• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    榆神府礦區(qū)不同導(dǎo)水裂隙發(fā)育對地表土壤性質(zhì)的影響

    2021-06-17 08:09:04聶文杰趙曉光杜華棟曹祎晨宋世杰
    西安科技大學(xué)學(xué)報 2021年3期
    關(guān)鍵詞:導(dǎo)水土壤水分裂隙

    聶文杰,趙曉光,杜華棟,曹祎晨,宋世杰,田 德

    (1.西安科技大學(xué) 地質(zhì)與環(huán)境學(xué)院,陜西 西安 710054;2.西安科技大學(xué) 西部礦山生態(tài)環(huán)境修復(fù)研究院,陜西 西安 710054;3.河北省地質(zhì)環(huán)境監(jiān)測院,河北 石家莊 050021)

    0 引 言

    井工開采形成地下大規(guī)模采空區(qū),顯著改變煤系覆巖原始應(yīng)力分布與平衡。根據(jù)“上三帶”理論,冒落帶和裂隙帶若觸及或破壞煤系上覆重要含水層時,其裂隙即稱為導(dǎo)水裂隙。導(dǎo)水裂隙的發(fā)育及其對區(qū)域關(guān)鍵含水層的破壞,已成為西部煤礦區(qū)最典型、最嚴(yán)重的采動損害形式[1]。

    采動對含水層的損害使得地下水位下降,反映在地表使得地形、植被、土壤、微氣候等生態(tài)要素受到干擾,其中土壤作為大氣圈、生物圈、水圈等地表圈層物質(zhì)能力交換的界面,煤炭開采亦使得土壤生態(tài)系統(tǒng)循環(huán)發(fā)生改變[2]。目前國內(nèi)外學(xué)者對煤炭開采對土壤生態(tài)系統(tǒng)的影響開展了一系列研究[3-4],如采煤塌陷使得地表傾斜、拉伸和壓縮變形,地表土壤結(jié)構(gòu)受到損害[5],影響了土壤持水能力和通氣狀況,土壤水分運(yùn)移過程發(fā)生改變[6];土壤膠體的吸附交換、土壤酸堿中和及土壤氧化還原等過程受阻[7];地表裂縫促進(jìn)了土壤淋溶過程,加劇土壤C,N,P庫的損失[8];土壤結(jié)構(gòu)、水分狀況的變化亦使得土壤酶活性和微生物數(shù)量降低[9],進(jìn)而影響了土壤有機(jī)物和礦物質(zhì)等養(yǎng)分循環(huán)[10]。這些研究都嘗試將沉陷類型、沉陷階段和復(fù)墾方式等因素與土壤性質(zhì)變化相聯(lián)系,探究地表沉陷后土壤性質(zhì)演化過程。但由于地下采煤過程中的沉陷區(qū)與導(dǎo)水裂隙發(fā)育區(qū)在空間上的高度一致性,少有研究將導(dǎo)水裂隙發(fā)育程度與地表生態(tài)環(huán)境響應(yīng)進(jìn)行耦合,尤其是對于處在干旱、半干旱氣候區(qū)的陜北煤礦區(qū)而言,導(dǎo)水裂隙對區(qū)域重要含水層的破壞效應(yīng)是影響和控制地表環(huán)境演化規(guī)律的關(guān)鍵,因此有必要從地下導(dǎo)水裂隙發(fā)育程度角度,探究煤炭開采對土壤生態(tài)系統(tǒng)的影響。

    文中基于榆神府礦區(qū)導(dǎo)水裂隙發(fā)育規(guī)律及其對區(qū)域關(guān)鍵含水層的破壞程度研究,在劃分出導(dǎo)水裂隙發(fā)育程度的基礎(chǔ)上,將榆神府礦區(qū)劃分為導(dǎo)水裂隙發(fā)育區(qū)和導(dǎo)水裂隙不發(fā)育區(qū)(有導(dǎo)水裂隙發(fā)育但程度輕微)2大類型區(qū),分析2種類型下土壤物理、養(yǎng)分和生物特征變化規(guī)律;并結(jié)合未塌陷區(qū)土壤性質(zhì)分析,對導(dǎo)水裂隙發(fā)育后土壤質(zhì)量進(jìn)行評價,探討導(dǎo)水裂隙發(fā)育程度對土壤性質(zhì)的影響程度及其機(jī)理,旨在為礦區(qū)土地生態(tài)修復(fù)提供理論基礎(chǔ)。

