• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Optical Property of a New Zinc Complex Based on the Derivative of 2-(2?-Hydroxyphenyl)-1H-benzimidazole and Phenanthroline①

    2021-06-11 03:09:14YINGuoJieZHANGHoYuTIANWenJieZHAODnZHANGBinCHENDongMei
    結(jié)構(gòu)化學(xué) 2021年4期

    YIN Guo-Jie ZHANG Ho-Yu TIAN Wen-Jie ZHAO Dn ZHANG Bin CHEN Dong-Mei

    Synthesis and Optical Property of a New Zinc Complex Based on the Derivative of 2-(2?-Hydroxyphenyl)-1H-benzimidazole and Phenanthroline①

    YIN Guo-Jiea②ZHANG Hao-YuaTIAN Wen-JieaZHAO DanaZHANG Binb②CHEN Dong-Meia

    a(471023)b(450000)

    A novel zinc complex (ZnE) has been designed and synthesized based on the derivative of 2-(2?-hydroxyphenyl)-1-H-benzimidazole (HBI) and the neutral nitrogen-containing ligand (phen).The crystal of the title complex crystallizes in the monoclinic system, space group21/with= 10.2631(2),= 34.2166(6),= 11.4103(3) ?,= 96.771(2)°,M= 844.24,= 3978.99(14) ?3,= 4, the final= 0.0400 and= 0.1001 for8107 observed reflections (2()).In the title complex, the free protonated phenoxide moiety (4-OH) is successfully retained to realize pseudo-intramolecular hydrogen bonds with the coordinated O atom from the other ligand.

    synthesis, proton transfer, intramolecular hydrogen bond;

    1 INTRODUCTION

    Recently, fluorophore based on excited-state intramole- cular proton transfer (ESIPT) in particular has attracted considerable attention from both experimental and theoretical viewpoints, because it show uniquely optical properties[1-5].A dual emission originating from both the initial excited form and the proton-transferred tautomer is usually found by the ESIPT chromophores, which are of special interest in white light-emitting materials[6-8], and a large panel of optical applications based on ESIPT lumophores has been made[9-13].Despite these encouraging results, syntheses of hydroxybenzazole derivatives for efficient ESIPT emission with different color are challenged until now[14-19].It is well established that ESIPT is a fast photoisomerization process, which mainly relies on the keto-enol tautomerism.Upon photoexcitation, the enol conformer (–O–H···N= or –N–H···N=) of these compounds undergoes ultrafast intramolecular proton transfer to afford the excited keto tautomer (=O···H–N– or =N···H–N=)[20-26].

    It is well known that the metal ion in the complexes provide the best combination of versatility, stability and efficiency, which provide opportunities for harnessing satisfactory photo-properties[27].Thus, achieving ESIPT fluorophore based on the pseudo-intramolecular hydrogen bond in complexes is one of our recent targets of fundamental research.The zinc complexes based on 2-(2?-hydroxyphenyl) benzimidazole (HBI) are excellent emitting materials with desired physical and optical properties[28].Meanwhile, hydroxybenzazole derivatives are the most extensively studied ESIPT fluorophores due to its relative good performance in photoluminescence[29, 30].In this report, the HBI was functionalized with additional hydroxy moiety in the 4 position and methoxy moiety in the 4? position to form the 2-(2?-hydroxy-4?-methoxyphenyl)-1-ethyl-4-hydroxyben-zimidazole (EtL).Moreover, in order to achieve better proton transfer luminescence, a neutral nitrogen-containing ligand was introduced on the basis of the original complex structure[31].Upon complexation with Zn(II) ions and the ligands, as expected, the free protonated phenoxide moiety (4-OH) is successfully retained to realize pseudo-intramole- cular hydrogen bonds with the coordinated O atom from the other ligand (Scheme 1).It is looking forward to obtain excited state proton transfer luminescent material with better luminescenceproperty.

    Scheme 1.Structure of the zinc complex ZnE

    2 EXPERIMENTAL

    All the purchased solvents, except for C2H5OH and CH3OH, were distilled from appropriate drying agents prior to use.The commercially available reagents were used as received, unless otherwise stated.1H NMR spectra of the compounds were recorded on a Bruker DPX-400MHz spectrometer in DMSO-6.Electrospray ionization (ESI) mass spectra of the compounds were conducted in positive ion mode using a Bruker Esquire 3000 instrument in CH3OH.Elemental analysis for C, H, and N were acquired by employing Carlo-Erba1106 Elemental Analyzer.The absorption spectra were recorded by using Perkin-Elmer Lambda 900 spectrometer.Steady state excitation and emission spectra of the compounds were carried out on a Jobin-Yvon-Horiba FluoroMax-4P spectrometer.

    According to the classic benzimidazoles synthesis[32, 33], the ligand 2-(2?-hydroxy-4?-methoxyphenyl)-1-ethyl-4- hydroxylbenzimidazole (EtL) was synthesized in good yield by the reaction with 2-amino-3-nitrophenol and the corresponding salicylaldehyde (Scheme 2).Subsequent reaction of the ligand (EtL) with zinc(II) acetate in methanol afforded zinc complexes (ZnE).Note that easy and specific synthesis of the complex is essential for real applications.

    Scheme 2.Synthesis of the ligand EtL

    2.1 Preparation of HL

    2-Amino-3-nitrophenol (15 mmol, 2.31 g) and 2-hydroxy- 4-methory-benzaldehyde (17 mmol, 3.06 g) were dissolved in 300 mL of a 5:1 EtOH/H2O mixture.Then Na2S2O4(45 mmol, 7.83 g) was added to it.After heating at 70 ℃ for 5 h, the reaction mixture was cooled to room-temperature and poured into water under stirring.The precipitate was filtered and purified by column chromatography on silica gel using a mixture of ethyl acetate and-hexane as eluent to afford a white powder.Yield: 87.5% (3.36 g).1H NMR (400 MHz, DMSO):13.44 (s, 1H), 12.92 (d,= 31.8 Hz, 1H), 10.02 (d,= 92.1 Hz, 1H), 8.20~7.91 (m, 1H), 7.14~6.98 (m, 2H), 6.70~6.60 (m, 3H), 3.81 (s, 3H); ESI-MS (m/z): 256.9 [M+l]+.Elemental analysis calcd.(%) for C14H12N2O3: C, 65.62; H, 4.72; N, 10.93.Found (%): C, 65.65; H, 4.69; N, 10.92.

