• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of Organic Aerosol at a Rural Site in the North China Plain Region: Sources, Volatility and Organonitrates

    2021-06-22 07:27:16QiaoZHULiMingCAOMengXueTANGXiaoFengHUANGEriSAIKAWAandLingYanHE
    Advances in Atmospheric Sciences 2021年7期

    Qiao ZHU, Li-Ming CAO, Meng-Xue TANG, Xiao-Feng HUANG,Eri SAIKAWA, and Ling-Yan HE*

    1Key Laboratory for Urban Habitat Environmental Science and Technology,Peking University Shenzhen Graduate School, Shenzhen 518055, China

    2Department of Environmental Sciences, Emory University, Atlanta, GA 30322, USA 3Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA

    ABSTRACT The North China Plain (NCP) is a region that experiences serious aerosol pollution. A number of studies have focused on aerosol pollution in urban areas in the NCP region; however, research on characterizing aerosols in rural NCP areas is comparatively limited. In this study, we deployed a TD-HR-AMS (thermodenuder high-resolution aerosol mass spectrometer) system at a rural site in the NCP region in summer 2013 to characterize the chemical compositions and volatility of submicron aerosols (PM1). The average PM1 mass concentration was 51.2 ± 48.0 μg m?3 and organic aerosol(OA) contributed most (35.4%) to PM1. Positive matrix factorization (PMF) analysis of OA measurements identified four OA factors, including hydrocarbon-like OA (HOA, accounting for 18.4%), biomass burning OA (BBOA, 29.4%), lessoxidized oxygenated OA (LO-OOA, 30.8%) and more-oxidized oxygenated OA (MO-OOA, 21.4%). The volatility sequence of the OA factors was HOA > BBOA > LO-OOA > MO-OOA, consistent with their oxygen-to-carbon (O:C)ratios. Additionally, the mean concentration of organonitrates (ON) was 1.48?3.39 μg m?3, contributing 8.1%–19% of OA based on cross validation of two estimation methods with the high-resolution time-of-flight aerosol mass spectrometer (HRToF-AMS) measurement. Correlation analysis shows that ON were more correlated with BBOA and black carbon emitted from biomass burning but poorly correlated with LO-OOA. Also, volatility analysis for ON further confirmed that particulate ON formation might be closely associated with primary emissions in rural NCP areas.

    Key words: organic aerosols, volatility, organonitrates, biomass burning, North China Plain

    1. Introduction

    Atmospheric fine aerosols have attracted much attention from the public owing to their adverse effects on visibility, global climate and human health (Dockery et al., 1993;Charlson and Heintzenberg, 1995; Haywood and Boucher,2000; Ramanathan et al., 2001; IPCC, 2013). The North China Plain (NCP), which is one of the most important city clusters in China, is a global hotspot of aerosol pollution originated from both natural (e.g., dust storms) and anthropogenic (e.g., industrial emissions, vehicle emissions and biomass burning) sources. As a result, numerous studies on the sources, formation and evolution processes of aerosols have been conducted in urban regions, such as Beijing, Tianjin,and some cities in Hebei Province that have experienced severe air pollution (Song et al., 2006; Gu et al., 2010;Huang et al., 2010; Liu et al., 2012; Sun et al., 2012; Wang et al., 2014; Li et al., 2017). Compared to studies on the urban atmosphere, studies focusing on aerosol characterization in rural NCP areas are much more limited. For example, as a key property for aerosols, volatility can greatly influence the mass concentration and size distribution of aerosols via gas–particle partitioning (Lazaridis,1999; Pankow and Barsanti, 2009; Bilde et al., 2015), and previous studies suggest that the volatility of different aerosol compounds may vary from site to site (Huffman et al.,2009a, b; Bi et al., 2015; Cao et al., 2018, 2019; Xu et al.,2019). However, to the best of our knowledge, aerosol volatility measurements in rural NCP areas do not exist. Research on the volatility of different aerosol compounds in rural NCP areas is needed to obtain a more comprehensive understanding of aerosol fate on the regional scale. Three methods are frequently applied to measure the volatility of aerosols: VTDMA (volatility tandem differential mobility analyzer) (Dassios and Pandis, 1999; Kuhn et al., 2005; Saleh et al., 2008), dilution samplers (Shrivastava et al., 2006),and the combination of a thermodenuder and aerosol mass spectrometer (TD-AMS system) (Huffman et al., 2008).Among them, the TD-AMS system can measure the volatility of different chemical compositions with a high temporal resolution and has been widely used in field campaigns (Huffman et al., 2009a, b; Bi et al., 2015; Cao et al., 2018, 2019;Xu et al., 2019) and laboratory studies (Kolesar et al., 2015;Saha and Grieshop, 2016).

