• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Exploration about the Detonation Performance and Thermal Stability of the Nitro-substituted Derivatives of Guanine①

    2021-06-11 03:29:04LIBuTongLILuLinPENGJu
    結(jié)構(gòu)化學(xué) 2021年4期

    LI Bu-Tong LI Lu-Lin PENG Ju

    Theoretical Exploration about the Detonation Performance and Thermal Stability of the Nitro-substituted Derivatives of Guanine①

    LI Bu-Tong②LI Lu-Lin②PENG Ju

    (550018)

    The nitro-substituted derivatives of guanine are designed and calculated to explore novel high energy density materials.To explore the thermal stability of title molecules, the heat of formation (HOF), bond dissociation energy (BDE), and bond order of the trigger bond are calculated.To predict the possibility used as high energy density compounds, the detonation pressure (), detonation velocity (), explosive heat (), and crystal density () are calculated by using the classical Kamlet-Jacobs (K-J) equation.Based on our calculations, E (= 8.93 km/s,= 37.21 GPa) is confirmed as the potential high energy density compound.

    high energy density compounds, Kamlet-Jacobs equation,density function theory, guanine derivatives;

    1 INTRODUCTION

    High energy density materials are very important for civilian production and the military field[1-3].In the last twenty years, many new materials with excellent characters have been explored and conducted.In the past few decades, many new high energy density materials have been designed and synthesized[4-7].However, the existing high energy density materials can’t fully meet the needs so far, so we need to further work to search for new high energy density materials with better properties.Generally speaking, such energetic materials should have better stability and better detonation performance.

    Guanine is a typical DNA molecule composed of a pyrimidine and an imidazole rings[8].In addition to being of great significance in the field of life science, the guanine ring has five nitrogen atoms and naturally has the characteristics of high energy density.The nitrogen percent is about 46%, which results in guanine energetic because the product in the dissociation reaction is the nitrogen molecules with super stability.Introducing energetic groups into a parent body with high nitrogen content is the popular strategy to construct high energy density compound and has been proved valuable extensively by many existing models[9-11].In this sense, it is possible to obtain a novel high energy density molecule with excellent properties if we introduce high energy density groups to the guanine ring, as shown.However, the research on guanine has been focused on biology, and the application of this molecule in the field of energetic materials is less concerned[12, 13].Guanine has two isomers including keto and enol forms.The study of hydrogen transport isomerization of the two structures shows that the alcohol structure is more stable[14].Therefore, in this paper, the enol form guanine is used as the parent structure, and the nitro group with high energy density is introduced into it to construct a new class of molecules.To explore the possibility of applications as ener- getic materials, their structural stability and energetic proper- ties are studied.

    2 COMPUTATIONAL METHODS

    The structures of the nitro-substituted derivatives of guanine were fully optimized at the G3MP2 level[15]using the Gaussian 03 program package[16].The atomization reactions[17-20]are designed to obtain heats of formation (HOFs), and the formula is followed:

    C5N4OH4-(NO2)?5C + (4-)H + (4 +)N + (2+ 1)O(1)

    To measure the strength of trigger bonds, the bond dissociation energies (BDE) were calculated.BDE is the energy required for the homolytic cleavage of a bond and is commonly denoted as the difference between the total energies of the radical products and reactants.The BDE values of A?B bond were calculated as follows:

    BDE(A?B)=(A)+(B)–(4)

    The BDE with zero-point energy (ZPE) correction can be calculated via equation (5):

    BDE(A?B)ZPE= BDE(A?B)+ΔZPE (5)

    where ΔZPE is the difference between the ZPEs of the products and the reactants.

    Detonation velocity () and detonation pressure () are used to evaluate the explosive performances of energetic materials by using the empirical equations[22]:

    The impact sensitivity is explored by using the characteristic drop height (50).50is calculated according to the equations:

    in which,, andare empirical parameters from Ref.22.

    3 RESULTS AND DISCUSSION

    3.1 Heats of formation

    HOF is an important factor to reflect the energy content of a compound and molecular stability.High and positive HOF represents highly energetic, but less stable.So, the values of HOFs are calculated according to equations (1), (2) and (3), and the final data are listed in Table 1.