    2.2 Preparation ofHTsL

    HL (7 mmol, 1.79 g) and triethylamine (3.5 mL, 25 mmol) were dissolved in CH2Cl2(20 mL).The mixture was cooled to 0 ℃, and then 4-methylbenzenesulfonyl chloride (1.37 g, 7.2 mmol) in CH2Cl2(10 mL) was added dropwise under N2.After worming the reaction mixture to room temperature for 2 h, it was quenched by water.The mixture was extracted by dichloromethane.The organic layer was dried with Na2SO4and concentrated under reduced pressure.The crude residue was purified by silica gel column chromatography with ethyl acetate/-hexane as eluent to afford a white powder.Yield: 85% (3.36 g) yield.1H NMR (400 MHz, DMSO)12.42 (s, 1H), 7.86 (d,= 8.3 Hz, 2H), 7.60 (d,= 8.7 Hz, 1H), 7.47~7.28 (m, 5H), 7.20~7.08 (m, 2H), 6.95~6.80 (m, 4H), 3.85 (s, 3H), 2.36 (s, 3H), 2.12 (s, 3H); ESI-MS (m/z): 565.3 [M+l]+.Anal.Calcd.(%) for C28H24N2O7S2: C, 59.56; H, 4.28; N, 4.96.Found (%): C, 59.59; H, 4.29; N, 4.96.

    2.3 Preparationof EtL

    Under N2atmosphere, a mixture of HTsL (2 mmol, 1.13 g) and tetrabutylammonium bromide (TBAB, 64.5 mg, 0.2 mmol) were dissolved in DMSO (10 mL).Aqueous K2CO3(2 M, 3.3 mL) was added dropwise to the solution and stirred at room temperature for 1 h.Then ethyl bromide (0.16 mL, 2.2 mmol) was added slowly.The reaction mixture was refluxed for 12 h.After cooling to room temperature, the mixture was poured into water and extracted by dichloromethane.The organic phase was then dried (Na2SO4), evaporated, and concentrated to dryness under reduced pressure.The resulting crude product (EtTsL) was dissolved in methanol (20 mL) and refluxed for 2 h after the addition of aqueous NaOH (2.0 mol/L, 5 mL).The mixture was cooled and neutralized by dilute aqueous HCl.The mixture was then extracted by ethyl acetate and the organic layers were dried with Na2SO4.The solvent was removed under reduced pressure, and the crude product was further purified by silica gel column chromatography using ethyl acetate/-hexane as eluent to afford a white powder.Yield: 74% (0.42 g).1H NMR (400 MHz, DMSO)12.11 (s, 1H), 9.92 (s, 1H), 7.55 (d,= 8.5 Hz, 1H), 7.11~6.97 (m, 2H), 6.69~6.56 (m, 3H), 4.29 (q,= 7.1 Hz, 2H), 3.80 (s, 3H), 1.34 (t,= 7.2 Hz, 3H); ESI-MS (m/z): 285.2 [M+l]+.Anal.Calcd.(%) for C16H16N2O3: C, 67.59; H, 5.67; N, 9.85.Found (%): C, 67.57; H, 5.66; N, 9.86.

    2.4 Synthesis of ZnE

    Zn(Ac)2·2H2O (0.22 g, 1 mmol) in methanol (5 mL) was added in drops to a solution of EtL (2 mmol, 0.57 g) in methanol (30 mL) and 1,10-phenanthroline (Phen) (0.18 g, 1 mmol).The resulting mixture was stirred and refluxed for 5 h.The precipitate was then filtered and recrystallized in methanol as white powder.Colorless single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of their methanol solutions in air.Yield: 61% (0.51 g).ESI-MS (m/z): 811.4 [M+l]+.Anal.Calcd.(%): C, 65.07; H, 4.72; N, 10.35.Found (%): C, 65.02; H, 4.73; N, 10.33.

    2.3 X-ray crystallography studies of ZnE

    Crystal diffraction data for complexes ZnE were collected on an Oxford Diffraction Xcalibur CCD diffractometer using graphite-monochromatized Moradiation (= 0.7107 ?) at 293 K by an-scan technique.Program CrysAlisPro was employed for data collection and reduction[34].The structure was solved by direct methods, and refined anisotropically by full-matrix least-squares method on2using the OLEX2-1.2 and SHELX[35, 36].All non-hydrogen atoms were refined anisotropically.The hydrogen atoms were included in the structure factor calculation at idealized positions using a riding model and refined isotropically.Hydroxyl protons were located from the difference-Fourier map and refined isotropically, and no restrictions were put on the O–H distances.The coordinated water molecule of ZnE was refined to be disordered over two possible sites with site occupancy factors of 0.50:0.50.Details of selected bond lengths (?) and bond angles (°) for the crystals of the title compound are shown in Tables 1 and 2.

    Table 1.Selected Bond Lengths (?) and Bond Angles (°)

    Table 2.Hydrogen Bond Lengths (?) and Bond Angles (°)

    3 RESULTS AND DISCUSSION

    In order to elucidate the structure features of the zinc complex (ZnE), the crystal was grown by evaporation of their methanol solutions in air.The complex crystallizes in monoclinic with space group121/1.As shown in Fig.1, the zinc ionis six-coordinated by N(1)^O(1) and N(3)^O(4) atoms in the two deprotonated ligands with a bidentate bonding mode and N(5)^N(6) atoms of thephen, forming a deformed octahedral coordination environment.Interestingly, the N(1) and N(3) atoms in the two ligands (EtL) intogether with the N(5)^N(6) of the phen ligand constitute the octahedral equatorial plane.The bond lengths of Zn(1)–N(1) and Zn(1)–N(3) between the znic ion and the nitrogen atoms of the two deprotonated ligands are 2.1680(18) and 2.2003(17) ?, respectively.The bond lengths of Zn(1)–N(5) and Zn(1)–N(6) between the zinc ion and the nitrogen atoms of phen are 2.2294(18) and 2.2609(17) ?, respectively.The two oxygen atoms O(1) and O(4) in the ligand EtL are in trans and occupy two vertices of the octahedron, with the bond lengths of Zn(1)–O(1) and Zn(1)–O(4) being 2.0533(15) and 2.0582(14) ?, respectively.At the same time, the distortion of the two EtL ligands caused by the steric hindrance effect is also slightly different.The dihedral angle of the 2-phenyl group containing O(4) atom and the benzimidazole ring is 48.7°, while the other one containing O(1) atom is 44.2°, so the conjugation degree of benzimidazole itself is further reduced.Furthermore, there are strong intramolecular hydrogen bonds in this complex: O(2)–H(2)···O(4) (O/O 2.557(4)?, H···O 1.76 ?,DNHO, 165°) and O(5)–H(5)···O(1) (O/O 2.656(4)?, H···O 1.85 ?,DOHO, 166°).

