• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-Year Observations of Ozone Columns over Polar Vortex Edge Area above West Antarctica

    2021-06-22 07:29:56YuanyuanQIANYuhanLUOFuqiSITaipingYANGandDongshangYANG
    Advances in Atmospheric Sciences 2021年7期

    Yuanyuan QIAN, Yuhan LUO, Fuqi SI, Taiping YANG, and Dongshang YANG

    1Key Laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics,Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

    2University of Science and Technology of China, Hefei 230026, China

    ABSTRACT Ozone vertical column densities (VCDs) were retrieved by Zenith Scattered Light-Differential Optical Absorption Spectroscopy (ZSL-DOAS) from January 2017 to February 2020 over Fildes Peninsula, West Antarctica (62.22°S,58.96°W). Each year, ozone VCDs started to decline around July with a comparable gradient around 1.4 Dobson Units(DU) per day, then dropped to their lowest levels in September and October, when ozone holes appeared (less than 220DU). Daily mean values of retrieved ozone VCDs were compared with Ozone Monitoring Instrument (OMI) and Global Ozone Monitoring Experiment 2 (GOME-2) satellite observations and the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) reanalysis dataset, with correlation coefficients (R2) of 0.86, 0.94, and 0.90,respectively. To better understand the causes of ozone depletion, the retrieved ozone VCDs, temperature, and potential vorticity (PV) at certain altitudes were analyzed. The profiles of ozone and PV were positively correlated during their fluctuations, which indicates that the polar vortex has a strong influence on stratospheric ozone depletion during Antarctic spring. Located at the edge of polar vortex, the observed data will provide a basis for further analysis and prediction of the inter-annual variations of stratospheric ozone in the future.

    Key words: ozone VCDs, ZSL-DOAS, Antarctic ozone depletion, polar vortex

    1. Introduction

    Ozone is an important trace gas in the Earth’s atmosphere that impacts the environment, climate change, and human health (Li et al., 2015). It is most prevalent about 20?35 km above the surface of the Earth, where it can absorb UV radiation to protect life on Earth. The ozone hole was first discovered by Farman in Argentine Islands (65°S,64°W) and Halley Bay (76°S, 27°W), Antarctica (Farman et al., 1985). Long-term trends in ozone column measurements, obtained from South Pole stations and Solar Backscatter Ultra Violet (SBUV) satellite observations, indicate that healing of Antarctic ozone holes is occurring based on control of Hydrochlorofluorocarbons emissions (Solomon et al., 2016).

    Accurate retrieval of ozone columns, as well as comprehensive analysis of stratospheric chemistry, dynamics and temperature changes on ozone columns is necessary for the analysis of Antarctic ozone changes. Ozone columns over Antarctica are mainly obtained from satellite observations,ground-based DOAS observations, Brewer spectrophotometers, and Dobson spectrophotometers (?í?ková et al., 2019;Kokhanovsky et al., 2020). Satellite observations and European Centre for Medium-Range Weather Forecasts(ECMWF) data were analyzed to study the influence of stratospheric halogen species (mainly Cl and Br) in the polar vortex, which may lead to ozone depletion over Antarctica (Marsing et al., 2019; Nakajima et al., 2020). In addition, an atmospheric and chemical transport model is used for the analysis of long-term ozone trends and troposphere-stratosphere exchange in Antarctica (Hegglin and Shepherd,2009; Lu et al., 2019).

    The atmosphere over Antarctica is controlled by the strong polar vortex in winter, making it difficult to exchange with mid-latitude atmosphere. The extremely low air temperatures (< ?78°C) inside the polar vortex, lead to the formation of polar stratospheric clouds (PSCs). PSCs,composed of nitrate trihydrate, water ice, etc., provide surfaces for heterogeneous reactions that convert halogen reservoirs to active halogens causing severe ozone depletion(Frieβ et al., 2005; Drdla and Müller, 2012; Marsing et al.,2019). There are three types of PSCs (decided by their state), including nitric acid trihydrate (NAT), supercooled ternary solution (STS), and ice PSCs, and their corresponding temperatures are

    T

    (?78°C),

    T

    , and

    T

    . The observation site is located at the edge of the polar vortex, which is different from other inland stations (high latitudes) where the ozone columns continued to be low in spring. The rapid changes and great fluctuations of total ozone can be detected at the observation site location and are sensitive to the dynamic and chemical changes of PSCs.

    As a spectroscopic technique, differential optical absorption spectroscopy (DOAS) has been proven to be powerful and has been widely used to monitor a variety of atmospheric trace gases (Stutz and Platt, 1997; Meller and Moortgat, 2000; Platt and Stutz, 2008). Zenith Scattered Light-DOAS (ZSL-DOAS) is suitable for measuring stratospheric gases, such as stratospheric N Oand O(Pommereau, 1982;Perner et al., 1994). Since the 1970s, numerous spaceborne UV detection instruments (such as Ozone Monitoring Instrument (OMI), Global Ozone Monitoring Experiment 2(GOME-2), and Microwave Limb Sounder (MLS)) have been launched to observe global trace gases, and their observations have provided comprehensive information on ozone holes and changes (Sonkaew et al., 2013; Zhang et al.,2015; Kuttippurath and Nair, 2017). Some advantages of ZSL-DOAS are that it has low energy consumption and can be unattended, and it is less affected than satellite-based instruments by changes of meteorological conditions in the boundary layer, temperature, and clouds.