    1 材料與方法

    榆神府礦區(qū)(37°02′~38°30′N,108°37′~111°05′E),地處陜北毛烏素沙漠前緣,西部為風(fēng)積沙地貌,東部及北部為黃土梁峁丘陵地貌;氣候?qū)俅箨懶园敫珊敌詺夂?;多年平均降水?81.2 mm,年內(nèi)降水量分配不均,主要集中在7~9月;多年平均蒸發(fā)量1 712 mm;主要植被類型為干旱灌叢草原,其他植被類型零星分布。

    榆神府礦區(qū)面積8 369 km2,區(qū)內(nèi)煤層埋藏淺,厚度大(2~12 m),開采深度為20~150 m。區(qū)內(nèi)現(xiàn)有采空區(qū)、塌陷區(qū)面積分別為366 km2和94.47 km2。區(qū)內(nèi)高強(qiáng)度的煤炭開采活動引發(fā)的地質(zhì)災(zāi)害主要表現(xiàn)形式為地表裂縫、崩塌、滑坡和地面塌陷。地質(zhì)條件損傷使得地下水位下降、包氣帶厚度增加、地表蒸發(fā)量增多,進(jìn)而加劇了地區(qū)生態(tài)環(huán)境的脆弱性[11]。

    圖1 榆神府礦區(qū)邊界及采樣位點(diǎn)示意

    1.1 土壤樣品采集與分析方法

    1.1.1 樣地設(shè)置

    通過調(diào)查分析研究區(qū)內(nèi)各井田導(dǎo)水裂隙發(fā)育狀況及其對地下水影響程度的大小,劃分出導(dǎo)水裂隙發(fā)育(包括檸條塔、錦界、涼水井等)、導(dǎo)水裂隙不發(fā)育(指有導(dǎo)水裂隙發(fā)育但程度輕微,包括小保當(dāng)、杭來灣和榆樹灣)2大類型。以導(dǎo)水裂隙發(fā)育2~3年損害地作為研究對象,不同導(dǎo)水裂隙發(fā)育類型下各選擇7塊下墊面狀況類似樣地(海拔1 100~1 400,坡度10°~25°、坡向陽坡),而且依據(jù)趙國平(2007)[12]每100 m塌陷裂縫條數(shù)計算的塌陷等級選擇中強(qiáng)度塌陷等級坡面,同時每種裂隙發(fā)育類型區(qū)選擇下墊面相近且沒有受到導(dǎo)水裂隙發(fā)育影響的未損害地作為對照,開展土壤理化生因子監(jiān)測。