    Fig.1.Molecular structure of the complex ZnE

    The UV-Vis absorption spectra of the free ligands (EtL and phen) and the corresponding zinc complex (ZnE) were recorded in methanol solvent at room temperature.As shown in Fig.2, the main absorption region for the ligand EtL is at 210~220 nm (Table 3), the high-energy absorption bands mainly correspond to the-* transition on the 4-hydroxy- benzimidazole moiety, and the lowest-energy absorption bands at ca.316 nm can be attributed to the coupling between the benzimidazole and the substituted phenyl ring[37, 38].Upon complexation with Zn(II) ion, the absorption profile is still dominated by the ligands.Meanwhile, the main absorption wavelength of the ligand phen is in the short-wave region, which enhances the absorption intensity of the complex in the short-wave region.Consequently, due to the dihedral angles between the phenolate and benzimidazole moieties in the complex, the intensity of the long wavelength absorption maxima is reduced relative to that of the maximum absorption wavelengths.It should be noted that the absorption intensities of the complex in the long wavelength region decrease significantly more slowly than that of the corresponding free ligands.The absorption with small extinction coefficient values can be reasonable due to the intramolecular charge-transfer (ICT) between the two coordinated ligands (EtL), as evidenced by the structure, red-shifted absorption tail in addition to the main absorption peak.

    Fig.2.UV/Vis absorption spectra of the ligand and the zinc complex in methanol solution (1.0 × 10-5mol×L-1)

    Table 3.UV/Vis Absorption Data of the Ligand and the Corresponded Zinc Complex in Methanol Solution (1.0 × 10-5 mol×L-1)

    Generally speaking, the HOMO (H) is mainly distributed on electron-rich groups, while LUMO (L) on the electron- deficient group.For the energy of HOMO, the size of the conjugated substituent group has a significant effect.With the increase in delocalized electrons, the energy of HOMO shows an increasing tendency[39].Furthermore, the HOMO-LUMO gap is an important parameter to characterize the electronic structure of molecule.It is well known that the energy gap retains close connection to some molecular properties[40].In order to obtain the electronic density distribution of complex, the energy type of the initial spatial configuration was investigated at the B3LYP[41]/3-21G level with density functional theory[42]based on the ground state by using the Gaussian 09 program package[43].As shown in Fig.3, the HOMO energy level of –4.78 ev is distributed on the group of ligand EtL and the contribution rate of this moiety in the highest occupied orbital reached 97.6%, while the LUMO energy level of –2.02 ev is distributed on the group of ligand phen and the contribution rate of this moiety in thelowest-unoccupied orbital is up to 98.7% with its energy gap to be 2.68 eV.Therefore, the H→L transition is a predominantly ligand-to-ligand charge transfer transition (LLCT).Normally, the intensity of LLCT is too weak, and it is difficult to observe in the UV/Vis absorption spectrum, which eventually leads to fluorescence quenching.

    Fig.3.HOMO-LUMO (H-L) energy levels and the energy gap of the complex

    In order to reveal the stability of the crystal structure, thermal gravimetric analysis (TGA) was performed for the complex under nitrogen atmosphere in the range of room temperature to 700 ℃.As depicted in Fig.4, the initial weight loss of 4.02% from room temperature to 67.6 ℃corresponded to the release of CH3OH guest molecules (calcd.3.79%).After that, there is a plateau region up to 248.2 ℃, and then the weight loss is attributable to the decomposition of the coordination framework.The final residue of 9.81% for compound 2 is in agreement with the percentage of ZnO in all cases (calcd.9.59%).

    Fig.4.TGA curve of the complex

    4 CONCLUSION

    In conclusion, a novel zinc complex has been designed and synthesized based on 2-(2?-hydroxy-4?-methoxy-phenyl)-1-ethyl-4-hydroxybenzimidazole (EtL) and neutral nitrogen-containing ligand (phen).As expected, the free protonated phenoxide moiety (4-OH) is successfully retained to realize pseudo-intramolecular hydrogen bonds with the coordinated O atom from the other ligand.However, unfortunately, the H → L transition in the complex is a predominantly ligand-to-ligand charge transfer transition (LLCT) from the group of hydroxybenzimidazole to the nitrogen-containing ligand, which leads to the fluorescence quenching of the complex.Moreover, the introduction of neutral ligands increased the distance of intermolecular hydrogen bonds within the ligands.The luminescence phenomenon of the complex was not observed under solid conditions at the same time.Next, we will revise the strategy and synthesize a new complex on the basis of the zinc salt and the unique ligand (EtL) to eliminate the phenomenon of fluorescence quenching and the influence of introducing nitrogen-containing neutral ligands on the formation of intramolecular hydrogen bonds so as to achieve better luminescence properties.

    (1) Park, S.; Seo, J.; Kim, S.H.; Park, S.Y.Tetraphenylimidazole-based excited-state intramolecular proton-transfer molecules for highly efficient blue electroluminescence.2008, 18, 726-731.

    (2) Park, S.; Kwon, J.E.; Kim, S.H.; Seo, J.; Chung, K.; Park, S.Y.; Jang, D.J.; Medina B.M.; Gierschner J.; Park, S.Y.A white-light-emitting molecule: frustrated energy transfer between constituent emitting centers.2009, 131, 14043-14049.

    (3) Porel, M.; Ramalingam, V.; Domaradzki, M.E.; Young, V.G.; Ramamurthy, V.; Muthyala, R.S.Chloride sensing via suppression of excited state intramolecular proton transfer in squaramides.2013, 49, 1633-1635.