    Table 1. Heats of Formation Calculated by Using the Atomization Reaction at the G3MP2 Level

    From Table 1, the HOF values are all positive, which is a typical feature of high energy density materials.For the single substituted derivatives, the HOF (133.95 kJ/mol) of A1 is larger than 36.52 kJ/mol of A2.From Fig.1, it is clear that A1 is derived from the substitution of the nitro group on nitrogen atom but A2 is derived from the substitution of the carbon atom.On the consideration that the N?C bond is more stable than N?N bond, so our result is reasonable.With the introduction of nitro groups, the HOF values are increased together.Based on the linear regression, the formula is obtained as= 110.56? 33.688 with the2 value of 0.968.A good linear relationship is confirmed.So, the group addition principle is suitable for title molecules.

    The largest HOF is obtained for E (534.26 kJ/mol), which represents E has the largest energetic content here but indicates the worst thermodynamic stability.In terms of thermodynamic stability, energetic materials are usually poor.Dynamic stability is a more important parameter for energetic materials, such as RDX[23], CL-20[24], and so on.Therefore, in the next chapter, we calculate the dissociation energies of these molecules to investigate the kinetic stability of these molecules.

    Fig.1. Nitro-substituted derivatives of Guanine designed explored in this paper with the arrow pointing to the trigger bond

    3.2 Bond dissociation energy

    Bond dissociation energy can be used to indicate the dynamic stability of high energy density compounds[9, 25].In theory, bond dissociation energy can be obtained by calculating the enthalpy change of the homolytic cleavage reaction.So, the bond dissociation energies are calculated according to equation (4) and listed in Table 2.The bond order is predicted at first to confirm the trigger bond, which is determined by the least bond order and considered to initiate the dissociation reaction.To save the calculation cost, the calculation about the bond dissociation energy is only performed focused on the trigger bond.

    As a measure of bond strength, bond order is less reliable than bond dissociation energy.For instance, the bond dissociation energy 163.46 kJ/mol of A1 is less than 300.63 kJ/mol of A2, but 0.9453 of A1 is larger than 0.9383 of A2.So, bond dissociation energy is used to predict the dynamic stability of title molecules.The bond dissociation energies obtained here are all more than 120 kJ/mol[26], which indi- cates that these molecules have sufficient kinetic stability and exist stably at ambient temperature.With the introduction of groups, the dissociation energy is generally reduced.The smallest bond dissociation energy is located in the molecular E, which is mainly due to the nitro group being attached to the oxygen atom, while the N?O bond energy is lower than the N?C bond.

    Table 2. Bond Dissociation Energies Calculated by Using the Homolytic Cleavage Reaction at the G3MP2 Level

    3.3 Detonation characters

    Detonation properties are the most important properties of energetic materials.Generally speaking, explosion velocity () and explosion pressure () are the two most important indexes.So, both of them are calculated by using the classical K-J equation accompanied by the molecular density and detonation heat.The insensitivity of high energy density materials is predicted by the characteristic height (50).The final data are listed in Table 3.

    Table 3. Detonation Pressure, Detonation Velocity, Explosive Heats,and Crystal Density Calculated by Using the Kamlet-Jacobs Equation

    From the data in Table 3, the detonation pressure and detonation velocity are rising with the introduction of nitro groups.Based on the linear regression between the detonation parameters and the substitution number, a good linear relationship is obtained as= 4.5357+ 16.743 with the2 value of 0.9591 for detonation pressure and= 0.5432+ 6.5328 with the2 value of 0.9367 for detonation velocity.The group addition principle is appropriate for the detonation parameters.The most excellent detonation parameters are attributed to molecule E (= 8.93 km/s,= 37.21 GPa), which is better than the famous energetic RDX.Except for the energetic characters, the50of E is confirmed to be 18 cm, which is comparable with the RDX.So, E is confirmed as the potential high energy density compounds for its comparable molecular insensitivity and better detonation characters.