    In this study, daily variations of ozone vertical column densities (VCDs) are retrieved by ZSL-DOAS, and a correlation analysis is performed between the ZSL-DOAS measurements and OMI, GOME-2 observations and Modern-Era Retrospective analysis for Research and Applications version 2(MERRA-2). Combining observed ozone VCDs and low-stratospheric PV profiles, the cause of ozone depletion leading to ozone holes from September to October in 2017 and 2018 in the experiment region (62.22°S, 58.96°W) at the edge of the polar vortex is investigated. The aim of this study is to analyze the correlation between ozone depletion and PV at the edge of the polar vortex, where ozone depletion is more sensitive to changes in PV.

    2. Experiment design and data analysis

    2.1. Experiment site

    The experiment site and DOAS instrument are shown in Fig. 1. The red star is the location of Chinese Great Wall Station (62.22°S, 58.96°W) in Fildes Peninsula, South Shetland Islands. The red region is the area of the OMI pixel,and the yellow region is the area of the GOME-2 pixel.

    The ground-based passive DOAS system used in this experiment is composed of key parts such as a prism, telescope, motor, filter, CCD spectrometer, and computer. The wavelength range of the spectrometer is 290?420 nm, and the spectral resolution is 0.3 nm. In this experiment, the data from zenith direction is used to retrieve the slant column densities (SCDs) of ozone.

    Fig. 1. Instrument and experiment site (red star) and pixels of OMI and GOME-2 observations (red and yellow boxes).

    2.2. Principles of the DOAS method

    The DOAS method retrieves concentrations of trace gases based on their characteristic absorption and the measured intensity, which is based on Lambert-Beer’s law. From Lambert-Beer’s law and derivation:

    2.3. Spectral retrieval

    The ozone SCDs are retrieved from the QDOAS software developed by the Royal Belgian Institute for Space Aeronomy (BIRA-IASB) (http://uv-vis.aeronomie.be/software/QDOAS/), with a retrieval wavelength range of 320?340 nm. O, NO, O, and ring (the rotational Raman scattering effect, calculated by Ring.exe of QDOAS) cross sections are considered in the retrieval algorithm, and detailed parameters are shown in Table 1. The daily noon zenith spectrum is used as the reference spectrum for SCD retrieval. Taking the fits of the spectrum from 24 February 2018 as an example (Fig. 2), the differential slant column density(dSCD) of ozone is 5.20×10molec cm, with the root mean square (RMS) of spectral fitting residual of 9.76×10.

    2.4. Calculation of ozone VCDs

    The ZSL-DOAS method is powerful in measuring stratospheric gases such as ozone. To convert SCD (related to the viewing angles) into vertical column density (VCD), the Air Mass Factor (AMF) must be introduced. The relationship between SCD and VCD is as follows:

    Table 1. Fitting parameters of spectral retrieval.

    Fig. 2. Spectrum fits of ozone on 24 February 2018.

    AMFs are retrieved from the atmospheric radiative transfer model SCIATRAN. The a-priori profiles of ozone, temperature, and pressure used to obtain AMFs are the monthly average profiles from the SCIATRAN profiles database, which are selected by month and latitude. The Fraunhofer absorption, which will have a strong influence on the retrieval of gas concentration, should be removed (Platt and Stutz,2008). The slant column concentration after deducting Fraunhofer absorption is expressed by the dSCD:

    Here, SCDrefers to the Fraunhofer absorption part.The above formula is in y=ax+b format, so we can use AMF as the abscissa and dSCD as the ordinate to perform linear fitting, where the slope is VCD and the absolute value of the intercept is the Fraunhofer absorption part. Taking the retrieved data from 24 February 2018 as an example, the linear fit of ozone dSCDs and AMFs on that day is shown in Fig. 3. The calculated ozone VCD is 7.322×10molec cmand the error is 2.232×10molec cm. The ozone VCD is calculated by the average of VCD(the VCD of morning) and VCD(the VCD of afternoon).

    2.5. Auxiliary data

    The daily ozone VCDs observed by OMI and GOME-2 from January 2017 to February 2020 are obtained for this study. The OMI, launched on 15 July 2004, is onboard the Aura satellite and is a nadir scanning instrument (Xie et al.,2016). The field of view of the OMI can reach 114°, which permits daily global coverage. The OMI can measure ozone in UV (270?380 nm) and VIS (350?500 nm) wavelengths.The spectral resolution of the OMI is 0.5 nm, with high spatial resolution of 13×24 km(Thomas et al., 2011). The daily ozone VCDs from the OMI (https://disc.gsfc.nasa.gov/) are used to compare with ZSL-DOAS observations.

    Fig. 3. Linear fitting between ozone dSCDs and AMFs for morning (a) and afternoon (b) on 24 February 2018. The correlation coefficients (R2) are 0.99927 and 0.9994. The ozone VCDs for morning and afternoon are 7.298 × 1018 molec cm?2 and 7.326 × 1018 molec cm?2. The calculated ozone VCD for 24 February 2018 is 7.322 × 1018 molec cm?2.

    GOME-2 is a UV/VIS nadir observation spectrometer,which is onboard the MetOp-A satellite and was launched on 19 October 2006 by the European Space Agency (ESA).The ozone data sets of GOME-2 are retrieved by the GOME-type Direct FITting (GODFIT) v4 algorithm. The wavelength range of the GOME-2 instrument is 240?790 nm.The spectral resolution of GOME-2 is 0.2?0.5 nm, with spatial resolution of 80×40 km(Koukouli et al., 2014). The ozone VCDs obtained from the GOME-2 data set(https://avdc.gsfc.nasa.gov/) are daily mean VCDs of the overpass data.

