大片| 日日摸夜夜添夜夜爱| a 毛片基地| 两个人免费观看高清视频| 久久99一区二区三区| 操出白浆在线播放| 超碰成人久久| 伊人久久国产一区二区| 黄频高清免费视频| 日韩制服骚丝袜av| 色播在线永久视频| 天天影视国产精品| 亚洲av日韩在线播放| 成人国语在线视频| 一本久久精品| 久久久国产欧美日韩av| 午夜福利在线免费观看网站| 国产麻豆69| 色播在线永久视频| 精品亚洲乱码少妇综合久久| 国产高清不卡午夜福利| 欧美日韩成人在线一区二区| av天堂久久9| 男人舔女人的私密视频| 亚洲av日韩精品久久久久久密 | av在线老鸭窝| 性高湖久久久久久久久免费观看| 国产97色在线日韩免费| 免费久久久久久久精品成人欧美视频| 久久人人爽人人片av| 国产探花极品一区二区| 欧美精品一区二区免费开放| 成人18禁高潮啪啪吃奶动态图| 免费在线观看视频国产中文字幕亚洲 | 日韩视频在线欧美| 亚洲精品美女久久av网站| 香蕉国产在线看| 国产片内射在线| 欧美日韩av久久| 97在线人人人人妻| 国产女主播在线喷水免费视频网站| 成人国产av品久久久| 久久久国产一区二区| 夜夜骑夜夜射夜夜干| 激情视频va一区二区三区| 另类亚洲欧美激情| 最新的欧美精品一区二区| 久久午夜综合久久蜜桃| 国产亚洲一区二区精品| 欧美精品高潮呻吟av久久| 欧美人与善性xxx| 一级毛片 在线播放| 亚洲欧美激情在线| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦中文免费视频观看日本| 精品视频人人做人人爽| 成人国产av品久久久| 黄色 视频免费看| 精品少妇黑人巨大在线播放| 一级,二级,三级黄色视频| 国产亚洲午夜精品一区二区久久| 国产亚洲av高清不卡| 午夜福利乱码中文字幕| 亚洲av中文av极速乱| 免费观看性生交大片5| 精品人妻一区二区三区麻豆| 男女下面插进去视频免费观看| 青青草视频在线视频观看| 另类精品久久| 色网站视频免费| av网站在线播放免费| 日韩中文字幕欧美一区二区 | 天天添夜夜摸| 久久久精品国产亚洲av高清涩受| 91精品国产国语对白视频| 性色av一级| 超碰97精品在线观看| 亚洲国产毛片av蜜桃av| 狠狠婷婷综合久久久久久88av| 国产一区亚洲一区在线观看| 亚洲婷婷狠狠爱综合网| 女人被躁到高潮嗷嗷叫费观| 久久精品国产亚洲av涩爱| 视频区图区小说| 在线观看国产h片| 亚洲五月色婷婷综合| 午夜福利,免费看| 日本色播在线视频| 嫩草影院入口| 精品人妻一区二区三区麻豆| 亚洲一卡2卡3卡4卡5卡精品中文| 性色av一级| 欧美精品一区二区大全| 一本大道久久a久久精品| 精品少妇黑人巨大在线播放| 欧美国产精品一级二级三级| 亚洲欧美色中文字幕在线| bbb黄色大片| 性色av一级| 亚洲av欧美aⅴ国产| 日韩欧美精品免费久久| 啦啦啦 在线观看视频| 亚洲精品国产色婷婷电影| 亚洲欧美色中文字幕在线| 亚洲欧美成人综合另类久久久| 久久久精品区二区三区| 汤姆久久久久久久影院中文字幕| 一二三四在线观看免费中文在| 欧美激情高清一区二区三区 | av.在线天堂| 丁香六月欧美| 亚洲精品美女久久久久99蜜臀 | 亚洲欧美精品综合一区二区三区| 满18在线观看网站| 亚洲四区av| 夫妻性生交免费视频一级片| 丁香六月欧美| www.av在线官网国产| 久久影院123| 一区福利在线观看| 熟女少妇亚洲综合色aaa.