    4 CONCLUSION

    In this paper, seven derivatives of Guanine are designed by the introduction of nitro groups to substitute the hydrogen atom and explored by using the G3MP2 method.The HOF values are all confirmed to be positive, which indicates the energetic nature of title molecules.Furthermore, E is confirmed with the largest BDE value of 534.26 kJ/mol.The bond dissociation energy of all molecules is confirmed above 120 kJ/mol, which is the benchmark to scale the dynamic stability of high energy density compounds.Furthermore, the bond dissociation energy is more reliable than a bond order to predict the stability of title molecules.The detonation parameters are rising with the introduction of the nitro groups, and the most excellent parameters are located at E (= 8.93 km/s,= 37.21GPa), which has the characteristic height value of 18 cm comparable to RDX.Finally, molecule E is found to be the potential high energy density compound for further research.

    (1)Jensen, T.L.; Moxnes, J.F.; Kj?nstad, E.F.; Unneberg, E.A study of the detonation properties, propellant impulses, impact sensitivities and synthesis of nitrated anta and nto derivatives.2016, 13, 445-467.

    (2)Carvalho, T.M.T.; Amaral, L.M.P.F.; Morais, V.M.F.; Ribeiro da Silva, M.D.M.C.Calorimetric and computational studies for three nitroimidazole isomers.2017, 105, 267-275.

    (3)Ravi, P.Experimental study andcalculations on the molecular structure, infrared and raman spectral properties of dinitroimidazoles.2017, 9-10, 11-23.

    (4)Eberly, J.O.; Mayo, M.L.; Carr, M.R.; Crocker, F.H.; Indest, K.J.Detection of hexahydro-1,3-5-trinitro-1,3,5-triazine (RDX) with a microbial sensor.2019, 64, 139-144.

    (5)Ariyarathna, T.; Ballentine, M.; Vlahos, P.; Smith, R.W.; Cooper, C.; Bohlke, J.K.; Fallis, S.; Groshens, T.J.; Tobias, C.Tracing the cycling and fate of the munition, hexahydro-1,3,5-trinitro-1,3,5-triazine in a simulated sandy coastal marine habitat with a stable isotopic tracer, (15)N-[RDX].2019, 647, 369-378.

    (6)Wu, J.; Huang, Y.; Yang, L.; Geng, D.; Wang, F.; Wang, H.; Chen, L.Reactive molecular dynamics simulations of the thermal decomposition mechanism of 1,3,3-trinitroazetidine (TNAZ).2018, 2683-2695.

    (7)Li, Y.; Feng, X.; Liu, H.; Hao, J.; Redfern, S.A.T.; Lei, W.; Liu, D.; Ma, Y.Route to high-energy density polymeric nitrogen t-N via He-N compounds.2018, 9, 722-728.

    (8)Vetter, I.R.; Wittinghofer, A.The guanine nucleotide-binding switch in three dimensions.2001, 294, 1299-1304.

    (9)Li, B.; Li, L.Theoretical study on nitroimine derivatives of azetidine as high-energy-density compounds.2020, 17, 107-118.

    (10)Li, B.; Li, L.; Luo, T.Theoretical exploration about the thermal stability and detonation properties of nitro-substituted hypoxanthine.2020, 26, 114, 23-28.

    (11)Ravi, P.; Tewari, S.P.A dft study on the structure-property relationship of amino-, nitro-and nitrosotetrazoles, and their n-oxides: new high energy density molecules.2012, 23, 487-498.

    (12)Zheng, Y.Dbl family guanine nucleotide exchange factors.2001, 26, 724-732.

    (13)Henderson, E.; Hardin, C.C.; Walk, S.K.; Tinoco Jr, I.; Blackburn, E.H.Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine· guanine base pairs.1987, 51, 899-908.

    (14)Yu, H.Dft study on reaction mechanism of proton transfer of guanine.2012, 58, 35-39.

    (15)Lee, C.; Yang, W.; Parr, R.G.Development of the colle-salvetti correlation-energy formula into a functional of the electron density.1988, 37, 785-789.

    (16)Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery Jr., J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A., Gaussian, Inc., Pittsburgh PA 2003

    (17)Ghule, V.D.; Jadhav, P.M.; Patil, R.S.; Radhakrishnan, S.; Soman, T.Quantum-chemical studies on hexaazaisowurtzitanes.2009, 114, 498-503.