    Table 2. Parameter nodes to estimate the AMF uncertainty on wavelength.

    The temperature and ozone profiles used here are obtained from MERRA-2 data and are available every 3 hours. MERRA-2 is an atmospheric reanalysis database,obtained from Goddard Earth Observing System Model, version 5 (GEOS-5) with Atmospheric Data Assimilation System (ADAS) (Ganeshan and Yang, 2019). The spatial resolution of MERRA-2 is 0.5×0.625(lat×lon) with 72 model levels. The ozone profiles and temperature at 50 hPa from MERRA-2 (https://disc.gsfc.nasa.gov/) are daily averages.

    The daily PV data used in this study is obtained from ERA Interim datasets from the ECMWF website (https://www.ecmwf.int/). ERA Interim is a 6-hourly reanalysis dataset, which is available from January 1985 to August 2019.The ERA Interim datasets are obtained from the data assimilation system of the Integrated Forecast System (IFS),released in 2006. The spatial resolution of ERA Interim data is0.25×0.25(lat×lon), with 60 levels in the vertical direction from the surface to 0.1 hPa.

    3. Results and discussion

    3.1. Meteorological conditions

    The meteorological conditions of the Fildes Peninsula are shown in Figs. 4 and 5, which represent temperatures (at 50 hPa) and PV (on isentropic level of 475 K) respectively.

    T

    denotes the threshold temperature for the formation of PSCs. The temperature trends during the experimental period show that the formation of PSCs began around June,which corresponds to the development of the polar vortex in early winter (Frieβ et al., 2005). Additionally, the overall temperature of 2019 was higher than 2018 and 2017 and had an early termination of low temperatures, which led to the short existence of PSCs.

    Fig. 4. Temperatures (at 50 hPa) over Fildes Peninsula from 2017 to 2019, where the blue lines denote the threshold temperature for the formation of PSCs.

    PV is used to represent the capacity for an air mass to rotate in the atmosphere and to define the edge of the polar vortex. PV is calculated using other parameters such as temperature, wind field, etc. The units of PV (potential vorticity units, PVU) are a combination of SI units(K mkgs), where 1 PVU=10K mkgs. In Fig. 5,the 475 K potential temperature surface, which corresponds to the lower stratosphere, is used as the criterion to define the edge of polar vortex (Paschou et al., 2020), and blue lines denote the PV of the Fildes Peninsula and red lines denote the PV of the vortex edge. Nash’s criterion, where the gradient of PV is the highest of the southern hemisphere along the equivalent latitude (Nash et al., 1996), is used to determine the edge of the polar vortex. The blue line being below (above) the red line indicates that the Fildes Peninsula is located inside (outside) of the polar vortex. The number of days inside and outside the polar vortex boundary in 2017 and 2018 are shown in Table 3.

    Fig. 5. PV (on isentropic level of 475 K) of the Fildes Peninsula and vortex edge, where red and blue lines denote PV of vortex edge (calculated by Nash’s criterion) and Fildes Peninsula, respectively. (a) The PV in 2017. (b) The PV in 2018.

    Table 3. The number of days inside and outside the polar vortex.

    3.2. Results of ozone VCDs

    Satellite ozone observations may have large biases at high latitudes, especially when the SZAs are large. Therefore, the SZAs used to obtain ozone VCDs from satellite observations are less than 86°. The ZSL-DOAS observations in this study can be used to validate the satellite observations at high latitude.

    The ozone VCDs retrieved from the ZSL-DOAS instrument, the MERRA-2 dataset and satellite observations from OMI and GOME-2 from January 2017 to February 2020 are shown in Fig. 6a, where the black line located at 220 DU(1 DU=2.69×10molec cm) denotes the threshold for an ozone hole (Bodeker et al., 2002). The biases between OMI, GOME-2, MERRA-2, and ZSL-DOAS are shown in Fig. 6b. The standard deviations between GOME-2,MERRA-2, and ZSL-DOAS are shown in Fig. 6c. OMI and GOME-2 are nadir observations that are different from the zenith observation method of ZSL-DOAS. The ozone VCDs of satellite observations could only be obtained at overpass times (1330 LST and 0930 LST), which may have led to the large biases and standard deviations when ozone fluctuated greatly on that day.

    The averaged ozone VCDs and ozone hole days for 2017, 2018, and 2019 over the Fildes Peninsula are shown in Table 4. Ozone VCDs start to decline around July with a comparable gradient (around 1.4 DU d), which is in agreement with the formation of PSCs in Antarctic winter. Ozone VCDs decline further in the spring, with severe ozone depletion in September and October, and then gradually return to normal levels. During the severe ozone depletion periods in September and October, which lead to the ozone holes(<220 DU), there is a correlation between the polar vortex and ozone concentration, which is discussed in detail in section 3.3. The linear fits of the retrieved ozone VCDs with OMI and GOME-2 satellite observations and the MERRA-2 dataset are shown in Fig. 7. The correlation coefficients (

    R

    )are 0.86, 0.94, and 0.90, respectively.