    (4) Hsu, Y.H.; Chen, Y.A.; Tseng, H.W.; Zhang, Z.; Shen, J.Y.; Chuang, W.T.; Lin, T.C.; Lee, C.S.; Hung, W.Y.; Hung, B.C.; Liu, S.H.; Chou, P.T.Locked ortho- and para-core chromophores of green fluorescent protein; dramatic emission enhancement via structural constraint.2014, 136, 11805-11812.

    (5) Cui, L.; Baek, Y.; Lee, S.; Kwon, N.; Yoon, J.An AIE and ESIPT based kinetically resolved fluorescent probe for biothiols.2016, 4, 2909-2914.

    (6) Kim, S.; Seo, J.; Jung, H.K.; Kim, J.J.; Park, S.Y.White Luminescence from polymer thin films containing excited-state intramolecular proton-transfer dyes.2005, 17, 2077-2082.

    (7) Ye, J.; Liu, C.; Ou, C.; Cai, M.; Chen, S.; Wei, Q.; Li, W.; Qian, Y.; Xie, L.; Mi, B.; Gao Z.; Huang, W.Universal strategy for cheap and color-stable single-EML WOLEDs utilizing two complementary-color nondoped emitters without energy transfer.2014, 2, 938-944.

    (8) Furukawa, S.; Shono, H.; Mutai, T.; Araki, K.Colorless, transparent, dye-doped polymer films exhibiting tunable luminescence color: Controlling the dual-color luminescence of 2-(2?-hydroxyphenyl)imidazo[1,2-a]pyridine derivatives with the surrounding matrix.2014, 6, 16065-16070.

    (9) Park, S.; Kwon, O.H.; Kim, S.; Park, S.; Choi, M.G.; Cha, M.; Park, S.Y.; Jang, D.J.Imidazole-based excited-state intramolecular proton-transfer materials: synthesis and amplified spontaneous emission from a large single crystal.2005, 127, 10070-10074.

    (10) Park, S.; Kim, S.; Seo, J.; Park, S.Y.Application of excited-state intramolecular proton transfer (ESIPT) principle to functional polymeric materials.2008, 16, 385-395.

    (11) Kim, S.H.; Park, S.; Kwon, J.E.; Park, S.Y.Organic light-emitting diodes with a white-emitting molecule: Emission mechanism and device characteristics.2011, 21, 644-651.

    (12) Benelhadj, K.; Muzuzu, W.; Massue, J.; Retailleau, P.; Charaf-Eddin, A.; Laurent, A.D.; Jacquemin, D.; Ulrich, G.; Ziessel, R.White emitters by tuning the excited-state intramolecular proton-transfer fluorescence emission in 2-(2?-hydroxybenzofuran) benzoxazole dyes.2014, 20, 12843-12857.

    (13) Mutai, T.; Ohkawa, T.; Shono, H.; Araki, K.The development of aryl-substituted 2-phenylimidazo[1,2-a]pyridines (PIP) with various colors of excited-state intramolecular proton transfer (ESIPT) luminescence in the solid state.2016, 4, 3599-3606.

    (14) Shono, H.; Ohkawa, T.; Tomoda, H.; Mutai, T.; Araki, K.Fabrication of colorless organic materials exhibiting white luminescence using normal and excited-state intramolecular proton transfer processes.2011, 3, 654-657.

    (15) Ma, J.; Zhao, J.; Yang, P.; Huang, D.; Zhang, C.; Li, Q.New excited state intramolecular proton transfer (ESIPT) dyes based on naphthalimide and observation of long-lived triplet excited states.2012, 48, 9720-9722.

    (16) Park, S.; Kwon, J.E.; Park, S.Y.Strategic emission color tuning of highly fluorescent imidazole-based excited-state intramolecular proton transfer molecules.2012, 14, 8878-8884.

    (17) Skonieczny, K.; Ciuciu, A.I.; Nichols, E.M.; Hugues, V.; Blanchard-Desce, M.; Flamigni, L.; Gryko, D.T.Bright, emission tunable fluorescent dyes based on imidazole and-expanded imidazole.2012, 22, 20649-20664.

    (18) Sakai, K.; Kawamura, H.; Kobayashi, N.; Ishikawa, T.; Ikeda, C.; Kikuchi, T.; Akutagawa, T.Highly efficient solid-state red fluorophores using ESIPT: crystal packing and fluorescence properties of alkoxy-substituted dibenzothiazolylphenols.2014, 16, 3180-3185.

    (19) Santos, F.S.; Ramasamy, E.; Ramamurthy, V.; Rodembusch, F.S.Confinement effect on the photophysics of ESIPT fluorophores.2016, 4, 2820-2827.

    (20) Mosquera, M.; Penedo, J.C.; Ríos Rodríguez, M.C.; Rodríguez-Prieto, F.Photoinduced inter- and intramolecular proton transfer in aqueous and ethanolic solutions of 2-(2?-hydroxyphenyl)benzimidazole: evidence for tautomeric and conformational equilibria in the ground state.1996, 100, 5398-5407.

    (21) Ríos Vázquez, S.; Ríos Rodríguez, M.C.; Mosquera, M.; Rodríguez-Prieto, F.Rotamerism, tautomerism, and excited-state intramolecular proton transfer in 2-(4?-N,N-diethylamino-2?-hydroxyphenyl)benzimidazoles: novel benzimidazoles undergoing excited-state intramolecular coupled proton and charge transfer.2008, 112, 376-387.

    (22) Brenlla, A.; Rodri?guez-Prieto, F.; Mosquera, M.; Ri?os, M.A.; Ri?os Rodri?guez, M.C.Solvent-modulated ground-state rotamerism and tautomerism and excited-state proton-transfer processes ino-hydroxynaphthylbenzimidazoles.2009, 113, 56-67.

    (23) Iijima, T.; Momotake, A.; Shinohara, Y.; Sato, T.; Nishimura, Y.; Arai, T.Excited-state intramolecular proton transfer of naphthalene-fused 2-(2?-hydroxyaryl)benzazole family.2010, 114, 1603-1609.

    (24) Chipem, F.A.S.; Dash, N.; Krishnamoorthy, G.Role of nitrogen substitution in phenyl ring on excited state intramolecular proton transfer and rotamerism of 2-(2?-hydroxyphenyl)benzimidazole: a theoretical study.2011, 10, 104308-9.