    1.1.2 土壤樣品采集與特性分析方法

    每個樣地內(nèi)隨機(jī)選取3塊5 m ×5 m樣方,不同樣方內(nèi)各隨機(jī)選取7點(diǎn)進(jìn)行土壤取樣,分別用于測定土壤水分、機(jī)械組成、養(yǎng)分、生物學(xué)性質(zhì)等,其中土壤水分用土壤水分鉆采集地表下0~100 cm土層;用20 cm×10 cm鋁制飯盒取原狀土用于測定土壤顆粒組成;用標(biāo)準(zhǔn)環(huán)刀(100 cm3)取土用于土壤體積質(zhì)量的測定;土壤養(yǎng)分和生物學(xué)性狀用土壤養(yǎng)分取樣鉆采集,土壤機(jī)械組成、容重、養(yǎng)分和生物學(xué)性質(zhì)采集0~30 cm土層土壤,其中用于土壤微生物活性測定的土壤采樣后立即于液氮罐中保存后轉(zhuǎn)移至實(shí)驗(yàn)室超低溫冰箱保存,其它常量指標(biāo)測試土壤于避光處陰干后備用。土壤水分含量用烘干法直接測定;土壤pH值用電位法測定;土壤機(jī)械組成用篩分法測定。土壤有機(jī)質(zhì)含量用燃燒氧化-非分散紅外法測定;全氮用開氏消解法測定;有效氮用堿解擴(kuò)散法測定;全磷用NaOH熔融法測定;速效磷用NaHCO3浸提-鉬銻抗比色法測定;速效鉀(AK)含量用乙酸銨浸提-火焰光度計法測[13]。土壤蔗糖酶活性采用3,5—二硝基水楊酸比色法;過氧化氫酶活性采用高錳酸鉀滴定法;脲酶活性采用靛酚藍(lán)比色法;磷酸酶活性測定采用磷酸苯二鈉法測定[14]。采用絕對定量PCR分析土壤DNA樣品細(xì)菌、真菌、放線菌和古菌的基因拷貝數(shù),獲取土壤樣品中細(xì)菌、真菌、放線菌和古菌的數(shù)量[15]。

    1.2 數(shù)據(jù)處理

    采用SPSS 21.0軟件對數(shù)據(jù)進(jìn)行統(tǒng)計檢驗(yàn),結(jié)果用平均值±標(biāo)準(zhǔn)偏差(SD)表示;用單因素方差分析(one-way ANOVA)和最小顯著差異法(LSD)比較土壤指標(biāo)在不同導(dǎo)水裂隙發(fā)育特征下的顯著性差異,顯著性差異水平設(shè)定為P=0.05。綜合土壤理化生性質(zhì)分析,采用主成分分析(principal component analysis PCA)探討不同土壤因子間的相關(guān)性,分析地表損害后土壤質(zhì)量變化特征,并且用CANOCO 5.0 軟件得出不同導(dǎo)水裂隙發(fā)育程度樣地分類排序圖。

    2 結(jié)果與分析

    2.1 土壤物理特性的變化特征

    導(dǎo)水裂隙發(fā)育區(qū)和導(dǎo)水裂隙不發(fā)育區(qū)的未損害地土壤容重差異不顯著,且2個區(qū)域表層土壤容重的垂直變化亦不明顯(P>0.05)(表1)。在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)損害地土壤容重顯著減小(P<0.05),其中0~10,10~20和20~30 cm土層與相對應(yīng)未損害地土層相比分別降低了14%,8%和4%;導(dǎo)水裂隙不發(fā)育區(qū)地表損害后土壤容重雖然有所下降,但與該區(qū)未損害地相較差異不顯著(P>0.05)。

    表1 不同裂隙發(fā)育程度土壤容重變化特征

    圖2表明在導(dǎo)水裂隙發(fā)育區(qū)未損害地土壤硬度顯著大于導(dǎo)水裂隙不發(fā)育區(qū)的未損害地(P<0.05)。在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)和不發(fā)育區(qū)表層土壤硬度較其對應(yīng)未損害地分別降低了16%和20%(P< 0.05),導(dǎo)水裂隙不發(fā)育區(qū)土壤硬度下降程度大于導(dǎo)水裂隙發(fā)育區(qū)。

    圖2 不同裂隙發(fā)育程度表層硬度變化特征

    表2顯示研究區(qū)土壤在未裂隙發(fā)育損害前主要以粉粒和砂粒為主,粘粒和粗砂粒所占比例較小。導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)土壤表層細(xì)粉粒、中粉粒、粗砂粒含量較未損害地顯著降低了76%、66%和84%(P<0.05);而粘粒、粗粉粒和細(xì)砂粒分別顯著增加了228%,148%和356%(P<0.05)。在導(dǎo)水裂隙不發(fā)育區(qū),損害地與未損害地不同土壤粒徑并未表現(xiàn)出顯著性差異(P>0.05)。