    Organonitrates (ON) are generating increasing interest owing to their crucial role in the chemistry of atmospheric oxidation and potentially significant influence on regional air quality, climate change and global biogeochemical cycles (Bertman et al., 1995; Jenkin and Clemitshaw, 2000;Russo et al., 2010). The broad definition of ON includes peroxy nitrates (RONO) and multifunction alkyl nitrates(RONO). Lacking the ideal analytical instruments to detect the bulk ON was the biggest obstacle for fully understanding the chemistry of ON in the past. In recent years, several advanced techniques have emerged that are capable of measuring various kinds of ON, especially for particulate ON. Aerosol mass spectrometry (AMS), which has been widely used to characterize organic compounds of aerosols with high temporal resolution, can quantify the number of ON species based on indirect estimation methods (Farmer et al., 2010;Hao et al., 2014; Xu et al., 2015a, b). Rollins et al. (2012)reported the first direct ambient measurement of particulate ON by the Berkeley thermal dissociation-laser induced fluorescence method. These measurements provided significant evidence that ON contribute a substantial portion of the secondary organic aerosols (Rollins et al., 2012; Fry et al.,2013; Ayres et al., 2015; Boyd et al., 2015; Xu et al.,2015b; Lee et al., 2016; Yu et al., 2019). There are two main secondary formation pathways for ON: OH-initiated oxidation of hydrocarbons in the presence of NOin the daytime, and NO-induced oxidation of alkenes at night. For the secondary formation pathway, several studies have shown that particulate ON yields were high via nighttime NOreacting with biogenic unsaturated alkenes (i.e., isoprene and monoterpene) (Fry et al., 2009; Ayres et al.,2015; Boyd et al., 2015, 2017). Very recently, Joo et al.(2019) reported that particulate ON can be formed from the reaction of NOoxidation of 3-Methylfuran, which is an important tracer species in biomass burning plumes.However, the properties, sources and formation mechanisms of particulate ON are still not well understood (Perring et al., 2013). To the best of our knowledge, most research on particulate ON has been conducted in the U.S.and Europe (Perring et al., 2013; Ng et al., 2017), and very few studies have reported detailed particulate ON results for urban areas in China (Xu et al., 2017; Yu et al., 2019),which are characterized by an atmosphere with a large variety of anthropogenic pollutants.

    In this study, we conducted aerosol measurements using a TD coupled with an Aerodyne high-resolution timeof-flight aerosol mass spectrometer (TD-HR-AMS) and other collocated instruments at a rural site in the NCP region in summer 2013. Besides investigating the sources and volatility of organic aerosol (OA), we also focused on characterizing the particulate ON with mass concentration,volatility and their possible sources in the NCP rural region.

    2. Materials and methods

    2.1. Site description and instrumentation

    The sampling site (39.80°N, 116.96°E; 15 m MSL) was at Xianghe Atmospheric Observatory of the Institute of Atmospheric Physics, Chinese Academy of Sciences. This site is a rural site surrounded by agricultural fields and located between Beijing and Tianjin, which are the two most important megacities in the NCP region (Fig. 1). The site’s location means that it experiences plumes derived from local agricultural activities or regional transport from urban areas.Measurements were performed from 9 June to 9 July 2013.

    The TD-HR-AMS system was deployed at the site to characterize the chemical compositions, mass concentrations and volatility of non-refractory particulate matter (NRPM) (DeCarlo et al., 2006; Canagaratna et al., 2007). A detailed description of the setup and operation of the TDHR-AMS during measurements can be found in our previous studies (Cao et al., 2018, 2019). Briefly, a PMcyclone was used to remove coarse particles and introduce the ambient air into the TD-HR-AMS and a scanning mobility particle sizer system (3775 CPC and 3080 DMA, TSI Inc.)through a copper tube with a flow of 10 L min. The TD was positioned upstream of the HR-ToF-AMS, and the flow rate passing through the TD was 0.45 L minwith a residence time of ~27.9 s in the heating section. The TD included a heating section and denuder section. The temperatures in the heating section were set at 48°C, 95°C, 143°C and 192°C, corresponding to the measured temperatures of 50°C, 100°C, 150°C and 200°C, respectively. Ambient aerosols can pass through directly (bypass flow) or through the TD section (TD flow), and are then dried by a nafion to eliminate the potential influence of relative humidity on the particle collection efficiency (CE) (Matthew et al., 2008).The ionization efficiency (IE) and size calibrations were performed with size-selected pure ammonium-nitrate particles every two weeks. A composition-dependent CE was applied to the data based on the method of Middlebrook et al.(2012). The NR-PMspecies were quantified by the Vmode with unit mass resolution, while the high-resolution mass spectral data were obtained by the W-mode. We operated the HR-ToF-AMS in four menus: bypass flow in Vmode, TD flow in V-mode, TD flow in W-mode, and bypass flow in W-mode, each with a sampling time of 2 min.Besides the TD-HR-AMS system, an aethalometer (AE-31,Magee Inc.) was simultaneously used to measure refractory black carbon (BC) with a temporal resolution of 5 min. The wavelength of 880 nm was used to calculate the mass concentration of BC. The total measured BC can be divided into BC derived from traffic emissions (BC_tr) and biomass burning (BC_bb) based on the aerosol absorption as described in Sandradewi et al., (2008), shown in Text S1 in the Electronic Supplementary Material (ESM).