| 欧美日韩av久久| 99国产精品免费福利视频| 国产亚洲午夜精品一区二区久久| 国产淫语在线视频| e午夜精品久久久久久久| 午夜精品国产一区二区电影| 波多野结衣一区麻豆| 侵犯人妻中文字幕一二三四区| 久久精品国产亚洲av高清一级| 王馨瑶露胸无遮挡在线观看| 伦理电影大哥的女人| 国产成人av激情在线播放| 成人午夜精彩视频在线观看| 男女边吃奶边做爰视频| 秋霞伦理黄片| 亚洲精品国产一区二区精华液| 波多野结衣av一区二区av| 成人国产麻豆网| 国产精品久久久久久久久免| 国产女主播在线喷水免费视频网站| 美国免费a级毛片| 久久久国产精品麻豆| 久久久久久久精品精品| 99国产精品免费福利视频| 成人影院久久| 国产日韩欧美在线精品| 日韩大片免费观看网站| 国产亚洲av片在线观看秒播厂| 精品国产一区二区久久| 老熟女久久久| 极品人妻少妇av视频| 男人舔女人的私密视频| 日韩不卡一区二区三区视频在线| 日韩制服丝袜自拍偷拍| 亚洲欧美成人综合另类久久久| 悠悠久久av| 一区二区三区精品91| 亚洲欧美日韩另类电影网站| 国产精品国产三级专区第一集| 国产精品一区二区精品视频观看| 日韩av不卡免费在线播放| 亚洲国产精品成人久久小说| 一级片免费观看大全| 亚洲一区中文字幕在线| 久久久久久久久久久久大奶| 亚洲国产精品成人久久小说| 天天躁夜夜躁狠狠久久av| 亚洲一区中文字幕在线| 一级片免费观看大全| 亚洲欧美中文字幕日韩二区| 久久免费观看电影| 亚洲欧美日韩另类电影网站| 欧美亚洲 丝袜 人妻 在线| 九色亚洲精品在线播放| 日韩人妻精品一区2区三区| 国产片特级美女逼逼视频| 肉色欧美久久久久久久蜜桃| 欧美人与性动交α欧美软件| 高清黄色对白视频在线免费看| 超碰成人久久| 天天操日日干夜夜撸| a级毛片黄视频| 51午夜福利影视在线观看| 欧美人与性动交α欧美软件| 高清黄色对白视频在线免费看| 热99国产精品久久久久久7| 天堂中文最新版在线下载| 高清欧美精品videossex| 99国产综合亚洲精品| 9191精品国产免费久久| 国产精品av久久久久免费| 最近中文字幕高清免费大全6| 高清视频免费观看一区二区| 精品少妇久久久久久888优播| 赤兔流量卡办理| 国产片内射在线| 国产成人午夜福利电影在线观看| 9色porny在线观看| 久久鲁丝午夜福利片| 国产av国产精品国产| 成年人免费黄色播放视频| 久久97久久精品| www.av在线官网国产| 黄色毛片三级朝国网站| 黄色一级大片看看| 丝袜美足系列| 免费观看人在逋| 99久国产av精品国产电影| 大话2 男鬼变身卡| 狂野欧美激情性bbbbbb| 亚洲人成电影观看| 国产精品久久久久久久久免| 精品国产一区二区久久| 丝袜喷水一区| 2018国产大陆天天弄谢| 国产av一区二区精品久久| 精品一区在线观看国产| 一本一本久久a久久精品综合妖精| 欧美日韩视频高清一区二区三区二| 99国产精品免费福利视频| 啦啦啦中文免费视频观看日本| 黄色一级大片看看| 女人爽到高潮嗷嗷叫在线视频| 丝袜美腿诱惑在线| 99久国产av精品国产电影| 亚洲精品aⅴ在线观看| 下体分泌物呈黄色| 国产极品天堂在线| 女人被躁到高潮嗷嗷叫费观| 日本vs欧美在线观看视频| 久久久国产欧美日韩av| 亚洲精品国产一区二区精华液| 久热这里只有精品99| 搡老乐熟女国产| 久久亚洲国产成人精品v| 人人澡人人妻人| 欧美日本中文国产一区发布| 91精品国产国语对白视频| 久久国产精品大桥未久av| 9191精品国产免费久久| 黄色一级大片看看| av电影中文网址| 亚洲七黄色美女视频| 国产精品一区二区精品视频观看| 青草久久国产| www.自偷自拍.com| 777米奇影视久久| 亚洲人成网站在线观看播放| 我的亚洲天堂| 亚洲人成77777在线视频| 久久精品亚洲熟妇少妇任你| 亚洲av欧美aⅴ国产| 一级黄片播放器| 69精品国产乱码久久久| 国产在线一区二区三区精| 色综合欧美亚洲国产小说| 欧美av亚洲av综合av国产av | 久久精品国产亚洲av涩爱| 亚洲成人手机| 国产成人精品久久久久久| 久热爱精品视频在线9| 国产 一区精品| 午夜精品国产一区二区电影| 可以免费在线观看a视频的电影网站 | 大香蕉久久成人网| 国产深夜福利视频在线观看| 午夜激情久久久久久久| 亚洲,欧美精品.| 美女福利国产在线| 精品国产乱码久久久久久男人| 水蜜桃什么品种好| 如日韩欧美国产精品一区二区三区| 成年av动漫网址| 久久久久视频综合| 亚洲人成网站在线观看播放| 久久久久精品国产欧美久久久 | 精品卡一卡二卡四卡免费| 国产在线视频一区二区| 日本av手机在线免费观看| 久久亚洲国产成人精品v| 一级毛片电影观看| 蜜桃在线观看..