    表2 不同裂隙發(fā)育程度各土壤粒徑比例變化特征

    從圖3可以看出,導(dǎo)水裂隙發(fā)育區(qū)未損害地土壤水分小于導(dǎo)水裂隙不發(fā)育區(qū)未損害地的。在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)表層土壤平均含水量較未損害樣地下降了33%,其中0~40 cm土層下降幅度較小為22%,而40~60 cm土層土壤水分下降了37%;與之對應(yīng)導(dǎo)水裂隙不發(fā)育區(qū),土壤水分并未表現(xiàn)出顯著性差異,土壤水分平均約為13%左右。

    圖3 不同裂隙發(fā)育程度表層土壤水分變化特征

    圖4為導(dǎo)水裂隙發(fā)育區(qū)和導(dǎo)水裂隙不發(fā)育區(qū)的未損害地土壤pH差異不顯著(P>0.05),土壤pH平均值為8.3,為堿性土壤。在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)損害地土壤pH較未損害地pH上升了8%并達(dá)到顯著性差異(P<0.05);而導(dǎo)水裂隙不發(fā)育區(qū)地表損害后對土壤pH值影響不大,損害地與未損害地土壤pH并未表現(xiàn)出顯著性差異(P>0.05)。

    圖4 不同裂隙發(fā)育程度表層土壤pH變化特征

    2.2 土壤化學(xué)養(yǎng)分特性的變化特征

    圖5(a)顯示在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育損害地土壤有機(jī)質(zhì)較未損害地下降了27%并達(dá)到顯著性差異(P<0.05);導(dǎo)水裂隙不發(fā)育區(qū)地表損害后土壤有機(jī)質(zhì)雖然有所下降,但與該區(qū)未損害地相較差異不顯著(P>0.05)。圖5(b)顯示導(dǎo)水裂隙發(fā)育區(qū)未損害地土壤全氮大于導(dǎo)水裂隙不發(fā)育區(qū)且表現(xiàn)出顯著性差異(P<0.05);在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育和導(dǎo)水裂隙不發(fā)育區(qū)土壤全氮與未損害地相較差異都不顯著(P>0.05)。圖5(c)顯示導(dǎo)水裂隙發(fā)育區(qū)未損害地土壤有效氮大于導(dǎo)水裂隙不發(fā)育區(qū)且表現(xiàn)出顯著性差異(P<0.05);在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)損害地土壤有效氮較未損害地下降46%且表現(xiàn)出顯著性差異(P<0.05),而在導(dǎo)水裂隙不發(fā)育區(qū)損害地與未損害地土壤有效氮差異不顯著(P>0.05)。圖5(d)顯示導(dǎo)水裂隙發(fā)育和導(dǎo)水裂隙不發(fā)育區(qū)土壤全磷在損害地與未損害地相較差異均不顯著(P>0.05)。圖5(e)顯示導(dǎo)水裂隙發(fā)育區(qū)未損害地土壤有效磷小于導(dǎo)水裂隙不發(fā)育區(qū)且表現(xiàn)出顯著性差異(P<0.05)。

    圖5 不同裂隙發(fā)育程度表層土壤養(yǎng)分演變特征

    在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)損害地和導(dǎo)水裂隙不發(fā)育區(qū)損害地土壤有效磷較其相應(yīng)未損害地差異不顯著(P>0.05)。圖5(f)顯示導(dǎo)水裂隙發(fā)育區(qū)未損害地土壤有效鉀大于導(dǎo)水裂隙不發(fā)育區(qū)且表現(xiàn)出顯著性差異(P<0.05);在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)損害地較未損害地下降了35%且表現(xiàn)出顯著性差異(P<0.05),而在導(dǎo)水裂隙不發(fā)育區(qū)損害地較未損害地下降了25%且表現(xiàn)出顯著性差異(P<0.05)。