    2.2. HR-ToF-AMS data routine processing and positive matrix factorization analysis

    The HR-ToF-AMS data routine analysis was performed using the software SQUIRREL (version 1.57) and PIKA (version 1.16) downloaded from the ToF-AMS software downloads webpage (http://cires1.colorado.edu/jimenezgroup/ToFAMSResources/ToFSoftware/index.html)written in Igor Pro 6.37 (Wave Metrics Inc.). The relative IEs for organics, nitrates and chlorides were assumed to be 1.4, 1.1 and 1.3, respectively. A composition-dependent CE was applied to the data based on the method of Middlebrook et al. (2012). Organic elemental analyses, such as the oxygen-to-carbon ratio (O:C), and hydrogen-to-carbon ratio, are determined by the latest procedures proposed by Canagaratna et al. (2015).

    2.3. Estimation of ON mass concentration

    3. Results and discussion

    3.1. PM1 composition and OA source apportionment

    The daily average ambient PMmass concentration was 51.2 ± 48.0 μg m(mean ± standard deviation), ranging from 1.5 to 466 μg m, shown in Fig. 2a. The biggest contributor of PMmass loading during summer 2013 was organic (35.4%), followed by sulfate (31.3%), ammonium(12.8%) and nitrate (11.4%) (Fig. 2b). Figure 2c indicates the variation in relative contributions of different species as a function of the total PMmass loading. We can see that organics show a continuously increasing fraction when PMwas accumulating, implying OA played a more important role in extremely polluted periods. Therefore, we discuss the source apportionment of OA further below.

    Fig. 1. Location of the sampling site (Xianghe).

    Fig. 2. (a) Time series of PM1 species. (b) Pie chart showing the average chemical compositions. (c)Evolutions of PM1 compositions (left-hand axis) as a function of PM1 mass concentration, and the probability distributions of PM1 mass concentration (white line to the right-hand axis).

    3.2. Estimating results of ON and correlation analysis

    Figure 5a shows scatterplots of NOversus OA factors resolved by PMF analysis, BC from biomass burning (BC_bb), and BC from traffic emissions (BC_tr). We find that NOhad good correlations with BBOA (r =0.71) and BC_bb (r = 0.67), but a poor correlation with LOOOA (r = 0.20), which is quite different from the results in other regions that show the highest ON correlation with LOOOA (Xu et al., 2015a, b; Yu et al., 2019). Particulate ON formation is found to be through photooxidation of biogenic VOCs in the presence of NOin the daytime (Teng et al., 2015, 2017) and NOradicals oxidation of biogenic VOCs at night (Fry et al., 2013; Ayres et al., 2015; Boyd et al., 2015; Xu et al., 2015b; Lee et al., 2016; Yu et al., 2019).However, recent studies show that NOradicals reacting with typical VOCs in biomass burning plumes could also produce a substantial fraction of particulate ON (Ahern et al.,2019; Joo et al., 2019). The good correlation between ON and biomass burning aerosols in this study indicate the possible existence of different formation mechanisms of ON relevant to biomass burning plumes in the real atmosphere.Here, we further compared the diurnal variation of NO, inorganic nitrates (NO), BBOA and BC_bb in Fig. 4c. First, the result shows that NOhad a quite different diurnal variation from NO, implying that ON has been well separated from inorganic nitrates in this study. Furthermore, NOincreased by nearly two times from 1700 LST to 2200 LST and maintained a relative high mass loading level during the nighttime. We note that there were two similar peaks at 2100–2200 LST and 0300–0400 LST in the NO, BBOA and BC_bb variation trends. A number of studies have proposed that nighttime biomass burning contributes to OA compositions in field campaigns, in particular with some specific ON species formation (Allan et al., 2010; Iinuma et al., 2010, 2016;Mohr et al., 2013). However, these studies did not describe the influence of biomass burning on overall ON. In order to better understand ON in this case, we will attempt to characterize it from the property of volatility in the following section.

    Fig. 3. (a) MS profiles of the OA factors. (b) Pie chart showing the average OA components. (c) Diurnal patterns of the OA components.

    Table 1. Summary of ON estimations using the NO+/NO2+ ratio method and the PMF method.