    3.3. Influence of PV on ozone depletion

    The sign of PV is negative in Antarctica while positive in the Arctic. The absolute value of PV is generally greater inside the polar vortex. The PSCs formed inside the polar vortex can activate the halogen species, which lead to severe ozone depletion. The PV, temperatures (at 50 hPa), and retrieved ozone VCDs from September to October during the observation period are shown in Fig. 8. As shown in Figs. 8a?d, the trend of PV and ozone VCDs is similar. In other words, PV is positively correlated with the ozone VCDs. The ozone VCDs fluctuate between 170?405 DU from September to October of 2017. The fluctuations in 2018 are between 150?290 DU. The relationship between PV and ozone VCDs is more obvious in 2017 with greater fluctuations. As shown in Fig. 8a, ozone recovers to its peak values on 22 September, 9 October, 19 October, and 28 October 2017, when Fildes Peninsula is fully outside of the polar vortex. The retrieved ozone VCDs fluctuate with the same pattern as the temperatures at 50 hPa, which means ozone is depleted inside the polar vortex, where the temperature is lower. Therefore, the polar vortex has a strong influence on stratospheric ozone depletion during Antarctic spring.

    Fig. 6. (a) The ozone VCDs from ZSL-DOAS, OMI, GOME-2, and MERRA-2. The black line denotes the threshold for ozone holes. (b) The biases of OMI, GOME-2, and MERRA-2.(c) The standard deviations of GOME-2 and MERRA-2.

    Table 4. Averaged ozone VCDs and ozone hole days.

    Ozone and PV profiles above the Fildes Peninsula during spring of 2017 and 2018 are analyzed as well. The averaged ozone profiles during the ozone hole periods and nonozone hole periods from September to October in 2017 are shown in Fig. 9. The averaged ozone profiles and the percentage of ozone loss at different heights indicate that the maximum ozone loss is about 63% at the height of 19.5 km. PV might differ by more than a factor of ten for different heights in the lower stratosphere, which indicates that a small and sensitive height layer should be chosen to discuss its influence on ozone depletion. Therefore, the profile height of 19?20 km, where the photochemical reactions destroying ozone are most severe, was chosen.

    Since the observation site is located near the edge of the polar vortex, it is sensitive to the changes of the polar vortex. The synchronized change between ozone and PV indicates the critical influence of the polar vortex on ozone depletion. The profiles of ozone and PV at the height of 19?20 km from September to October in 2017 and 2018 are shown in Fig. 10. The ozone concentration at the height of 19?20 km fluctuates between 0.65?6.87 ppmv and 0.54?7.30 ppmv in 2017 and 2018, respectively. The absolute value of PV shows an obvious increase when the ozone concentration decreases. The ozone depletion in Antarctic spring, which leads to the formation of ozone holes, is closely related to PV. Located at the edge of the polar vortex, the observed data will provide a basis for further analysis and prediction of the inter-annual variation of stratospheric ozone in future.

    Fig. 7. Scatter plots and linear fit of retrieved ozone VCDs with (a) OMI, (b) GOME-2, and (c) MERRA-2.

    4. Conclusion

    In this study, daily ozone VCDs are retrieved by ZSLDOAS from ground-based DOAS instrument observations and then linearly fitted with satellite observations from OMI and GOME-2 and reanalysis data from MERRA-2. The correlation coefficients (

    R

    ) are 0.86, 0.94, and 0.90 respectively,which validate the satellite observations and MERRA-2 dataset for this area.

    Each spring during the observation period, occurrences of ozone holes over the Fildes Peninsula were detected when the daily ozone VCDs fluctuated sharply. Especially in September 2017, the daily fluctuations of ozone VCDs reached up to 100 DU. The ozone VCDs began to decrease in early winter with a comparable gradient (1.4 DU d)throughout the observation period, corresponding with the formation of PSCs. The ozone concentration began to recover at the end of October, and returned to normal levels after November.

    In this study, PV was used as an indicator for analysis because it was positively correlated with ozone concentration over Fildes Peninsula in spring. The polar vortex of Antarctic spring has a strong influence on stratospheric ozone depletion.

    It should be noted that the uncertainty estimation of the AMF calculation is preliminary, and the uncertainty caused by the a-priori ozone profiles needs further analysis. More accurate a-priori ozone profiles (like column-dependent total ozone profiles) and a better reference spectrum (from direct-sun data) will be used in future research.

    Fig. 8. Ozone VCDs, PV, and temperatures (at 50 hPa) from September to October during the observation period: (a) retrieved ozone VCDs from September to October in 2017; (b) retrieved ozone VCDs from September to October in 2018; (c) PV (at 50 hPa)from September to October in 2017; (d) PV (at 50 hPa) from September to October in 2018; (e) temperature (at 50 hPa) from September to October in 2017; (f) temperature (at 50 hPa) from September to October in 2018; and (g) retrieved ozone VCDs and temperature (at 50 hPa) from September to October in 2019.

    Fig. 9. (a) Averaged ozone profiles during the ozone hole periods and non-ozone hole periods from September to October in 2017. (b) The percentage of ozone loss at different heights calculated by (a).

    Fig. 10. Profiles of ozone and PV from September to October in 2017 and 2018, at the height of 19?20 km:(a) profile of ozone in 2017; (b) profile of ozone in 2018; (c) profile of PV in 2017; and (d) profile of PV in 2018.

    Observation of ozone VCDs over Fildes Peninsula will be continually conducted to observe the long-term ozone trends in this region. The observations conducted in this study are also valuable for validating modelled ozone concentrations in this region and contribute to better understanding of ozone recovery and stratosphere-troposphere exchange over the polar vortex edge area.