    2.3 土壤生物特性的變化特征

    圖6(a)顯示導(dǎo)水裂隙發(fā)育區(qū)未損害地土壤蔗糖酶活性與導(dǎo)水裂隙不發(fā)育區(qū)差異不顯著(P>0.05);在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)損害地土壤蔗糖酶較未損害地上升了60%且表現(xiàn)出顯著性差異(P<0.05),而在導(dǎo)水裂隙不發(fā)育區(qū)損害地與未損害地土壤蔗糖酶差異不顯著(P>0.05)。圖6(b)顯示土壤脲酶活性的變化趨勢相同,表現(xiàn)為導(dǎo)水裂隙發(fā)育區(qū)未損害地脲酶活性與導(dǎo)水裂隙不發(fā)育區(qū)差異不顯著(P>0.05);在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)損害地土壤脲酶較未損害地上升了111%且表現(xiàn)出顯著性差異(P<0.05),而在導(dǎo)水裂隙不發(fā)育區(qū)損害地與未損害地土壤脲酶差異不顯著(P>0.05)。圖6(c)顯示過氧化氫酶在不同導(dǎo)水裂隙發(fā)育程度區(qū)未損害地和導(dǎo)水裂隙不發(fā)育后損害地都未表現(xiàn)出顯著性差異(P>0.05),其平均活性為2.07(mg·g-1·d-1)。圖6(d)顯示導(dǎo)水裂隙發(fā)育區(qū)未損害地磷酸酶活性大于導(dǎo)水裂隙不發(fā)育區(qū)且表現(xiàn)出顯著性差異(P<0.05);在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)損害地土壤磷酸酶較未損害地上升了18%且表現(xiàn)出顯著性差異(P<0.05),而在導(dǎo)水裂隙不發(fā)育區(qū)損害地與未損害地土壤磷酸酶差異不顯著(P>0.05)。

    圖6 不同導(dǎo)水裂隙發(fā)育特征下表層土壤酶活性變化特征

    圖7(a)顯示導(dǎo)水裂隙發(fā)育區(qū)未損害地土壤古菌數(shù)量與導(dǎo)水裂隙不發(fā)育區(qū)差異不顯著(P>0.05);在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)損害地土壤古菌數(shù)量較未損害地下降了48%且表現(xiàn)出顯著性差異(P<0.05),而在導(dǎo)水裂隙不發(fā)育區(qū)損害地與未損害地土壤古菌數(shù)量差異不顯著(P>0.05),約為1.4×106 cfu·g-1。圖7(b)顯示導(dǎo)水裂隙發(fā)育區(qū)未損害地土壤真菌數(shù)量與導(dǎo)水裂隙不發(fā)育區(qū)差異不顯著(P>0.05);在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)損害地土壤真菌數(shù)量較未損害地上升了88%且表現(xiàn)出顯著性差異(P<0.05),而在導(dǎo)水裂隙不發(fā)育區(qū)損害地真菌數(shù)量急劇上升,較未損害地上升了213%,達(dá)到1.9×106cfu·g-1。圖7(c)顯示導(dǎo)水裂隙發(fā)育區(qū)未損害地土壤細(xì)菌數(shù)量大約導(dǎo)水裂隙不發(fā)育區(qū)且差異顯著(P<0.05);在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)損害地土壤細(xì)菌數(shù)量較未損害地顯著下降了87%(P<0.05),與之相反在導(dǎo)水裂隙不發(fā)育區(qū)損害地細(xì)菌數(shù)量顯著增加了72%。圖7(d)顯示導(dǎo)水裂隙發(fā)育區(qū)未損害地土壤放線菌數(shù)量大約導(dǎo)水裂隙不發(fā)育區(qū)且差異顯著(P<0.05);在導(dǎo)水裂隙發(fā)育后,導(dǎo)水裂隙發(fā)育區(qū)損害地土壤放線菌數(shù)量較未損害地顯著下降了81%(P<0.05),與之相反在導(dǎo)水裂隙不發(fā)育區(qū)損害地細(xì)菌數(shù)量顯著增加了34%。