    3.3. Volatility characteristics of OA factors and ON

    The mass fraction remaining (MFR) of different OA factors resolved by PMF analysis, ON and inorganic nitrates are shown in Fig. 6. MFRs varied differently among different OA factors. The MFR of HOA was 0.58 at 50°C and decreased by 1.70 % °C; then the evaporation rate slowed down from 50°C to 200°C with a nearly constant rate of 0.35% °C, and only 4.9% was left at 200°C. BBOA had a similar MFR variation to HOA, with a fast decrease from ambient temperature to 50°C (evaporation rate was 2% °C)and a slower decrease from 50°C to 200°C (0.5% °Cfor 50°C–150°C and 0.006% °Cfor 150°C–200°C), but much wider standard deviation (SD) areas at temperature stages,suggesting BBOA contained more compounds that have different evaporation, which agrees with the BBOA factor in this case consisting of fresh and aged ones. The MFR of LO-OOA at 50°C was 0.72, lower than that of MO-OOA(0.80) and with increased temperature, and the MFR of MO-OOA decreased much slower than LO-OOA and other OA factors, both implying that MO-OOA was less volatile compared to other OA factors. The volatility sequence of OA factors in this study was HOA > BBOA > LO-OOA >MO-OOA, determined by the MFR at 50°C (Cao et al.,2018, 2019; Xu et al., 2019).

    Fig. 4. (a) Time series of NO3, org concentration estimated by the NO+/NO2+ ratio method and PMF method for the study period. (b) Correlations between NO3_org_ratio_1 and NO3_org_PMF. (c) Diurnal trends of NO3_org_ratio_1, BC_bb(left-hand axis), inorganic nitrates (NO3_inorg) and BBOA (right-hand axis).

    Fig. 5. (a) Correlations of NO3, org1_ratio with OA factors resolved by PMF, BC from biomass burning (BC_bb), and BC from traffic emissions (BC_tr). (b) Time series of NO3, org concentration estimated by the NO+/N ratio method(NO3_org), BC_bb (left axis) and BBOA (right-hand axis).

    4. Conclusions

    The ON were quantified by two methods, i.e.,ratio method and PMF method. Both methods provided reasonable and comparable results in abstracting ON functionality from total measured nitrates. The nitrate functionality of ON (i.e., NO) accounted for about 7.8%–12% of total measured nitrates (NO). Furthermore, the mass concentration of ON was estimated assuming the molecular weight of bulk ON, and they contributed a substantial fraction(8.1%–19%) to total OA. ON show good correlations with BBOA (r = 0.71) and BC from biomass burning (r = 0.67)but poor correlation with LO-OOA (r = 0.20). High levels of biomass burning emissions at night and several similar nighttime peaks of ON, BBOA and BC from biomass burning in diurnal trends suggest ON were influenced by biomass burning. The volatility analysis shows that the overall ON were more volatile than other OA factors at 50°C.Based on these results, we can conclude that particulate ON in rural NCP areas are more relevant to primary emissions,with biomass burning as the most likely source responsible.

    Fig. 6. Variation of the average MFR of OA factors (a–d) resolved by PMF, ON (NO3_org) (e), and inorganic nitrates(f) with the TD temperature. The shaded regions indicate the average ± SD.

    Acknowledgements

    . This work was supported by the Ministry of Science and Technology of China (Grant No.2017YFC0210004), the National Natural Science Foundation of China (Grant No. 91744202), and the China Postdoctoral Science Foundation and Guangdong Province Outstanding Young Talents for the International Education & Development Plan: Post-Doctoral Program.

    Electronic supplementary material:

    Supplementary material is available in the online version of this article at https://doi.org/10.1007/s00376-020-0127-2.