    (18)Hehre, W.J.; Ditchfield, R.; Radom, L.; Pople, J.A.Molecular orbital theory of the electronic structure of organic compounds.V.Molecular theory of bond separation.1970, 92, 4796-4801.

    (19)Fan, X.W.; Ju, X.H.Theoretical studies on four-membered ring compounds with NF2, ONO2, N3, and NO2groups.2008, 29, 505-513.

    (20)Rice, B.M.; Pai, S.V.; Hare, J.Predicting heats of formation of energetic materials using quantum mechanical calculations.1999, 118, 445-458.

    (21)Linstrom, P.J.; Mallard, W.G.The nist chemistry webbook: a chemical data resource on the internet.2001, 46, 1059-1063.

    (22)Kamlet, M.J.; Jacobs, S.J.Chemistry of detonations.I.A simple method for calculating detonation properties of C?H?N?O explosives.1968, 48, 23-35.

    (23)Paquet, L.; Monteil-Rivera, F.; Hatzinger, P.B.; Fuller, M.E.; Hawari, J.Analysis of the key intermediates of rdx (hexahydro-1,3,5-trinitro-1,3,5-triazine) in groundwater: occurrence, stability and preservation.2011, 13, 2304-2311.

    (24)Emel’yanenko, V.N.; Zaitsau, D.H.; Verevkin, S.P.Thermochemical properties of xanthine and hypoxanthine revisited.2017, 62, 2606-2609.

    (25)Li, B.; Li, L.; Ye, M.Thermal stability and detonation character of nitro-substituted derivatives of cytosine.2020, 536, 110846-5.

    (26)Drake, R.Springer, Berlin 2006, p214-215

    5 August 2020;

    28 September 2020

    ①This project was supported by the Natural Science Foundation of Guizhou Province (Nos.QKHPTRC[2018]5778-09 and QKHJC[2020] 1Y038) and the Natural Science Foundation of Guizhou Education University (Nos.14BS017 and 2019ZD001)

    Li Bu-Tong (1977-).E-mail: libutong@hotmail.com; Dr.Li Lu-Lin, born in 1980, E-mail: lulin.li@outlook.com