    圖7 不同導(dǎo)水裂隙發(fā)育特征下表層土壤菌群數(shù)量變化特征

    2.4 不同導(dǎo)水裂隙發(fā)育特征下土壤質(zhì)量變化排序

    由不同導(dǎo)水裂隙發(fā)育下樣地與土壤因子PCA排序圖知(圖8),土壤粉粒、硬度、速效鉀、有機(jī)質(zhì)和磷酸酶之間兩兩呈正相關(guān),且與粘粒、砂粒呈負(fù)相關(guān);土壤pH值、磷酸酶、脲酶之間正相關(guān),其中均與真菌、放線菌、古菌、速效磷、容重和含水量呈負(fù)相關(guān),與蔗糖酶正相關(guān)。除細(xì)菌和過氧化氫酶外,其他土壤酶類、菌類指標(biāo)間各自呈正相關(guān)。從圖7研究樣地排序分類來看,圖中沿第1軸方向左側(cè)主要為導(dǎo)水裂隙發(fā)育未損害地和導(dǎo)水裂隙不發(fā)育區(qū),其表層土壤特征為菌類數(shù)量、水分和土壤養(yǎng)分較高;第1軸右側(cè)為導(dǎo)水裂隙發(fā)育損害地樣地,主要土壤特征表現(xiàn)為養(yǎng)分、水分較小,土壤pH值和酶活性較大。在主要以粒徑和硬度為特征的第2軸,導(dǎo)水裂隙發(fā)育未損害地樣地分布與粉粒含量和土壤硬度指向相同,而其他樣地分布沿第2軸向下分布,粉粒和硬度較低。由圖8排序可知導(dǎo)水裂隙發(fā)育區(qū)未損害地與損害樣地排序形成較明顯的類群差異,該區(qū)導(dǎo)水裂隙發(fā)育對地表土壤因子影響較明顯,而導(dǎo)水裂隙不發(fā)育區(qū)未損害地和損害地在排序上有重復(fù)交叉,該區(qū)導(dǎo)水裂隙發(fā)育對土壤因子影響較小。

    圖8 不同導(dǎo)水裂隙發(fā)育特征下樣地與土壤理化生性質(zhì)之間的PCA分析

    3 土壤特性對導(dǎo)水裂隙發(fā)育程度的響應(yīng)規(guī)律

    3.1 土壤物理特性對導(dǎo)水裂隙發(fā)育程度的響應(yīng)規(guī)律

    由于導(dǎo)水裂隙發(fā)育區(qū)主要是黃土溝壑區(qū),該區(qū)地表表現(xiàn)為臺階狀斷錯和密集的裂縫[19],由于剪力作用土層結(jié)構(gòu)受到破壞,土壤結(jié)構(gòu)松散、容重降低、空隙度增加,研究結(jié)果與何金軍研究結(jié)論相似[20];但在導(dǎo)水裂隙發(fā)育區(qū),地表裂縫、斷錯發(fā)育過程中的震動,使得質(zhì)量大的粉粒沿地表裂縫跌落至土壤深層,使得粘粒比例增加,這與前人研究地表塌陷使得土壤粗化的結(jié)論有所不同[21]。而導(dǎo)水裂隙不發(fā)育區(qū)主要是風(fēng)積沙地區(qū),與黃土區(qū)相反,該區(qū)域?qū)严栋l(fā)育后沙土在各種外力和土體自身重力作用向下夯實(shí),土壤硬度和容重相應(yīng)增加[22],部分地裂縫自然彌合[23],地表損害表象不明顯,地表土壤顆粒組成變化亦較小。

    黃土區(qū)地表損害后由于蒸發(fā)量的增加使得土壤含水量降低,表層土壤鹽分含量升高,土壤微生物活性下降,微生物分解有機(jī)凋落物形成的有機(jī)酸、酚類物質(zhì)量變小,導(dǎo)致土壤pH增加[24]。而在導(dǎo)水裂隙不發(fā)育區(qū),輕微的導(dǎo)水裂隙發(fā)育并未對土壤水分、植被的生長造成較大的影響,因此該區(qū)土壤pH變化較小。