    Acknowledgements

    . This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 41676184 and 41941011). The authors gratefully acknowledge ECMWF (https://www.ecmwf.int/) for providing ERAInterim reanalysis data and GES-DISC (https://disc.gsfc.nasa.gov/)for providing MERRA-2 data. The authors thank the staff of Great Wall Station for their kind help. The authors acknowledge three anonymous referees for their help on the improvement of the manuscript.

    少妇熟女aⅴ在线视频| 人妻夜夜爽99麻豆av| 91在线观看av| 国产精品综合久久久久久久免费| 最好的美女福利视频网| 国产三级黄色录像| 两性夫妻黄色片| 美女 人体艺术 gogo| 黄色a级毛片大全视频| 亚洲国产精品合色在线| 日本黄大片高清| 美女大奶头视频| 国产精品久久久久久精品电影| 搡老岳熟女国产| 草草在线视频免费看| 久久精品aⅴ一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看 | 国产亚洲av高清不卡| 成人精品一区二区免费| 日日夜夜操网爽| 欧美大码av| 黄色a级毛片大全视频| 国产成人av激情在线播放| 两个人看的免费小视频| 人妻丰满熟妇av一区二区三区| 久久人妻av系列| 日日摸夜夜添夜夜添小说| 中文资源天堂在线| 757午夜福利合集在线观看| 日本成人三级电影网站| 又粗又爽又猛毛片免费看| 99精品欧美一区二区三区四区| 亚洲国产精品成人综合色| 欧美中文日本在线观看视频| 欧美乱色亚洲激情| 女人高潮潮喷娇喘18禁视频| 国产三级黄色录像| 免费在线观看黄色视频的| 国产精品一区二区免费欧美| av福利片在线观看| 国产高清激情床上av| 国产成人精品久久二区二区91| 精品无人区乱码1区二区| 日日爽夜夜爽网站| 久久久久久九九精品二区国产 | 99精品在免费线老司机午夜| 好男人电影高清在线观看| 99在线人妻在线中文字幕| 给我免费播放毛片高清在线观看| 日本一本二区三区精品| 欧美成人午夜精品| 久久精品夜夜夜夜夜久久蜜豆 | 怎么达到女性高潮| 国产99白浆流出| 国产精品,欧美在线| 国产精品久久视频播放| 亚洲欧洲精品一区二区精品久久久| 久久久久国产精品人妻aⅴ院| 午夜影院日韩av| 叶爱在线成人免费视频播放| 首页视频小说图片口味搜索| 亚洲午夜精品一区,二区,三区| 久久人人精品亚洲av| 久久久精品欧美日韩精品| 非洲黑人性xxxx精品又粗又长| 高潮久久久久久久久久久不卡| 日本成人三级电影网站| 国产私拍福利视频在线观看| 真人一进一出gif抽搐免费| 91老司机精品| 久久久久久九九精品二区国产 | 成人永久免费在线观看视频| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲av片天天在线观看| 欧美又色又爽又黄视频| 露出奶头的视频| 中文字幕精品亚洲无线码一区| 脱女人内裤的视频| 欧美一区二区精品小视频在线| av在线播放免费不卡| 国产一区二区在线av高清观看| 国产不卡一卡二| 欧美黑人欧美精品刺激| a级毛片在线看网站| www.熟女人妻精品国产| 一二三四在线观看免费中文在| avwww免费| 两个人视频免费观看高清| 又爽又黄无遮挡网站| 99国产精品一区二区三区| 美女免费视频网站| 久久久国产成人精品二区| 特级一级黄色大片| 日韩 欧美 亚洲 中文字幕| 搡老妇女老女人老熟妇| 色av中文字幕| 一二三四在线观看免费中文在| 亚洲美女视频黄频| 99riav亚洲国产免费| 黑人欧美特级aaaaaa片| 夜夜看夜夜爽夜夜摸| 亚洲av美国av| 在线观看免费午夜福利视频| 在线观看舔阴道视频| 色在线成人网| 最近最新免费中文字幕在线| 九色国产91popny在线| 一区二区三区激情视频| 黄片小视频在线播放| 99riav亚洲国产免费| 欧美一级a爱片免费观看看 | 桃色一区二区三区在线观看| 婷婷亚洲欧美| 99精品欧美一区二区三区四区| 久久性视频一级片| 99热这里只有是精品50| 午夜视频精品福利| 91成年电影在线观看| 最新在线观看一区二区三区| 日本成人三级电影网站| 亚洲精品美女久久av网站| 青草久久国产| 99国产精品99久久久久| 国产精品久久久久久亚洲av鲁大| 精品免费久久久久久久清纯| 男女那种视频在线观看| 国产午夜福利久久久久久| 床上黄色一级片| 久久久久性生活片| 香蕉久久夜色| 国产私拍福利视频在线观看| 很黄的视频免费| 国产成+人综合+亚洲专区| 国产又色又爽无遮挡免费看| 桃红色精品国产亚洲av| 亚洲av中文字字幕乱码综合| 99re在线观看精品视频| 18禁裸乳无遮挡免费网站照片| xxx96com| 2021天堂中文幕一二区在线观| 丝袜美腿诱惑在线| 亚洲av电影不卡..