    10.14102/j.cnki.0254–5861.2011–2954

    午夜福利成人在线免费观看| 国产欧美日韩精品一区二区| 少妇熟女aⅴ在线视频| 国产成人精品久久久久久| 人人妻人人澡欧美一区二区| 国产精品爽爽va在线观看网站| 99久国产av精品国产电影| 色尼玛亚洲综合影院| 国产精品不卡视频一区二区| 91久久精品电影网| 久久久久久伊人网av| 搡老妇女老女人老熟妇| 亚洲精品456在线播放app| 青春草视频在线免费观看| 全区人妻精品视频| 亚洲av.av天堂| 天美传媒精品一区二区| 女人被狂操c到高潮| 亚洲人成网站在线观看播放| 国产女主播在线喷水免费视频网站 | 观看美女的网站| 欧美xxxx性猛交bbbb| 国产色婷婷99| 成人毛片60女人毛片免费| 草草在线视频免费看| 综合色丁香网| 国产亚洲一区二区精品| av专区在线播放| 日本黄大片高清| 日产精品乱码卡一卡2卡三| 国产国拍精品亚洲av在线观看| 一级毛片我不卡| 亚洲美女搞黄在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲成人精品中文字幕电影| 99九九线精品视频在线观看视频| 国产亚洲一区二区精品| 精品少妇黑人巨大在线播放 | 欧美丝袜亚洲另类| 波多野结衣巨乳人妻| 亚洲精品aⅴ在线观看| 黑人高潮一二区| 一级毛片我不卡| 国产av一区在线观看免费| 少妇高潮的动态图| 草草在线视频免费看| 国产精品久久久久久av不卡| 亚洲精品一区蜜桃| 高清午夜精品一区二区三区| 亚洲精品乱久久久久久| 毛片女人毛片| 国产色婷婷99| 91午夜精品亚洲一区二区三区| 又粗又硬又长又爽又黄的视频| 日本一二三区视频观看| 精品人妻一区二区三区麻豆| 欧美日韩综合久久久久久| 男女下面进入的视频免费午夜| 久久99热这里只频精品6学生 | 男的添女的下面高潮视频| 国产男人的电影天堂91| 亚洲欧美中文字幕日韩二区| 少妇的逼水好多| 欧美一区二区精品小视频在线| 国产男人的电影天堂91| 狂野欧美白嫩少妇大欣赏| 免费一级毛片在线播放高清视频| 日韩精品青青久久久久久| 国产精品日韩av在线免费观看| 能在线免费观看的黄片| 日韩欧美在线乱码| 免费观看a级毛片全部| 午夜亚洲福利在线播放| 亚洲人成网站在线播| 岛国毛片在线播放| 成人国产麻豆网| 亚洲精品影视一区二区三区av| 亚洲国产成人一精品久久久| 小说图片视频综合网站| 亚洲av男天堂| 国产老妇伦熟女老妇高清| 天堂网av新在线| 身体一侧抽搐| 国产精品三级大全| 色视频www国产| 伦精品一区二区三区| 亚洲乱码一区二区免费版| 听说在线观看完整版免费高清| 美女高潮的动态| 国产精品99久久久久久久久| 在线观看一区二区三区| 国产在视频线精品| 久久久精品大字幕| 国产三级中文精品| 搡老妇女老女人老熟妇| 国产精品永久免费网站| 国内精品美女久久久久久| 又粗又硬又长又爽又黄的视频| 老司机影院成人| 中文字幕久久专区| 国产三级中文精品| 成人午夜高清在线视频| 乱码一卡2卡4卡精品| 熟女电影av网| 国产成人福利小说| 国产亚洲一区二区精品| 网址你懂的国产日韩在线| 精品一区二区免费观看| 男人和女人高潮做爰伦理| 成人综合一区亚洲| 国产亚洲5aaaaa淫片| 视频中文字幕在线观看| 在线播放国产精品三级| 一区二区三区高清视频在线| 国产高清国产精品国产三级 | 亚洲欧洲国产日韩| 午夜免费激情av| 黄色欧美视频在线观看| 免费看a级黄色片| 午夜亚洲福利在线播放| 日韩欧美国产在线观看| ponron亚洲| 中国国产av一级| 欧美3d第一页| 成人亚洲欧美一区二区av| 国产一区亚洲一区在线观看| 一级黄片播放器| 国产成人一区二区在线| 亚洲伊人久久精品综合 | 国内精品一区二区在线观看| av免费在线看不卡| 最近2019中文字幕mv第一页| 国产精品乱码一区二三区的特点| 99久久中文字幕三级久久日本| 国产精品嫩草影院av在线观看| 