    3.2 土壤水分養(yǎng)分特性對導(dǎo)水裂隙發(fā)育程度的響應(yīng)規(guī)律

    采煤引起地表沉陷后表層土壤水分變化目前仍存在爭議[25-26],本研究表明在導(dǎo)水裂隙發(fā)育的黃土區(qū),地表損害后表層土壤水分含量下降,主要原因是由于表層土壤結(jié)構(gòu)破壞后土壤的蒸發(fā)量增加但持水能力下降[27],同時由于導(dǎo)水裂隙發(fā)育地下潛水位下降,潛水和包氣帶水水力聯(lián)系被切斷,相對應(yīng)地表層土壤的儲水能力降低。而在主要處于風(fēng)沙灘地的導(dǎo)水裂隙發(fā)育區(qū)則不同,該區(qū)地表損害后裂隙彌合較快[19],表層土壤蒸發(fā)量并未顯著增加,反而沉陷引起的土壤結(jié)構(gòu)損害有利于增加降水的入滲速率,加之風(fēng)沙區(qū)潛水位較高,因此導(dǎo)水裂隙不發(fā)育區(qū)損害地對40~100 cm土壤水分影響不明顯。

    從土壤養(yǎng)分角度看,導(dǎo)水裂隙發(fā)育區(qū)土壤有機(jī)質(zhì)、有效氮磷鉀等減少,分析有兩方面原因:一是地表損害使得地表植物生物量和土體微生物數(shù)量減小,土壤養(yǎng)分循環(huán)受阻[28];二是地表裂縫、塌陷使得坡面徑流攜帶的養(yǎng)分向土層深處轉(zhuǎn)移,加劇了土壤有效養(yǎng)分的流失,這與以往研究結(jié)果相似[24]。導(dǎo)水裂隙不發(fā)育的覆沙區(qū)地表損傷強(qiáng)度較小而使土壤養(yǎng)分循環(huán)未受影響[22]。

    3.3 土壤生物特性對導(dǎo)水裂隙發(fā)育程度的響應(yīng)規(guī)律

    前人研究表明地表塌陷后表層土壤水分含量降低,使得塌陷地土壤酶活性下降[29],但本研究表明除過氧化氫酶外,測試的蔗糖酶、脲酶和磷酸酶都有所增加,主要原因是導(dǎo)水裂隙發(fā)育損害地土壤水分有所減小,但并未使得土壤酶活性大幅度下降,相反導(dǎo)水裂隙在地表產(chǎn)生的裂縫可以使得地表溫度增加、氧氣含量大[30],兩者綜合使得導(dǎo)水裂隙發(fā)育區(qū)土壤酶含量增加。但導(dǎo)水裂隙發(fā)育區(qū)土壤細(xì)菌數(shù)量均減小,主要是由于地表擾動后造成土壤鹽漬化可能使得土壤菌類數(shù)量的降低[31];另一方面導(dǎo)水裂隙發(fā)育導(dǎo)致地表植被發(fā)育受阻,降低了植被根際細(xì)菌、真菌和放線菌的數(shù)量[32]。而在導(dǎo)水裂隙不發(fā)育區(qū)地表損害強(qiáng)度小,同時導(dǎo)水裂隙不發(fā)育區(qū)小的擾動使得地表土壤容重減小、孔隙度和土壤含水量小幅增加,土層空氣交換能力增強(qiáng),因此該區(qū)土壤酶活性和土壤菌類數(shù)量呈現(xiàn)增加的趨勢,由此可以推斷導(dǎo)水裂隙不發(fā)育區(qū)后續(xù)生態(tài)恢復(fù)過程中土壤自我恢復(fù)能力亦較強(qiáng)。