在线观看| 国产一区二区三区视频了| 淫秽高清视频在线观看| 婷婷丁香在线五月| 一边摸一边做爽爽视频免费| 亚洲av日韩精品久久久久久密| 精品一区二区三区四区五区乱码| 99国产精品一区二区三区| 两个人免费观看高清视频| 久久精品91无色码中文字幕| 天堂av国产一区二区熟女人妻 | 99在线视频只有这里精品首页| 国产1区2区3区精品| 嫩草影视91久久| 国产精品自产拍在线观看55亚洲| 欧美成人免费av一区二区三区| 久久久久国产精品人妻aⅴ院| 婷婷六月久久综合丁香| 一级作爱视频免费观看| 一本综合久久免费| 日韩欧美一区二区三区在线观看| 好男人在线观看高清免费视频| 日日夜夜操网爽| 无遮挡黄片免费观看| av视频在线观看入口| 观看免费一级毛片| 18禁观看日本| 亚洲七黄色美女视频| √禁漫天堂资源中文www| 在线观看www视频免费| 欧美一区二区国产精品久久精品 | 两个人的视频大全免费| 叶爱在线成人免费视频播放| 国产高清videossex| 一进一出抽搐gif免费好疼| 亚洲九九香蕉| 国产精品永久免费网站| 男人舔女人的私密视频| 国产黄色小视频在线观看| 高清在线国产一区| 此物有八面人人有两片| 亚洲国产精品成人综合色| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲精品第一综合不卡| www.www免费av| 精品高清国产在线一区| 久久这里只有精品中国| 操出白浆在线播放| 久久精品亚洲精品国产色婷小说| 久久精品aⅴ一区二区三区四区| 91国产中文字幕| 一级毛片精品| 久久天堂一区二区三区四区| 两人在一起打扑克的视频| 一二三四在线观看免费中文在| 国产高清视频在线观看网站| 成年免费大片在线观看| 麻豆成人av在线观看| 国产午夜精品久久久久久| 国产成人欧美在线观看| 精品国产亚洲在线| av在线天堂中文字幕| 国产精品 欧美亚洲| 精品国产超薄肉色丝袜足j| 亚洲国产欧美人成| 国产成人啪精品午夜网站| 在线观看www视频免费| 日韩欧美免费精品| 亚洲在线自拍视频| 少妇人妻一区二区三区视频| 丝袜人妻中文字幕| 精品久久久久久久人妻蜜臀av| 久久国产乱子伦精品免费另类| 久久亚洲真实| 精品久久久久久久人妻蜜臀av| 五月伊人婷婷丁香| 好男人在线观看高清免费视频| 久久久久免费精品人妻一区二区| 日韩欧美一区二区三区在线观看| 国产亚洲欧美98| 小说图片视频综合网站| 久久久精品欧美日韩精品| 精品一区二区三区四区五区乱码| 黑人欧美特级aaaaaa片| 两性午夜刺激爽爽歪歪视频在线观看 | 精品免费久久久久久久清纯| 看片在线看免费视频| 日韩 欧美 亚洲 中文字幕| 欧美乱妇无乱码| 国产成+人综合+亚洲专区| 欧美黑人欧美精品刺激| 成人国语在线视频| 夜夜看夜夜爽夜夜摸| 制服丝袜大香蕉在线| 午夜精品一区二区三区免费看| 精品电影一区二区在线| 狠狠狠狠99中文字幕| 脱女人内裤的视频| 两个人免费观看高清视频| 在线观看免费午夜福利视频| 又紧又爽又黄一区二区| 香蕉丝袜av| 九色国产91popny在线| 国产成人系列免费观看| 亚洲成av人片免费观看| 757午夜福利合集在线观看| 日韩三级视频一区二区三区| 91大片在线观看| 亚洲国产精品sss在线观看| 麻豆成人午夜福利视频| 老司机在亚洲福利影院| videosex国产| 国产成人啪精品午夜网站| 日本免费一区二区三区高清不卡| 男女视频在线观看网站免费 | 亚洲人成77777在线视频| 午夜成年电影在线免费观看| 日韩成人在线观看一区二区三区| 久久久国产成人免费| 成人国产综合亚洲| 国产精品爽爽va在线观看网站| √禁漫天堂资源中文www| 女人高潮潮喷娇喘18禁视频| 99在线视频只有这里精品首页| 亚洲欧美日韩东京热| 亚洲中文av在线| www.