99热精品在线国产| 久久国产乱子免费精品| 一边摸一边抽搐一进一小说| 联通29元200g的流量卡| 精品人妻视频免费看| 91久久精品国产一区二区成人| 久久久久久久久久久丰满| 亚洲第一区二区三区不卡| 国国产精品蜜臀av免费| 老司机福利观看| 老司机影院毛片| av又黄又爽大尺度在线免费看 | 中文亚洲av片在线观看爽| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人免费观看mmmm| av女优亚洲男人天堂| 亚洲成av人片在线播放无| 97人妻精品一区二区三区麻豆| 女人十人毛片免费观看3o分钟| 国产乱人偷精品视频| 永久免费av网站大全| 嫩草影院精品99| 一本久久精品| 国产精品电影一区二区三区| 日本色播在线视频| 2021少妇久久久久久久久久久| 亚洲国产成人一精品久久久| 国产老妇女一区| 日本猛色少妇xxxxx猛交久久| 国产乱来视频区| 国内精品一区二区在线观看| 亚洲内射少妇av| 又爽又黄无遮挡网站| 国产精品一区二区在线观看99 | 有码 亚洲区| 久久精品久久久久久久性| 女人久久www免费人成看片 | 国产精品乱码一区二三区的特点| 日韩大片免费观看网站 | 欧美三级亚洲精品| 我要搜黄色片| 国产av一区在线观看免费| 国产高潮美女av| 一级二级三级毛片免费看| 高清毛片免费看| 成人毛片60女人毛片免费| 在线观看美女被高潮喷水网站| 久久久久久久国产电影| 成人毛片a级毛片在线播放| 欧美性感艳星| 国产一区有黄有色的免费视频 | 最新中文字幕久久久久| 国产成人aa在线观看| 九草在线视频观看| 少妇的逼好多水| 韩国高清视频一区二区三区| 亚洲国产高清在线一区二区三| 综合色av麻豆| 老女人水多毛片| 男女啪啪激烈高潮av片| 亚洲国产最新在线播放| 亚洲人成网站在线观看播放| 久久这里只有精品中国| 青春草国产在线视频| 亚洲av二区三区四区| 精品久久久久久久久av| 免费黄网站久久成人精品| 日韩欧美 国产精品| 岛国在线免费视频观看| 免费一级毛片在线播放高清视频| 亚洲av男天堂| 国产精品蜜桃在线观看| 亚洲精品自拍成人| 大香蕉97超碰在线| 九草在线视频观看| 最近视频中文字幕2019在线8| 亚洲久久久久久中文字幕| 久久久久久九九精品二区国产| 亚洲av熟女| 99热精品在线国产| 亚洲av.av天堂| 建设人人有责人人尽责人人享有的 | 97人妻精品一区二区三区麻豆| 毛片女人毛片| 黄色一级大片看看| 一级毛片电影观看 | 亚洲欧美日韩无卡精品| 日韩亚洲欧美综合| 网址你懂的国产日韩在线| 色综合站精品国产| 色尼玛亚洲综合影院| 婷婷色麻豆天堂久久 | 日本免费一区二区三区高清不卡| videossex国产| 亚洲国产日韩欧美精品在线观看| 亚洲熟妇中文字幕五十中出| 国产乱人偷精品视频| 免费看a级黄色片| 日本一二三区视频观看| 色综合色国产| 偷拍熟女少妇极品色| 国产 一区 欧美 日韩| 国产精品无大码| 最后的刺客免费高清国语| 国产精品不卡视频一区二区| 丰满人妻一区二区三区视频av| 欧美3d第一页| 日韩精品青青久久久久久| 最后的刺客免费高清国语| 麻豆成人av视频| 国产高清视频在线观看网站| 又爽又黄a免费视频| 免费看a级黄色片| 一本一本综合久久| 插逼视频在线观看| 日日摸夜夜添夜夜爱| 99久久精品一区二区三区| 国产精品av视频在线免费观看| 欧美xxxx性猛交bbbb| 国产av码专区亚洲av| 九九热线精品视视频播放| 国产亚洲av片在线观看秒播厂 | eeuss影院久久| 日韩 亚洲 欧美在线| 国产高清不卡午夜福利| 少妇猛男粗大的猛烈进出视频 | 欧美97在线视频| 国内揄拍国产精品人妻在线| 婷婷色av中文字幕| 神马国产精品三级电影在线观看| 久久久国产成人免费| 国产黄片美女视频| 91在线精品国自产拍蜜月| 看片在线看免费视频| 精品一区二区免费观看| 蜜桃久久精品国产亚洲av| 汤姆久久久久久久影院中文字幕 | 成人性生交大片免费视频hd| 国产老妇女一区| 久久精品久久精品一区二区三区| 亚洲国产日韩欧美精品在线观看| 成人特级av手机在线观看| 男女那种视频在线观看| 精品久久久久久电影网 | 丰满人妻一区二区三区视频av| 国产精品一二三区在线看| 大话2 男鬼变身卡| 亚洲国产最新在线播放| 国语自产精品视频在线第100页| 青春草亚洲视频在线观看| 最近最新中文字幕大全电影3| 亚洲国产精品sss在线观看| av女优亚洲男人天堂| 最近中文字幕2019免费版| 精品免费久久久久久久清纯| 亚洲性久久影院| 国产一区二区在线av高清观看| 最近最新中文字幕大全电影3| 26uuu在线亚洲综合色| 国产精品一二三区在线看| 欧美精品一区二区大全| 麻豆成人午夜福利视频| 寂寞人妻少妇视频99o| videossex国产| 久久久久国产网址| 校园人妻丝袜中文字幕| 国产精品99久久久久久久久| 久久综合国产亚洲精品| 麻豆一二三区av精品| 亚洲一级一片aⅴ在线观看| 午夜福利成人在线免费观看| 欧美日韩精品成人综合77777| 秋霞在线观看毛片| 国产三级中文精品| 国产男人的电影天堂91| 夜夜爽夜夜爽视频| 亚洲熟妇中文字幕五十中出| 久久久精品大字幕| 日日撸夜夜添| 色尼玛亚洲综合影院| 精华霜和精华液先用哪个| 青春草国产在线视频| 中文字幕av成人在线电影| 春色校园在线视频观看| 国产高清不卡午夜福利| 好男人视频免费观看在线| 亚洲国产精品合色在线| 视频中文字幕在线观看| 亚洲,欧美,日韩| 国产精品爽爽va在线观看网站| 亚洲精品一区蜜桃| 精品久久久久久电影网 | 久久精品影院6| 乱码一卡2卡4卡精品| av国产免费在线观看| 午夜激情福利司机影院| 久久精品人妻少妇| 在现免费观看毛片| 小说图片视频综合网站| 国产在视频线精品| 国产极品精品免费视频能看的| 能在线免费看毛片的网站| 看十八女毛片水多多多| 精品久久久久久久末码| 老司机影院毛片| 卡戴珊不雅视频在线播放| 少妇熟女aⅴ在线视频| 视频中文字幕在线观看| 亚洲最大成人中文| 一二三四中文在线观看免费高清| 免费无遮挡裸体视频| 日日干狠狠操夜夜爽| 久久精品国产亚洲av涩爱| 亚洲最大成人av| 国产在线男女| 淫秽高清视频在线观看| kizo精华| 少妇裸体淫交视频免费看高清| 亚洲精华国产精华液的使用体验| 嫩草影院精品99| 国产精品人妻久久久久久| 成人特级av手机在线观看| 秋霞伦理黄片| 男女国产视频网站| av在线亚洲专区| 18禁在线播放成人免费| 搞女人的毛片| av视频在线观看入口| 久久久久久久久久成人| 国产高清有码在线观看视频| 少妇高潮的动态图| videossex国产| 亚洲成人av在线免费| 男女视频在线观看网站免费| 波野结衣二区三区在线| 日韩高清综合在线| 午夜福利在线观看免费完整高清在| 禁无遮挡网站| 精品一区二区三区人妻视频| 国产人妻一区二区三区在| 国产精品综合久久久久久久免费| 亚洲人与动物交配视频| 亚洲精品,欧美精品| 成年免费大片在线观看| 美女大奶头视频| 国产中年淑女户外野战色| 中文字幕av成人在线电影| 国产麻豆成人av免费视频| 久久久亚洲精品成人影院| 成人av在线播放网站| 亚洲国产高清在线一区二区三| 亚洲欧美清纯卡通| 我的老师免费观看完整版| 国产片特级美女逼逼视频| 精品一区二区三区人妻视频| 国产黄色视频一区二区在线观看 | 中文字幕制服av| 五月伊人婷婷丁香| 久久精品国产鲁丝片午夜精品| 国内揄拍国产精品人妻在线| 国产精品永久免费网站| 国产一区亚洲一区在线观看| 成人欧美大片| 青春草亚洲视频在线观看| 国产成人一区二区在线| 一二三四中文在线观看免费高清| 最近中文字幕2019免费版| 国产亚洲av嫩草精品影院| 国产精品一区二区性色av| 简卡轻食公司| 日本与韩国留学比较| 又爽又黄无遮挡网站| 亚洲精品日韩av片在线观看| 免费看av在线观看网站| 久久精品久久久久久噜噜老黄 | 高清av免费在线| 