    亚洲伊人色综图| 国产成人欧美在线观看 | 国产淫语在线视频| 亚洲成色77777| 日本av免费视频播放| 久久久国产一区二区| 一本久久精品| 在线观看人妻少妇| 国产三级黄色录像| 香蕉国产在线看| www.熟女人妻精品国产| 9热在线视频观看99| 纯流量卡能插随身wifi吗| 赤兔流量卡办理| videosex国产| 亚洲国产日韩一区二区| 美女中出高潮动态图| 久久亚洲精品不卡| 国产熟女欧美一区二区| 日韩制服骚丝袜av| 久久国产亚洲av麻豆专区| 国产日韩欧美视频二区| 赤兔流量卡办理| 美女大奶头黄色视频| 中文精品一卡2卡3卡4更新| 国产成人精品久久二区二区免费| 亚洲av成人不卡在线观看播放网 | 欧美精品一区二区免费开放| 久久久久精品国产欧美久久久 | 蜜桃国产av成人99| 人妻一区二区av| 婷婷色麻豆天堂久久| √禁漫天堂资源中文www| 国产老妇伦熟女老妇高清| 在线观看人妻少妇| 久久人妻熟女aⅴ| 久久久久久亚洲精品国产蜜桃av| 不卡av一区二区三区| 新久久久久国产一级毛片| 岛国毛片在线播放| 麻豆国产av国片精品| 久久人人爽av亚洲精品天堂| 悠悠久久av| 亚洲,欧美,日韩| 久久99精品国语久久久| 中国国产av一级| 欧美日韩av久久| 久久狼人影院| 亚洲精品自拍成人| 国产高清国产精品国产三级| 国产精品99久久99久久久不卡| 男女无遮挡免费网站观看| 性色av乱码一区二区三区2| 七月丁香在线播放| 亚洲欧美清纯卡通| av在线app专区| 午夜福利在线免费观看网站| 各种免费的搞黄视频| 夜夜骑夜夜射夜夜干| 久久精品国产a三级三级三级| 日韩熟女老妇一区二区性免费视频| 美女主播在线视频| 一级毛片女人18水好多 | 国产97色在线日韩免费| 免费在线观看视频国产中文字幕亚洲 | 新久久久久国产一级毛片| 99精国产麻豆久久婷婷| 最新在线观看一区二区三区 | 黄色一级大片看看| av福利片在线| 亚洲国产最新在线播放| 国产成人系列免费观看| 久久99一区二区三区| 中文字幕色久视频| 一边摸一边抽搐一进一出视频| 美女午夜性视频免费| 久久99一区二区三区| 国产精品人妻久久久影院| 老司机深夜福利视频在线观看 | 91精品三级在线观看| 亚洲,欧美精品.| 夜夜骑夜夜射夜夜干| 中文乱码字字幕精品一区二区三区| 国产视频一区二区在线看| 精品一区二区三卡| 亚洲人成77777在线视频| 日韩人妻精品一区2区三区| 在线观看免费午夜福利视频| 免费不卡黄色视频| av在线播放精品| 一级黄片播放器| av在线app专区| 在线观看免费视频网站a站| 国产91精品成人一区二区三区 | 久久天堂一区二区三区四区| 欧美精品一区二区大全| www.熟女人妻精品国产| 亚洲三区欧美一区| 久久精品国产亚洲av涩爱| 欧美日韩福利视频一区二区| 国产免费视频播放在线视频| 国产一区有黄有色的免费视频| 高清黄色对白视频在线免费看| 亚洲综合色网址| 国产片特级美女逼逼视频| 午夜福利一区二区在线看| 免费看十八禁软件| 亚洲精品久久午夜乱码| 久久人人97超碰香蕉20202| videosex国产| 高清av免费在线| 国产精品99久久99久久久不卡| 国产欧美日韩一区二区三 | 欧美日韩福利视频一区二区| 老司机影院成人| 午夜福利乱码中文字幕| 国产黄频视频在线观看| 免费在线观看日本一区| 人人妻,人人澡人人爽秒播 | 国产免费视频播放在线视频| 精品亚洲成国产av| 亚洲av日韩在线播放| 男女高潮啪啪啪动态图| 久久久久久人人人人人| 波野结衣二区三区在线| 国产一区亚洲一区在线观看| 日韩中文字幕欧美一区二区 | 中文字幕精品免费在线观看视频| 啦啦啦啦在线视频资源| 久久久久精品人妻al黑| 极品人妻少妇av视频| 精品久久久精品久久久| 成人午夜精彩视频在线观看| 一区二区三区精品91| 国产1区2区3区精品| 侵犯人妻中文字幕一二三四区| 国产精品久久久久久精品电影小说| 亚洲黑人精品在线| 美女主播在线视频| 亚洲国产中文字幕在线视频| 色播在线永久视频| 亚洲中文字幕日韩| 欧美97在线视频| 夫妻性生交免费视频一级片| 别揉我奶头~嗯~啊~动态视频 | 自拍欧美九色日韩亚洲蝌蚪91| 日日爽夜夜爽网站| 国产亚洲av高清不卡| 少妇精品久久久久久久| 黄色视频不卡| 在线观看免费日韩欧美大片| 多毛熟女@视频| 亚洲五月色婷婷综合| 99re6热这里在线精品视频| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频| www.999成人在线观看| 