熟女人妻精品国产| 免费看a级黄色片| 毛片女人毛片| 在线观看66精品国产| 国内毛片毛片毛片毛片毛片| 天堂av国产一区二区熟女人妻 | 成人国语在线视频| 悠悠久久av| 亚洲av熟女| 精品高清国产在线一区| 亚洲熟妇中文字幕五十中出| 中文字幕最新亚洲高清| 午夜影院日韩av| av福利片在线| 999精品在线视频| 大型av网站在线播放| 亚洲av成人一区二区三| 亚洲熟妇中文字幕五十中出| 一卡2卡三卡四卡精品乱码亚洲| 人妻夜夜爽99麻豆av| 国产伦人伦偷精品视频| 国产成人欧美在线观看| 18禁观看日本| a级毛片在线看网站| 制服人妻中文乱码| 欧美又色又爽又黄视频| 成人av在线播放网站| 一边摸一边做爽爽视频免费| 少妇裸体淫交视频免费看高清 | 国产av一区二区精品久久| 又爽又黄无遮挡网站| 又粗又爽又猛毛片免费看| 亚洲成av人片免费观看| 国产精品亚洲一级av第二区| 日本 欧美在线| 两性午夜刺激爽爽歪歪视频在线观看 | 校园春色视频在线观看| 在线视频色国产色| 国产日本99.免费观看| 12—13女人毛片做爰片一| 又大又爽又粗| 亚洲色图av天堂| 黄频高清免费视频| 久久久久久久久中文| 免费高清视频大片| 欧美大码av| 草草在线视频免费看| 欧美一级毛片孕妇| 亚洲乱码一区二区免费版| 欧美日韩福利视频一区二区| 亚洲国产高清在线一区二区三| av视频在线观看入口| 女人爽到高潮嗷嗷叫在线视频| 美女高潮喷水抽搐中文字幕| 成人18禁高潮啪啪吃奶动态图| 在线视频色国产色| e午夜精品久久久久久久| 两个人的视频大全免费| 在线观看免费日韩欧美大片| 麻豆成人av在线观看| 亚洲黑人精品在线| 超碰成人久久| videosex国产| 一级毛片精品| 色综合站精品国产| 亚洲av中文字字幕乱码综合| 午夜福利免费观看在线| 日韩大尺度精品在线看网址| 久久久水蜜桃国产精品网| 久久久久精品国产欧美久久久| 少妇人妻一区二区三区视频| 亚洲欧美精品综合久久99| 女人高潮潮喷娇喘18禁视频| 精品无人区乱码1区二区| 日本免费一区二区三区高清不卡| 久久久国产成人免费| 999久久久精品免费观看国产| 99久久无色码亚洲精品果冻| 亚洲色图av天堂| 国产成人精品久久二区二区91| 在线观看舔阴道视频| 亚洲无线在线观看| 成人精品一区二区免费| 久久精品综合一区二区三区| 成人精品一区二区免费| 欧美性猛交黑人性爽| 免费一级毛片在线播放高清视频| 九色成人免费人妻av| 淫妇啪啪啪对白视频| 国产成年人精品一区二区| xxx96com| 哪里可以看免费的av片| 怎么达到女性高潮| 九色成人免费人妻av| 脱女人内裤的视频| 亚洲精品粉嫩美女一区| 国内精品久久久久精免费| 亚洲18禁久久av| 日本一本二区三区精品| 亚洲国产欧洲综合997久久,| 日日爽夜夜爽网站| videosex国产| 国产1区2区3区精品| 十八禁网站免费在线| 男女那种视频在线观看| 亚洲精品美女久久久久99蜜臀| 成人18禁在线播放| 国产欧美日韩一区二区三| 国产精品永久免费网站| 国产精品,欧美在线| 精品第一国产精品| 精品国产美女av久久久久小说| 一卡2卡三卡四卡精品乱码亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 国产单亲对白刺激| 中文字幕人成人乱码亚洲影| 午夜成年电影在线免费观看| 国产精品免费一区二区三区在线| 成人18禁高潮啪啪吃奶动态图| 成人三级黄色视频| 在线观看日韩欧美| 欧美日本视频| 亚洲av中文字字幕乱码综合| 精华霜和精华液先用哪个| 美女 人体艺术 gogo| 精品一区二区三区视频在线观看免费| 成在线人永久免费视频| 啦啦啦韩国在线观看视频| 久久亚洲精品不卡| 免费在线观看亚洲国产| 国产精品98久久久久久宅男小说| 五月玫瑰六月丁香| 蜜桃久久精品国产亚洲av| 国产亚洲精品第一综合不卡| a在线观看视频网站| 不卡av一区二区三区| 亚洲精品色激情综合| 久久草成人影院| 国产高清视频在线播放一区| 午夜免费激情av| 熟妇人妻久久中文字幕3abv| 90打野战视频偷拍视频| 成人三级做爰电影| 日韩中文字幕欧美一区二区| 国产成人精品无人区| 亚洲人成网站高清观看| 国产主播在线观看一区二区| 狂野欧美激情性xxxx| 一进一出抽搐gif免费好疼| 这个男人来自地球电影免费观看| 免费在线观看日本一区| 99久久精品热视频| 少妇的丰满在线观看| 精品国产亚洲在线| 人成视频在线观看免费观看| 国语自产精品视频在线第100页| 国产成人精品久久二区二区91| 欧美精品啪啪一区二区三区| 久久久久国内视频| 成人av一区二区三区在线看| 欧美色欧美亚洲另类二区| 日韩成人在线观看一区二区三区| 成熟少妇高潮喷水视频| 色综合亚洲欧美另类图片| 制服人妻中文乱码| 男女床上黄色一级片免费看| 成人一区二区视频在线观看| 欧美性猛交╳xxx乱大交人| 久久久久国产精品人妻aⅴ院| 久久久精品欧美日韩精品| 老司机深夜福利视频在线观看| 国产亚洲精品久久久久5区| 国产免费男女视频| 亚洲精华国产精华精| 一区二区三区激情视频| 麻豆国产av国片精品| 又大又爽又粗| 亚洲人成网站在线播放欧美日韩| tocl精华| 亚洲av成人不卡在线观看播放网| 一进一出抽搐动态| 国产精品久久久av美女十八| 校园春色视频在线观看| 美女高潮喷水抽搐中文字幕| 