    (25) Houari, Y.; Charaf-Eddin, A.; Laurent, A.D.; Massue, J.; Ziessel, R.; Ulrich, G.; Jacquemin, D.Modeling optical signatures and excited-state reactivities of substituted hydroxyphenylbenzoxazole (HBO) ESIPT dyes.2014, 16, 1319-1321.

    (26) Tseng, H.W.; Liu, J.Q.; Chen, Y.A.; Chao, C.M.; Liu, K.M.; Chen, C.L.; Lin, T.C.; Hung, C.H.; Chou, Y.L.; Lin, T.C.; Wang T.L.; Chou, P.T.Harnessing excited-state intramolecular proton-transfer reaction via a series of amino-type hydrogen-bonding molecules.2015, 6, 1477-1486.

    (27) Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X.Recent progress in metal-organic complexes for optoelectronic applications.2014, 43, 3259-3302.

    (28) Jiang, M.; Li, J.; Huo, Y.; Xi, Y.; Yan, J.; Zhang, F.Synthesis, thermoanalysis, and thermal kinetic thermogravimetric analysis of transition metal Co(II), Ni(II), Cu(II), and Zn(II) complexes with 2-(2?-hydroxyphenyl)benzimidazole (HL).2011, 56, 1185-1190.

    (29) Yang, X.; Guo, Y.; Strongin, R.M.Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine.2011, 50, 10690-10693.

    (30) Shaikh, M.; Dutta?Choudhury, S.; Mohanty, J.; Bhasikuttan, A.C.; Nau, W.M.; Pal, H.Modulation of excited-state proton transfer of 2-(2?-hydroxyphenyl)benzimidazole in a macrocyclic cucurbit[7]uril host cavity: dual emission behavior and pshift.2009, 15, 12362-12370.

    (31) Zhang, B.; Gu, M.; Liu, C.; Liu, X.; Gao, N.; Gao, Q.; Zhu, Y.; Tang, M.; Du, C.; Song, M.An ESIPT fluorophore based on zinc-induced intramolecular proton transfer between ligands in the complex.2017, 45, 5366-5371.

    (32) Yang, D.; Fokas, D.; Li, J.; Yu, L.; Baldino, C.M.A versatile method for the synthesis of benzimidazoles from-nitroanilines and aldehydes in one step via a reductive cyclization.2005, 2005, 47-56.

    (33) Benelhadj, K.; Massue, J.; Retailleau, P.; Ulrich, G.; Ziessel, R.2-(2′-hydroxyphenyl)benzimidazole and 9,10-phenanthroimidazole chelates and borate complexes: Solution- and solid-state emitters.2013, 15, 2918-2921.

    (34)Oxford, UK 2013.

    (35) Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H.OLEX2: a complete structure solution, refinement and analysis program.2009, 42, 339-341.

    (36) Sheldrick G.M.A short history of SHELX.2008, 64, 112-122.

    (37) Yao, H.; Funada, T.Mechanically inducible fluorescence colour switching in the formation of organic nanoparticles of an ESIPT molecule.2014, 50, 2748-2750.

    (38) Wu, F.; Ma, L.; Zhang, S.; Wang, Z.; Cheng, X.The nonlinear optical properties of HBI in different solvents.2014, 116, 231-234.

    (39) Wong, K.T.; Chen, H.F.; Fang, F.C.Novel spiro-configured pet chromophores incorporating 4,5-diazafluorene moiety as an electron acceptor.2006, 8, 3501-3504.

    (40) Pearson, R.G.Absolute electronegativity and hardness: application to inorganic chemistry.1988, 27, 734-740.

    (41) Lee, C.; Yang, W.; Parr, R.G.Development of the colle-salvetti correlation-energy formula into a functional of the electron density.1988, 37, 785-789.

    (42) Dreizler, R.M.; Gross E.U.K..Heidelberg, Germany: Springer-Verlag 1990.

    (43) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.;Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, ?.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.Gaussian, Inc., Pittsburgh PA 2009.

    20 July 2020;

    13 October 2020 (CCDC 2017298)

    ① The project was supported by the Training Plan for Young Key Teachers in Colleges and Universities of Henan Province (No.2020GGJS243) and Scientific and Technological Project of Henan Province (Nos.182102210102 and 202102210058)