国产成人av教育| 老司机亚洲免费影院| av视频免费观看在线观看| 免费观看a级毛片全部| 王馨瑶露胸无遮挡在线观看| av视频免费观看在线观看| 欧美人与性动交α欧美精品济南到| 丝袜美足系列| 欧美黑人精品巨大| 香蕉国产在线看| 亚洲国产最新在线播放| 亚洲视频免费观看视频| 亚洲欧美成人综合另类久久久| 亚洲自偷自拍图片 自拍| 免费看不卡的av| 别揉我奶头~嗯~啊~动态视频 | 国产xxxxx性猛交| 嫁个100分男人电影在线观看 | 永久免费av网站大全| 久久热在线av| 国产精品久久久av美女十八| 日本色播在线视频| 不卡av一区二区三区| 熟女av电影| 亚洲伊人久久精品综合| 欧美精品亚洲一区二区| 看十八女毛片水多多多| 婷婷丁香在线五月| 黄色 视频免费看| 亚洲九九香蕉| 一区二区三区四区激情视频| 国产免费又黄又爽又色| 亚洲色图 男人天堂 中文字幕| 亚洲欧美一区二区三区久久| 午夜福利,免费看| 操美女的视频在线观看| 一边摸一边做爽爽视频免费| 午夜福利在线免费观看网站| 91老司机精品| 亚洲国产毛片av蜜桃av| 如日韩欧美国产精品一区二区三区| 9191精品国产免费久久| 热99久久久久精品小说推荐| av又黄又爽大尺度在线免费看| 日韩一区二区三区影片| 99精国产麻豆久久婷婷| 黄色a级毛片大全视频| 女人高潮潮喷娇喘18禁视频| 亚洲激情五月婷婷啪啪| 久久精品国产综合久久久| 午夜福利一区二区在线看| 一区二区av电影网| 又紧又爽又黄一区二区| 色网站视频免费| 免费av中文字幕在线| 91字幕亚洲| 天天躁夜夜躁狠狠久久av| 在线观看免费高清a一片| 日韩精品免费视频一区二区三区| 久久这里只有精品19| 一级黄色大片毛片| 免费观看人在逋| 男女国产视频网站| 国产日韩欧美亚洲二区| 久久九九热精品免费| 一本综合久久免费| 国产在线视频一区二区| 久久久精品94久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 男人操女人黄网站| 亚洲一区中文字幕在线| 久久久国产精品麻豆| 久久久久精品国产欧美久久久 | 两个人免费观看高清视频| 精品国产一区二区久久| 妹子高潮喷水视频| 亚洲一码二码三码区别大吗| 精品国产国语对白av| 国产91精品成人一区二区三区 | 女警被强在线播放| 一边摸一边做爽爽视频免费| 欧美精品一区二区大全| 国语对白做爰xxxⅹ性视频网站| 亚洲男人天堂网一区| 亚洲国产欧美在线一区| 伊人久久大香线蕉亚洲五| 电影成人av| 中文字幕高清在线视频| 赤兔流量卡办理| 亚洲av男天堂| 日韩制服丝袜自拍偷拍| 两性夫妻黄色片| 热99国产精品久久久久久7| 黄色一级大片看看| 9色porny在线观看| 国产主播在线观看一区二区 | 午夜免费观看性视频| 国产国语露脸激情在线看| 少妇 在线观看| 天天添夜夜摸| 亚洲 欧美一区二区三区| 两个人免费观看高清视频| 亚洲av男天堂| 国产在线一区二区三区精| 久久性视频一级片| 欧美日韩精品网址| 亚洲欧美精品自产自拍| 在线观看免费高清a一片| kizo精华| 国产亚洲午夜精品一区二区久久| 国产免费又黄又爽又色| 桃花免费在线播放| 亚洲精品国产av蜜桃| 国产精品国产三级专区第一集| 免费在线观看视频国产中文字幕亚洲 | 女人久久www免费人成看片| 久久久久精品国产欧美久久久 | 午夜激情av网站| 欧美日韩综合久久久久久| 亚洲情色 制服丝袜| 一区福利在线观看| 国产成人免费观看mmmm| 嫩草影视91久久| 美女大奶头黄色视频| 精品一区在线观看国产| 国产精品一二三区在线看| 国产精品二区激情视频| 欧美成狂野欧美在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲精品第二区| 男女床上黄色一级片免费看| 精品熟女少妇八av免费久了| 人妻人人澡人人爽人人| 日韩 欧美 亚洲 中文字幕| 亚洲激情五月婷婷啪啪| 国产成人av激情在线播放| 久久久久久人人人人人| 99国产综合亚洲精品| 亚洲成国产人片在线观看| a 毛片基地| 高清视频免费观看一区二区| 免费在线观看黄色视频的| 女人爽到高潮嗷嗷叫在线视频| videos熟女内射| a级毛片在线看网站| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品国产av蜜桃| 