    3.4 不同導(dǎo)水裂隙發(fā)育特征下土壤質(zhì)量總體變化

    研究結(jié)果表明土壤顆粒組成特征、酶活性和微生物數(shù)量是影響研究區(qū)土壤質(zhì)量的主要因子。導(dǎo)水裂隙發(fā)育區(qū),地表損害后土壤結(jié)構(gòu)發(fā)生損害且恢復(fù)較慢,使得土壤持水能力下降,且對土壤水分變化較為敏感的土壤菌群數(shù)量下降[31],養(yǎng)分循環(huán)受阻,在導(dǎo)水裂隙發(fā)育區(qū)地表損害使土壤含水量顯著下降,因此從PCA樣地排序圖看出導(dǎo)水裂隙地表損害后的導(dǎo)水裂隙發(fā)育區(qū)損害地與對照未損害地分布在不同象限,表明導(dǎo)水裂隙發(fā)育區(qū)地表損害后應(yīng)采取一定的工程措施重構(gòu)土壤結(jié)構(gòu),使得土壤生態(tài)功能得以恢復(fù);而在導(dǎo)水裂隙不發(fā)育區(qū)土壤結(jié)構(gòu)損害不明顯,加之該區(qū)主要位于風(fēng)積沙地區(qū),地表損害在風(fēng)蝕、水蝕和重力的作用下自然彌合速度較快,導(dǎo)致土壤自我恢復(fù)能力較強(qiáng),使土壤指標(biāo)并未顯著下降,PCA排序圖上導(dǎo)水裂隙不發(fā)育區(qū)損害地和未損害地有交叉重疊,表明導(dǎo)水裂隙不發(fā)育區(qū)地表損害后可主要依靠自然恢復(fù)輔以輕微的人工措施即可恢復(fù)該區(qū)土壤生態(tài)功能。

    4 結(jié) 論

    1)在未損害地,導(dǎo)水裂隙發(fā)育區(qū)土壤養(yǎng)分含量、酶類活性、菌類數(shù)量高于導(dǎo)水裂隙不發(fā)育區(qū),但土壤容重、土壤水分表現(xiàn)出相反的趨勢。

    2)在導(dǎo)水裂隙發(fā)育區(qū),地表損害后表層土壤粉粒和砂粒含量減小,粘粒含量增加幅度較小,土壤容重、硬度、水分有機(jī)質(zhì)、有效氮磷和菌類數(shù)量均減小,土壤pH和酶類活性增加,土壤全效養(yǎng)分損害前后變化不大。

    3)在導(dǎo)水裂隙不發(fā)育損害地,除土壤水分、硬度和菌類數(shù)量增加以外,其他土壤理化生指標(biāo)與未損害地相比較變化不顯著。

    4)土壤顆粒組成、酶活性和微生物數(shù)量是影響研究區(qū)土壤質(zhì)量的主要因子,導(dǎo)水裂隙發(fā)育區(qū)地表損害后土壤質(zhì)量下降顯著,而在導(dǎo)水裂隙不發(fā)育區(qū)土壤質(zhì)量下降不明顯。

    猜你喜歡
    導(dǎo)水土壤水分裂隙
    裂隙腦室綜合征的診斷治療新進(jìn)展
    裂隙燈檢查的個性化應(yīng)用(下)
    西藏高原土壤水分遙感監(jiān)測方法研究
    《老炮兒》:在時代裂隙中揚(yáng)棄焦慮
    電影新作(2016年1期)2016-02-27 09:16:48
    改性滌綸針織物導(dǎo)水透濕性能研究
    導(dǎo)水陷落柱預(yù)注漿治理
    不同覆蓋措施對棗園土壤水分和溫度的影響
    非完全充填裂隙的應(yīng)力應(yīng)變特性研究
    河南科技(2014年11期)2014-02-27 14:09:42
    植被覆蓋區(qū)土壤水分反演研究——以北京市為例
    土壤水分的遙感監(jiān)測方法概述
    肇庆市| 泰兴市| 洛阳市| 个旧市| 旺苍县| 左贡县| 八宿县| 望江县| 新沂市| 报价| 沂源县| 桐城市| 阿荣旗| 略阳县| 宝兴县| 泸定县| 彭州市| 恩平市| 安阳市| 余江县| 大连市| 博客| 沙坪坝区| 安顺市| 海盐县| 互助| 南雄市| 商都县| 沈阳市| 舞钢市| 道真| 内江市| 凭祥市| 南溪县| 禄丰县| 阜城县| 察隅县| 上饶县| 郎溪县| 邛崃市| 潞城市|