    E-mail: 591941522@qq.com and 13523612522@163.com

    10.14102/j.cnki.0254–5861.2011–2941

    国产爱豆传媒在线观看| 国产真实伦视频高清在线观看| 又爽又黄无遮挡网站| 午夜老司机福利剧场| 99久国产av精品国产电影| 亚洲精品成人av观看孕妇| 18禁裸乳无遮挡免费网站照片| 午夜爱爱视频在线播放| 最近最新中文字幕大全电影3| 欧美+日韩+精品| 国产男女超爽视频在线观看| 男女边摸边吃奶| 亚洲欧美成人综合另类久久久| 2018国产大陆天天弄谢| 亚洲高清免费不卡视频| 久久精品久久久久久久性| 亚洲av成人精品一区久久| 国产成人精品福利久久| 国产极品天堂在线| 国产国拍精品亚洲av在线观看| 一个人观看的视频www高清免费观看| 国产中年淑女户外野战色| av在线老鸭窝| 在线天堂最新版资源| 黄片无遮挡物在线观看| 一级二级三级毛片免费看| 国产精品嫩草影院av在线观看| 亚洲美女搞黄在线观看| 五月开心婷婷网| 亚洲精品乱码久久久久久按摩| 亚洲精品日韩av片在线观看| av国产精品久久久久影院| 51国产日韩欧美| 国产色爽女视频免费观看| 国产成人精品福利久久| 日韩不卡一区二区三区视频在线| 欧美zozozo另类| 人妻系列 视频| 精品视频人人做人人爽| 久久女婷五月综合色啪小说 | 深爱激情五月婷婷| 人妻系列 视频| 男人添女人高潮全过程视频| 人妻夜夜爽99麻豆av| 菩萨蛮人人尽说江南好唐韦庄| 少妇裸体淫交视频免费看高清| 乱系列少妇在线播放| 久久久a久久爽久久v久久| 国产毛片a区久久久久| 汤姆久久久久久久影院中文字幕| 成人漫画全彩无遮挡| 好男人在线观看高清免费视频| 高清在线视频一区二区三区| 欧美日韩综合久久久久久| 欧美日韩精品成人综合77777| 狂野欧美激情性xxxx在线观看| 色婷婷久久久亚洲欧美| 免费人成在线观看视频色| 最近中文字幕2019免费版| 精品国产三级普通话版| 18禁在线无遮挡免费观看视频| 蜜桃亚洲精品一区二区三区| 人妻制服诱惑在线中文字幕| 国内揄拍国产精品人妻在线| 亚洲精品影视一区二区三区av| 亚洲精品中文字幕在线视频 | 在线免费观看不下载黄p国产| 午夜精品一区二区三区免费看| 国产老妇女一区| 又大又黄又爽视频免费| 大片免费播放器 马上看| 久久久久久久大尺度免费视频| 一个人看视频在线观看www免费| 国产午夜精品久久久久久一区二区三区| 嫩草影院精品99| 秋霞在线观看毛片| 中国美白少妇内射xxxbb| 久久久午夜欧美精品| 激情五月婷婷亚洲| 亚洲成人一二三区av| 亚洲国产精品999| 国产精品国产三级专区第一集| av一本久久久久| 国产中年淑女户外野战色| 亚洲欧美成人精品一区二区| 亚洲精品成人久久久久久| 日本爱情动作片www.在线观看| 亚洲精品第二区| a级毛色黄片| 色5月婷婷丁香| 国产精品福利在线免费观看| 青青草视频在线视频观看| 成人鲁丝片一二三区免费| 国产伦在线观看视频一区| av播播在线观看一区| 综合色丁香网| av线在线观看网站| 国内精品美女久久久久久| 高清av免费在线| 亚洲欧美一区二区三区国产| 亚洲最大成人中文| 丰满人妻一区二区三区视频av| videossex国产| tube8黄色片| 我的老师免费观看完整版| 国产成人精品婷婷| 色视频www国产| 99re6热这里在线精品视频| 国产 一区精品| 欧美激情在线99| 蜜桃久久精品国产亚洲av| 亚洲成色77777| 久久久成人免费电影| 亚洲va在线va天堂va国产| 男女那种视频在线观看| freevideosex欧美| 亚洲高清免费不卡视频| av专区在线播放| 2022亚洲国产成人精品| 国产免费视频播放在线视频| 午夜精品一区二区三区免费看| 国产乱人视频| 亚洲欧美日韩卡通动漫| 国产一区有黄有色的免费视频| 1000部很黄的大片| 青青草视频在线视频观看| 在线亚洲精品国产二区图片欧美 | 国内精品宾馆在线| 国产又色又爽无遮挡免| 久久久久精品久久久久真实原创| 国产亚洲精品久久久com| 成年女人在线观看亚洲视频 | 99热这里只有精品一区| 在线天堂最新版资源| 国产男女内射视频| 如何舔出高潮| 亚洲欧美精品自产自拍| 久久影院123| 欧美 日韩 精品 国产| 国产精品.久久久| 国产成人91sexporn| 国内精品宾馆在线| 亚洲在久久综合| 日本wwww免费看| 大香蕉97超碰在线| 久久久久久久久久成人| av免费在线看不卡| 青春草国产在线视频| 亚洲最大成人中文| 日韩av免费高清视频| 日韩一区二区三区影片| 夫妻性生交免费视频一级片| 色哟哟·www| 国产视频内射| 熟女电影av网| 中国国产av一级| 亚洲av不卡在线观看| 高清午夜精品一区二区三区| 男女边吃奶边做爰视频| 亚洲人成网站在线播| 亚洲国产高清在线一区二区三| 欧美少妇被猛烈插入视频| 成人鲁丝片一二三区免费| 波野结衣二区三区在线| 久久久精品94久久精品| 直男gayav资源| 两个人的视频大全免费| 精品少妇久久久久久888优播| 99久久人妻综合| 国产免费福利视频在线观看| 国精品久久久久久国模美| 观看免费一级毛片| 国产午夜精品久久久久久一区二区三区| 国产成人a∨麻豆精品| 夜夜爽夜夜爽视频| 精品久久久久久久久亚洲| 日韩欧美精品免费久久| 中文资源天堂在线| 免费av毛片视频| 国产 精品1| 特级一级黄色大片| 中国三级夫妇交换| 免费看av在线观看网站| 亚洲精品aⅴ在线观看| 一级二级三级毛片免费看| av线在线观看网站| 日本与韩国留学比较| 国产精品久久久久久av不卡| 午夜视频国产福利| 18禁裸乳无遮挡动漫免费视频 | 少妇被粗大猛烈的视频| 欧美xxxx性猛交bbbb| 国产一区二区三区综合在线观看 | 99久久精品国产国产毛片| 波多野结衣巨乳人妻| 国内揄拍国产精品人妻在线| 国产黄色视频一区二区在线观看| .