国产成人精品久久久久久| 精品第一国产精品| 国产不卡av网站在线观看| 中文字幕色久视频| 少妇精品久久久久久久| 亚洲成国产人片在线观看| 国产深夜福利视频在线观看| 精品国产一区二区久久| 免费在线观看影片大全网站 | 超碰成人久久| 国产精品av久久久久免费| av在线播放精品| 一本一本久久a久久精品综合妖精| 国产激情久久老熟女| 国产成人系列免费观看| 少妇的丰满在线观看| 精品人妻1区二区| av福利片在线| 狠狠精品人妻久久久久久综合| 香蕉国产在线看| 一边摸一边做爽爽视频免费| 亚洲av国产av综合av卡| 9热在线视频观看99| 亚洲欧美精品自产自拍| 夜夜骑夜夜射夜夜干| 国产高清不卡午夜福利| 亚洲av片天天在线观看| 黑丝袜美女国产一区| 男男h啪啪无遮挡| 啦啦啦 在线观看视频| 久久国产精品人妻蜜桃| 国产精品久久久人人做人人爽| 国产成人欧美在线观看 | 欧美国产精品一级二级三级| 少妇被粗大的猛进出69影院| 欧美大码av| 人妻 亚洲 视频| 亚洲精品国产一区二区精华液| 无遮挡黄片免费观看| 日韩制服骚丝袜av| 97在线人人人人妻| 七月丁香在线播放| av在线老鸭窝| 桃花免费在线播放| 女人高潮潮喷娇喘18禁视频| 18禁裸乳无遮挡动漫免费视频| 新久久久久国产一级毛片| 国产一区二区在线观看av| 好男人电影高清在线观看| 在线观看免费午夜福利视频| 国产深夜福利视频在线观看| 七月丁香在线播放| 精品人妻1区二区| 国产一区二区在线观看av| 丝瓜视频免费看黄片| 国产欧美日韩综合在线一区二区| www.自偷自拍.com| 桃花免费在线播放| 亚洲第一av免费看| 大片电影免费在线观看免费| 两个人免费观看高清视频| 多毛熟女@视频| 成人午夜精彩视频在线观看| 青春草亚洲视频在线观看| 人妻 亚洲 视频| 欧美少妇被猛烈插入视频| 考比视频在线观看| 国产一区二区 视频在线| 久久av网站| 制服人妻中文乱码| 人妻一区二区av| 久久人人爽av亚洲精品天堂| 看免费成人av毛片| 99久久99久久久精品蜜桃| 久久国产精品大桥未久av| 99九九在线精品视频| 国产高清不卡午夜福利| 免费在线观看视频国产中文字幕亚洲 | 色精品久久人妻99蜜桃| 亚洲成人免费电影在线观看 | 亚洲av在线观看美女高潮| 亚洲欧洲国产日韩| 午夜福利视频在线观看免费| 亚洲国产欧美在线一区| 国产av一区二区精品久久| 精品一区在线观看国产| 人人妻人人爽人人添夜夜欢视频| 免费在线观看日本一区| 国产精品一区二区在线观看99| 亚洲中文日韩欧美视频| 精品国产一区二区三区久久久樱花| 99九九在线精品视频| 国产有黄有色有爽视频| 手机成人av网站| 国产精品 国内视频| 欧美精品亚洲一区二区| 青草久久国产| 好男人电影高清在线观看| 菩萨蛮人人尽说江南好唐韦庄| 十八禁高潮呻吟视频| 亚洲成国产人片在线观看| 国产xxxxx性猛交| 亚洲欧洲日产国产| 人妻一区二区av| 看免费av毛片| 成在线人永久免费视频| av不卡在线播放| 天天操日日干夜夜撸| 亚洲国产精品成人久久小说| 日韩大码丰满熟妇| 国产高清视频在线播放一区 | 咕卡用的链子| 久久99一区二区三区| 国产精品99久久99久久久不卡| 1024视频免费在线观看| 飞空精品影院首页| 亚洲伊人久久精品综合| 日韩 欧美 亚洲 中文字幕| 欧美少妇被猛烈插入视频| 黄片小视频在线播放| 免费在线观看日本一区| 99国产综合亚洲精品| 热99国产精品久久久久久7| 久久久久久久久久久久大奶| 亚洲精品在线美女| 黄色片一级片一级黄色片| 精品人妻1区二区| av又黄又爽大尺度在线免费看| 亚洲精品久久成人aⅴ小说| 久久ye,这里只有精品| 精品少妇黑人巨大在线播放| netflix在线观看网站| 国产成人精品久久久久久| 亚洲精品一卡2卡三卡4卡5卡 | 女人精品久久久久毛片| 国产免费又黄又爽又色| 制服人妻中文乱码| 女人久久www免费人成看片| av电影中文网址| cao死你这个sao货| 亚洲成人免费电影在线观看 | 精品国产一区二区三区四区第35| 欧美精品av麻豆av| 国产一区二区三区综合在线观看| 国产免费一区二区三区四区乱码| 国产女主播在线喷水免费视频网站| 国产高清国产精品国产三级| 日韩精品免费视频一区二区三区| 国产一区二区 视频在线| 九草在线视频观看| 人妻人人澡人人爽人人| 天天躁夜夜躁狠狠久久av| 在线观看www视频免费| bbb黄色大片| tube8黄色片| 18禁裸乳无遮挡动漫免费视频| 欧美av亚洲av综合av国产av| 国产精品秋霞免费鲁丝片| 午夜精品国产一区二区电影| 高清黄色对白视频在线免费看| 国产99久久九九免费精品| 蜜桃在线观看..