国产亚洲精品综合一区在线观看 | 免费在线观看日本一区| 极品教师在线免费播放| 成人国产综合亚洲| 成人手机av| 亚洲一区二区三区色噜噜| 热99re8久久精品国产| 欧美av亚洲av综合av国产av| 亚洲欧洲精品一区二区精品久久久| 国产精品,欧美在线| 亚洲 欧美一区二区三区| av有码第一页| 熟妇人妻久久中文字幕3abv| 丝袜人妻中文字幕| 人妻夜夜爽99麻豆av| 99热6这里只有精品| 97人妻精品一区二区三区麻豆| 欧美另类亚洲清纯唯美| 中文字幕人妻丝袜一区二区| 黑人操中国人逼视频| 岛国在线免费视频观看| 精品一区二区三区视频在线观看免费| 可以在线观看的亚洲视频| 色在线成人网| 日韩欧美国产在线观看| 久久久国产精品麻豆| 欧美日韩瑟瑟在线播放| 亚洲成av人片免费观看| 2021天堂中文幕一二区在线观| 99久久综合精品五月天人人| 久久久久久久久久黄片| 9191精品国产免费久久| а√天堂www在线а√下载| 女同久久另类99精品国产91| 国产成人一区二区三区免费视频网站| 日韩欧美精品v在线| 99久久综合精品五月天人人| 亚洲精品色激情综合| 亚洲成av人片在线播放无| 日韩av在线大香蕉| 国产一区二区三区视频了| 两人在一起打扑克的视频| 99久久精品热视频| 麻豆一二三区av精品| 国产黄色小视频在线观看| 熟女电影av网| 国产视频内射| 亚洲激情在线av| 中文字幕高清在线视频| 国产高清有码在线观看视频 | 亚洲精品中文字幕一二三四区| 国产乱人伦免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 免费看a级黄色片| 国内久久婷婷六月综合欲色啪| 欧美黑人欧美精品刺激| 在线国产一区二区在线| 亚洲国产精品成人综合色| 黄色 视频免费看| 日本撒尿小便嘘嘘汇集6| 国产高清激情床上av| 可以在线观看毛片的网站| 亚洲av第一区精品v没综合| 在线观看www视频免费| e午夜精品久久久久久久| 午夜a级毛片| 99精品在免费线老司机午夜| av视频在线观看入口| 身体一侧抽搐| 精品欧美一区二区三区在线| 波多野结衣高清作品| 搞女人的毛片| 一本一本综合久久| 美女免费视频网站| 免费在线观看日本一区| 国产成人精品久久二区二区91| 国产精品久久久久久久电影 | 精品久久久久久久末码| 日韩免费av在线播放| 亚洲精品国产一区二区精华液| 深夜精品福利| 91在线观看av| 十八禁人妻一区二区| 18禁观看日本| 亚洲av电影不卡..在线观看| 国产午夜精品久久久久久| 成人国产综合亚洲| 亚洲成人久久爱视频| avwww免费| 一级毛片女人18水好多| 国产成人精品无人区| 国产精品综合久久久久久久免费| 久久久久国产一级毛片高清牌| 免费电影在线观看免费观看| 亚洲成av人片在线播放无| 这个男人来自地球电影免费观看| 又粗又爽又猛毛片免费看| 日本在线视频免费播放| 天天添夜夜摸| 三级男女做爰猛烈吃奶摸视频| 99精品久久久久人妻精品| 少妇人妻一区二区三区视频| 高潮久久久久久久久久久不卡| 精品国产乱码久久久久久男人| 三级男女做爰猛烈吃奶摸视频| 18禁黄网站禁片午夜丰满| 久久这里只有精品中国| 99久久99久久久精品蜜桃| 中亚洲国语对白在线视频| 人人妻,人人澡人人爽秒播| 欧美大码av| 免费观看人在逋| 夜夜看夜夜爽夜夜摸| 欧美中文日本在线观看视频| 免费高清视频大片| 手机成人av网站| 在线观看免费午夜福利视频| 色噜噜av男人的天堂激情| 99国产精品99久久久久| www.www免费av| 亚洲自拍偷在线| 免费观看精品视频网站| 一夜夜www| ponron亚洲| www.精华液| 久久精品综合一区二区三区| 女同久久另类99精品国产91| 又爽又黄无遮挡网站| 99在线人妻在线中文字幕| 国产精品99久久99久久久不卡| 日本一区二区免费在线视频| 日本 av在线| 久久精品国产综合久久久| 久久天躁狠狠躁夜夜2o2o| 人人妻人人澡欧美一区二区| 91老司机精品| 亚洲精品中文字幕一二三四区| 三级国产精品欧美在线观看 | 国产午夜精品论理片| tocl精华| 久久精品aⅴ一区二区三区四区| 国产精品野战在线观看| 久久久久国内视频| 美女大奶头视频| 天堂av国产一区二区熟女人妻 | 老司机深夜福利视频在线观看| 两性夫妻黄色片| 搡老岳熟女国产| 欧美最黄视频在线播放免费| 在线观看美女被高潮喷水网站 | 亚洲电影在线观看av| 免费看十八禁软件| 国产一级毛片七仙女欲春2| 成人av在线播放网站| 欧美日本亚洲视频在线播放| 亚洲av电影不卡..在线观看| 国产精品免费一区二区三区在线| 久久久精品大字幕| 国产精品日韩av在线免费观看| 精品高清国产在线一区| 精品免费久久久久久久清纯| 在线a可以看的网站| 欧美色视频一区免费| 人人妻,人人澡人人爽秒播|