国产精品久久| 亚洲欧洲日产国产| 伊人久久国产一区二区| 欧美日韩视频精品一区| 丝袜脚勾引网站| 亚洲国产精品999| 亚洲av男天堂| 免费看日本二区| 在线播放无遮挡| 欧美亚洲 丝袜 人妻 在线| 视频中文字幕在线观看| 嘟嘟电影网在线观看| av天堂中文字幕网| 少妇裸体淫交视频免费看高清| 国产 一区 欧美 日韩| 亚洲av国产av综合av卡| 午夜福利视频1000在线观看| 国产欧美亚洲国产| 在线观看国产h片| 精品亚洲乱码少妇综合久久| 国产精品偷伦视频观看了| 插阴视频在线观看视频| 亚洲最大成人中文| 在线观看国产h片| 老师上课跳d突然被开到最大视频| 亚洲精品视频女| 六月丁香七月| 国产精品不卡视频一区二区| 最近最新中文字幕免费大全7| 久久精品国产亚洲网站| av在线蜜桃| 91在线精品国自产拍蜜月| 在线观看一区二区三区激情| 亚洲欧洲国产日韩| 韩国av在线不卡| 国产老妇女一区| 欧美一区二区亚洲| 一区二区三区免费毛片| 欧美+日韩+精品| 又粗又硬又长又爽又黄的视频| 成人二区视频| 日产精品乱码卡一卡2卡三| 亚洲欧美清纯卡通| 黄色配什么色好看| 欧美性感艳星| 国产成人a区在线观看| 亚洲天堂av无毛| 下体分泌物呈黄色| 你懂的网址亚洲精品在线观看| 视频中文字幕在线观看| 国产成人午夜福利电影在线观看| 2018国产大陆天天弄谢| 国产一区有黄有色的免费视频| 亚洲精品成人久久久久久| 精品人妻熟女av久视频| 精品熟女少妇av免费看| 欧美成人a在线观看| 亚洲精品一二三| 一本色道久久久久久精品综合| 极品教师在线视频| 1000部很黄的大片| 亚洲四区av| 亚洲欧美日韩东京热| 久久精品综合一区二区三区| 大又大粗又爽又黄少妇毛片口| 日韩伦理黄色片| 久久人人爽人人片av| 全区人妻精品视频| 精品久久久久久久末码| 99re6热这里在线精品视频| 2018国产大陆天天弄谢| 丝袜喷水一区| 精品国产乱码久久久久久小说| 亚洲欧美一区二区三区国产| 精品国产露脸久久av麻豆| 免费观看性生交大片5| 国产欧美日韩精品一区二区| 欧美精品国产亚洲| 丝袜喷水一区| 少妇人妻 视频| 国产乱来视频区| 三级国产精品欧美在线观看| 99久久精品国产国产毛片| 精品酒店卫生间| 一级二级三级毛片免费看| 大又大粗又爽又黄少妇毛片口| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久精品古装| 国产高潮美女av| 亚洲国产最新在线播放| 国产白丝娇喘喷水9色精品| 舔av片在线| 国产淫语在线视频| 中文精品一卡2卡3卡4更新| 欧美成人午夜免费资源| 国内揄拍国产精品人妻在线| 久久久久久久国产电影| 国产一区二区在线观看日韩| 女人被狂操c到高潮| 亚洲激情五月婷婷啪啪| 丝袜脚勾引网站| 欧美区成人在线视频| 久久久久久久精品精品| 国产成人一区二区在线| 欧美少妇被猛烈插入视频| 一级爰片在线观看| 国产欧美另类精品又又久久亚洲欧美| av在线app专区| 黄片wwwwww| 国产精品国产三级国产专区5o| 亚洲av欧美aⅴ国产| 插阴视频在线观看视频| 国产熟女欧美一区二区| 嫩草影院入口| 成人亚洲精品一区在线观看 | 男插女下体视频免费在线播放| 免费大片黄手机在线观看| 在线观看国产h片| a级一级毛片免费在线观看| 爱豆传媒免费全集在线观看| 国产一区有黄有色的免费视频| 亚洲国产av新网站| 欧美成人午夜免费资源| 搡女人真爽免费视频火全软件| 超碰97精品在线观看| 日韩av在线免费看完整版不卡| 国产精品熟女久久久久浪| 美女脱内裤让男人舔精品视频| 男男h啪啪无遮挡| 日韩,欧美,国产一区二区三区| 中国国产av一级| 80岁老熟妇乱子伦牲交| 久久精品综合一区二区三区| 亚洲丝袜综合中文字幕| 国产av不卡久久| 一级爰片在线观看| 国产亚洲91精品色在线| 青春草视频在线免费观看| 色吧在线观看| 真实男女啪啪啪动态图| 国产精品国产三级国产av玫瑰| 亚洲不卡免费看| 五月伊人婷婷丁香| 熟妇人妻不卡中文字幕| 精品久久久久久电影网| 九九爱精品视频在线观看| eeuss影院久久| 国产一级毛片在线| 日韩av不卡免费在线播放| 国产免费一区二区三区四区乱码| 青春草视频在线免费观看| 欧美三级亚洲精品| 两个人的视频大全免费| 亚洲欧美一区二区三区黑人 | 国产淫语在线视频| 精品久久久久久电影网| 水蜜桃什么品种好| av福利片在线观看| 校园人妻丝袜中文字幕| 日本一本二区三区精品| 美女主播在线视频| 在现免费观看毛片| 国产av码专区亚洲av| 69人妻影院| 免费看不卡的av| 国产精品人妻久久久影院| 啦啦啦啦在线视频资源| 日韩一本色道免费dvd| 精品久久久精品久久久| 十八禁网站网址无遮挡 | 波野结衣二区三区在线| 最近中文字幕高清免费大全6| 成人午夜精彩视频在线观看| 一级毛片 在线播放| 91精品国产九色| 夜夜看夜夜爽夜夜摸| 亚洲av一区综合| 国产淫语在线视频| 日本wwww免费看| 久久人人爽人人片av| 日本-黄色视频高清免费观看| 国产av不卡久久| 国产亚洲av片在线观看秒播厂| 精品久久久久久久久亚洲| 99热这里只有是精品在线观看| 国产女主播在线喷水免费视频网站| 能在线免费看毛片的网站| 少妇高潮的动态图| 激情五月婷婷亚洲| 日韩视频在线欧美| 久久精品国产自在天天线| 亚洲欧美中文字幕日韩二区| 白带黄色成豆腐渣| 91在线精品国自产拍蜜月| 亚洲无线观看免费| 一级毛片电影观看| 真实男女啪啪啪动态图| 日韩精品有码人妻一区| 狂野欧美激情性bbbbbb| 国产有黄有色有爽视频| 精品少妇久久久久久888优播| 真实男女啪啪啪动态图| 亚洲成人中文字幕在线播放| 国产淫片久久久久久久久| 九草在线视频观看| 国国产精品蜜臀av免费| 99热这里只有是精品在线观看| 亚洲国产高清在线一区二区三| 黄色怎么调成土黄色| 高清毛片免费看| 