| 亚洲精品乱久久久久久| 精品国产一区二区三区四区第35| 久久国产精品人妻蜜桃| 亚洲av电影在线进入| 久久精品亚洲熟妇少妇任你| 免费人妻精品一区二区三区视频| 99久久人妻综合| 自拍欧美九色日韩亚洲蝌蚪91| 免费看不卡的av| 中文字幕av电影在线播放| 免费观看人在逋| 亚洲欧美日韩另类电影网站| 国产精品国产三级专区第一集| 久久久久久久国产电影| 色综合欧美亚洲国产小说| 亚洲,欧美精品.| 丝袜美足系列| 欧美精品人与动牲交sv欧美| 亚洲精品国产区一区二| 成人国产av品久久久| 天堂俺去俺来也www色官网| 视频区图区小说| 欧美精品高潮呻吟av久久| 欧美精品av麻豆av| 色94色欧美一区二区| 成年人午夜在线观看视频| 国产精品成人在线| 国产在线一区二区三区精| 日本猛色少妇xxxxx猛交久久| 亚洲成av片中文字幕在线观看| 精品少妇内射三级| 永久免费av网站大全| 亚洲av综合色区一区| 免费在线观看黄色视频的| 天天影视国产精品| 我的亚洲天堂| 亚洲九九香蕉| 亚洲三区欧美一区| 国产成人免费观看mmmm| 1024香蕉在线观看| 午夜91福利影院| 老鸭窝网址在线观看| 国产高清视频在线播放一区 | 亚洲精品日本国产第一区| 免费高清在线观看视频在线观看| 午夜免费成人在线视频| 精品一区在线观看国产| 午夜福利免费观看在线| 777久久人妻少妇嫩草av网站| 男人操女人黄网站| 日本欧美视频一区| 看免费av毛片| 国产福利在线免费观看视频| 国产无遮挡羞羞视频在线观看| 国产97色在线日韩免费| 欧美老熟妇乱子伦牲交| netflix在线观看网站| 日韩av不卡免费在线播放| 国产爽快片一区二区三区| 一级片'在线观看视频| 男女床上黄色一级片免费看| 亚洲自偷自拍图片 自拍| 久久性视频一级片| 少妇精品久久久久久久| 50天的宝宝边吃奶边哭怎么回事| 成年美女黄网站色视频大全免费| 久久久久久免费高清国产稀缺| 十分钟在线观看高清视频www| 18禁国产床啪视频网站| 午夜福利影视在线免费观看| 青草久久国产| 天天影视国产精品| av在线播放精品| 国产女主播在线喷水免费视频网站| 晚上一个人看的免费电影| 啦啦啦在线观看免费高清www| 国产成人一区二区在线| 欧美人与性动交α欧美软件| 国产精品成人在线| 国产日韩欧美在线精品| 亚洲色图综合在线观看| 电影成人av| 亚洲图色成人| 国产片内射在线| 黑丝袜美女国产一区| 日韩一区二区三区影片| 一本—道久久a久久精品蜜桃钙片| 国产成人一区二区在线| 国产精品熟女久久久久浪| 69精品国产乱码久久久| 国产淫语在线视频| 国产成人a∨麻豆精品| 1024视频免费在线观看| 亚洲少妇的诱惑av| 搡老乐熟女国产| 成人亚洲欧美一区二区av| 日韩中文字幕欧美一区二区 | 午夜福利,免费看| 老司机深夜福利视频在线观看 | 真人做人爱边吃奶动态| 1024视频免费在线观看| 国产野战对白在线观看| 国产日韩一区二区三区精品不卡| 肉色欧美久久久久久久蜜桃| 丝袜在线中文字幕| 国产成人啪精品午夜网站| 国产精品一区二区在线观看99| 秋霞在线观看毛片| 免费不卡黄色视频| 国产精品二区激情视频| 美女国产高潮福利片在线看| 精品国产一区二区久久| 久久亚洲国产成人精品v| 无限看片的www在线观看| 久9热在线精品视频| 午夜免费观看性视频| 精品国产国语对白av| 国产精品成人在线| 精品一区二区三卡| 丝袜美足系列| 久久性视频一级片| 青春草视频在线免费观看| 中文字幕高清在线视频| 超色免费av| 亚洲第一av免费看| 国产成人a∨麻豆精品| 日韩大码丰满熟妇| 在线观看一区二区三区激情| 久久国产亚洲av麻豆专区| 亚洲精品久久久久久婷婷小说| 国产精品久久久av美女十八| 啦啦啦视频在线资源免费观看| 亚洲精品日韩在线中文字幕| 少妇精品久久久久久久| 日日摸夜夜添夜夜爱| 亚洲精品久久久久久婷婷小说| 国产精品久久久av美女十八| 91精品国产国语对白视频| 超色免费av| 青春草视频在线免费观看| 精品卡一卡二卡四卡免费| 香蕉国产在线看| 日韩欧美一区视频在线观看| 美国免费a级毛片| 免费观看a级毛片全部| 考比视频在线观看| 欧美人与性动交α欧美软件| 久久精品久久久久久噜噜老黄| 亚洲第一青青草原|