| 久久久精品94久久精品| avwww免费| 国产精品欧美亚洲77777| 亚洲人成网站在线观看播放| 亚洲国产精品一区三区| 国产精品二区激情视频| 久久97久久精品| 夫妻性生交免费视频一级片| 亚洲婷婷狠狠爱综合网| 国产av码专区亚洲av| 国产免费视频播放在线视频| 91精品三级在线观看| 9色porny在线观看| 日韩视频在线欧美| 中文精品一卡2卡3卡4更新| 一个人免费看片子| 一本—道久久a久久精品蜜桃钙片| 精品人妻一区二区三区麻豆| 在线亚洲精品国产二区图片欧美| 久久久亚洲精品成人影院| 亚洲欧美精品综合一区二区三区| 美女大奶头黄色视频| 久久久久网色| 国产伦人伦偷精品视频| 咕卡用的链子| 美女脱内裤让男人舔精品视频| 欧美日韩国产mv在线观看视频| 亚洲av电影在线进入| 啦啦啦视频在线资源免费观看| 欧美人与善性xxx| 两个人看的免费小视频| 亚洲第一青青草原| 在线观看国产h片| 亚洲视频免费观看视频| 国产精品 欧美亚洲| 国产精品国产av在线观看| 搡老乐熟女国产| 欧美老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 91精品三级在线观看| 亚洲 欧美一区二区三区| 日本黄色日本黄色录像| 国产av国产精品国产| 看十八女毛片水多多多| 国产成人精品无人区| 五月天丁香电影| 久久精品人人爽人人爽视色| 丝袜美足系列| 国产精品av久久久久免费| netflix在线观看网站| 大陆偷拍与自拍| 欧美国产精品va在线观看不卡| 久久免费观看电影| 999精品在线视频| 国产精品秋霞免费鲁丝片| 天天影视国产精品| 制服人妻中文乱码| 黄色视频不卡| 欧美日韩国产mv在线观看视频| 精品国产露脸久久av麻豆| 久久久久网色| 永久免费av网站大全| 精品少妇一区二区三区视频日本电影 | 涩涩av久久男人的天堂| 日本vs欧美在线观看视频| 久久人人97超碰香蕉20202| 亚洲国产av新网站| 高清在线视频一区二区三区| 桃花免费在线播放| 午夜影院在线不卡| 久久久国产一区二区| 久久久欧美国产精品| 黑人欧美特级aaaaaa片| 久久久久精品人妻al黑| av卡一久久| 欧美日韩综合久久久久久| 免费日韩欧美在线观看| 一级片免费观看大全| 在线观看www视频免费| 亚洲人成电影观看| 久久久久久久大尺度免费视频| 国产欧美日韩综合在线一区二区| 新久久久久国产一级毛片| 色综合欧美亚洲国产小说| 国产精品久久久人人做人人爽| 在线观看国产h片| 成年人免费黄色播放视频| 久久精品国产综合久久久| 国产成人精品久久久久久| 亚洲精品第二区| 色吧在线观看| 捣出白浆h1v1| 久久精品亚洲熟妇少妇任你| 免费在线观看黄色视频的| 亚洲精品久久成人aⅴ小说| 好男人视频免费观看在线| 91国产中文字幕| 日韩 欧美 亚洲 中文字幕| 中文字幕高清在线视频| 久久99精品国语久久久| 久久国产精品男人的天堂亚洲| 久久99热这里只频精品6学生| 久久久久久久久久久久大奶| 日日啪夜夜爽| 人人妻人人添人人爽欧美一区卜| 欧美在线一区亚洲| 伊人久久国产一区二区| 国产日韩一区二区三区精品不卡| 精品国产露脸久久av麻豆| 黄色 视频免费看| 国产精品 欧美亚洲| 在线天堂最新版资源| 天堂俺去俺来也www色官网| 中文字幕色久视频| 国产欧美亚洲国产| 秋霞在线观看毛片| 色婷婷av一区二区三区视频| 国产精品二区激情视频| 国产 精品1| 日韩大片免费观看网站| 岛国毛片在线播放| 久久久久国产精品人妻一区二区| 十分钟在线观看高清视频www| 在线天堂中文资源库| 亚洲精品第二区| 一本色道久久久久久精品综合| 大香蕉久久网| 一级a爱视频在线免费观看| 一本色道久久久久久精品综合| 国产成人精品福利久久| 亚洲欧美日韩另类电影网站| 免费不卡黄色视频| 午夜免费男女啪啪视频观看|