亚洲美女搞黄在线观看| 男人舔奶头视频| av在线播放精品| 乱码一卡2卡4卡精品| 国产黄色免费在线视频| 国产免费视频播放在线视频| 人妻 亚洲 视频| 亚洲av.av天堂| 免费看日本二区| 亚洲一区二区三区欧美精品 | 小蜜桃在线观看免费完整版高清| 亚洲精品乱久久久久久| 男人狂女人下面高潮的视频| 国产高潮美女av| 一本久久精品| 岛国毛片在线播放| 日韩av免费高清视频| 中文在线观看免费www的网站| 在线观看一区二区三区| 亚洲精品成人av观看孕妇| 寂寞人妻少妇视频99o| 少妇猛男粗大的猛烈进出视频 | 精品少妇久久久久久888优播| 99久久精品一区二区三区| 最近最新中文字幕免费大全7| 中文字幕免费在线视频6| 黄片无遮挡物在线观看| 亚洲欧美日韩另类电影网站 | 国产成人freesex在线| 啦啦啦中文免费视频观看日本| 国产精品一区二区在线观看99| 日韩欧美精品免费久久| 国内少妇人妻偷人精品xxx网站| 久久精品国产亚洲网站| 最新中文字幕久久久久| 极品少妇高潮喷水抽搐| 高清av免费在线| 欧美老熟妇乱子伦牲交| 女人十人毛片免费观看3o分钟| 99精国产麻豆久久婷婷| 熟女人妻精品中文字幕| 亚洲自拍偷在线| 免费黄网站久久成人精品| 日日撸夜夜添| 国产欧美日韩精品一区二区| 久久久久久久精品精品| 在线天堂最新版资源| 国产 精品1| 91aial.com中文字幕在线观看| 欧美成人午夜免费资源| 精品午夜福利在线看| 亚洲av中文字字幕乱码综合| 亚洲精品久久午夜乱码| 欧美日韩综合久久久久久| av女优亚洲男人天堂| 免费看a级黄色片| av又黄又爽大尺度在线免费看| 又爽又黄a免费视频| 大码成人一级视频| 尾随美女入室| 91精品伊人久久大香线蕉| 国产精品久久久久久久电影| 99热6这里只有精品| 看非洲黑人一级黄片| 中文在线观看免费www的网站| 色哟哟·www| 久久精品国产亚洲av涩爱| 国模一区二区三区四区视频| 中文字幕av成人在线电影| 国产v大片淫在线免费观看| 日日撸夜夜添| 久久久欧美国产精品| 一区二区三区四区激情视频| 制服丝袜香蕉在线| 性色av一级| 少妇人妻 视频| 男人添女人高潮全过程视频| 日韩成人av中文字幕在线观看| 国产精品一区二区在线观看99| 中文乱码字字幕精品一区二区三区| 国产精品偷伦视频观看了| 99久久人妻综合| 国产成人福利小说| 成人高潮视频无遮挡免费网站| 久久韩国三级中文字幕| 国产精品一区二区在线观看99| 国产精品久久久久久精品电影小说 | h日本视频在线播放| 男人和女人高潮做爰伦理| 国产黄频视频在线观看| 久久精品国产鲁丝片午夜精品| 国产av不卡久久| 一个人看视频在线观看www免费| 插阴视频在线观看视频| 蜜臀久久99精品久久宅男| 久久精品国产a三级三级三级| 又粗又硬又长又爽又黄的视频| 麻豆成人av视频| 亚洲综合精品二区| 久久久午夜欧美精品| 国产久久久一区二区三区| 我的女老师完整版在线观看| 在线观看一区二区三区激情| 国产综合精华液| 全区人妻精品视频| 色视频www国产| 99久久中文字幕三级久久日本| kizo精华| 一级毛片我不卡| 午夜福利在线在线| 新久久久久国产一级毛片| 国国产精品蜜臀av免费| 久久久久久久久久久免费av| 国产成人aa在线观看| 美女主播在线视频| 国产淫语在线视频| 欧美激情在线99| 国产高潮美女av| 91精品国产九色| 日韩伦理黄色片| 别揉我奶头 嗯啊视频| 亚洲国产av新网站| 国产在线一区二区三区精| 国产精品国产三级专区第一集| 高清欧美精品videossex| 亚洲最大成人中文| 丝袜美腿在线中文| 白带黄色成豆腐渣| 国产成人免费无遮挡视频| 白带黄色成豆腐渣| 欧美激情在线99| 成人免费观看视频高清| 国产成人免费无遮挡视频| 国产精品人妻久久久久久| 狂野欧美激情性xxxx在线观看| 18+在线观看网站| 国产黄a三级三级三级人| 国产欧美日韩精品一区二区| 国产一区二区亚洲精品在线观看| 人妻 亚洲 视频| 国产视频首页在线观看| 亚洲人成网站在线观看播放| 国产国拍精品亚洲av在线观看| 可以在线观看毛片的网站| 日韩大片免费观看网站| 熟妇人妻不卡中文字幕| 亚洲伊人久久精品综合| 久热久热在线精品观看| 男女下面进入的视频免费午夜| 中文字幕亚洲精品专区| 国产国拍精品亚洲av在线观看| 国产成人精品福利久久| 久久久久国产精品人妻一区二区| 国产精品秋霞免费鲁丝片| 男男h啪啪无遮挡| 边亲边吃奶的免费视频| 亚洲人成网站在线播| 丰满乱子伦码专区| 美女脱内裤让男人舔精品视频| 色视频www国产| 777米奇影视久久| 国产成人精品福利久久| 久久久久国产精品人妻一区二区| 久久久久久久久大av| 国产伦在线观看视频一区| 在现免费观看毛片| 久久久久精品久久久久真实原创| 国产又色又爽无遮挡免| 午夜福利视频1000在线观看| 国产一区二区三区av在线| 青春草视频在线免费观看| 男男h啪啪无遮挡| 男人舔奶头视频| tube8黄色片| 国产av国产精品国产| 亚洲激情五月婷婷啪啪| 在线观看人妻少妇| 国产高清有码在线观看视频| 日韩av不卡免费在线播放| 亚洲天堂国产精品一区在线| 免费大片18禁| 两个人的视频大全免费| 亚洲av在线观看美女高潮| 一级毛片久久久久久久久女| av在线蜜桃| 久久精品国产亚洲av天美| 久久久精品欧美日韩精品| 亚洲欧美精品自产自拍| 九九爱精品视频在线观看| 精品一区在线观看国产| 三级经典国产精品| 韩国av在线不卡| 亚洲av福利一区| 伦理电影大哥的女人| 国产视频内射| 少妇的逼好多水| 欧美日韩综合久久久久久| 蜜桃亚洲精品一区二区三区| 欧美另类一区| 免费观看在线日韩| 免费黄网站久久成人精品| 99九九线精品视频在线观看视频| 我的老师免费观看完整版| 日日啪夜夜爽| 日本爱情动作片www.在线观看| 久久精品人妻少妇| 国产成人精品一,二区| 69av精品久久久久久|