麻豆一二三区av精品| 最近视频中文字幕2019在线8| 亚洲,欧美,日韩| 亚洲欧美日韩卡通动漫| 插逼视频在线观看| 成人av在线播放网站| 亚洲精品日韩在线中文字幕| 久久草成人影院| 亚洲欧美成人综合另类久久久 | 欧美一区二区国产精品久久精品| 国产午夜精品论理片| 校园人妻丝袜中文字幕| 夫妻性生交免费视频一级片| 亚洲欧美日韩高清专用| 国产极品天堂在线| 欧美成人免费av一区二区三区| 亚洲美女视频黄频| 久久久久久久亚洲中文字幕| 精品久久国产蜜桃| 欧美+日韩+精品| 亚洲av熟女| 成人亚洲欧美一区二区av| 国产亚洲av嫩草精品影院| ponron亚洲| a级毛色黄片| eeuss影院久久| 国产在视频线在精品| 亚洲av男天堂| a级一级毛片免费在线观看| 亚洲av电影在线观看一区二区三区 | 亚洲av电影在线观看一区二区三区 | 免费大片18禁| 白带黄色成豆腐渣| 国产精华一区二区三区| 国产乱人视频| 久久久国产成人精品二区| 男女下面进入的视频免费午夜| videos熟女内射| 中文精品一卡2卡3卡4更新| 国产又色又爽无遮挡免| 日本爱情动作片www.在线观看| 三级经典国产精品| 欧美色视频一区免费| 午夜福利在线在线| 日本wwww免费看| 欧美激情在线99| 熟女电影av网| 简卡轻食公司| 中文欧美无线码| 亚洲精品乱码久久久v下载方式| 99久久精品热视频| 美女被艹到高潮喷水动态| 一级毛片久久久久久久久女| 在线观看66精品国产| 老司机影院成人| 免费看a级黄色片| 精品久久久久久成人av| 中文精品一卡2卡3卡4更新| 97超碰精品成人国产| 免费观看性生交大片5| 精品国产一区二区三区久久久樱花 | 国产色爽女视频免费观看| 亚洲国产欧美在线一区| 免费一级毛片在线播放高清视频| 欧美性猛交╳xxx乱大交人| 日韩国内少妇激情av| 狠狠狠狠99中文字幕| 女人久久www免费人成看片 | 国产午夜福利久久久久久| 亚洲国产精品成人久久小说| 日产精品乱码卡一卡2卡三| 国产精品伦人一区二区| 欧美一级a爱片免费观看看| 久久久精品欧美日韩精品| 伦理电影大哥的女人| 欧美成人a在线观看| av天堂中文字幕网| 午夜精品在线福利| 久久久午夜欧美精品| 男人狂女人下面高潮的视频| 国产伦精品一区二区三区视频9| 99久久成人亚洲精品观看| 亚洲精品乱久久久久久| 免费一级毛片在线播放高清视频| 18禁在线播放成人免费| 国产精品.久久久| 一区二区三区乱码不卡18| 午夜福利高清视频| 免费看av在线观看网站| 日日撸夜夜添| 赤兔流量卡办理| 国产黄片视频在线免费观看| av福利片在线观看| 毛片女人毛片| 久久欧美精品欧美久久欧美| 晚上一个人看的免费电影| 日韩大片免费观看网站 | 免费无遮挡裸体视频| av视频在线观看入口| 亚洲国产高清在线一区二区三| 国产精品熟女久久久久浪| 日韩人妻高清精品专区| 色视频www国产| 国产精品福利在线免费观看| 免费在线观看成人毛片| 国产乱人视频| 91精品国产九色| 日韩欧美精品v在线| 久久久久性生活片| 自拍偷自拍亚洲精品老妇| 老司机福利观看| 高清日韩中文字幕在线| 国产伦精品一区二区三区四那| 18禁在线播放成人免费| 网址你懂的国产日韩在线| 国产淫片久久久久久久久| 日产精品乱码卡一卡2卡三| 成人亚洲精品av一区二区| 日日撸夜夜添| 看片在线看免费视频| 校园人妻丝袜中文字幕| 色网站视频免费| 国产淫片久久久久久久久| 只有这里有精品99| 国产精品久久电影中文字幕| 在线免费观看的www视频| 国产精品野战在线观看| 综合色丁香网| 亚洲国产高清在线一区二区三| 少妇熟女欧美另类| 免费av毛片视频| 亚洲人成网站在线观看播放| av国产久精品久网站免费入址| 久久精品人妻少妇| 尤物成人国产欧美一区二区三区| 舔av片在线| 国产av码专区亚洲av| 少妇熟女欧美另类| av免费在线看不卡| 小蜜桃在线观看免费完整版高清| 一个人观看的视频www高清免费观看| 国产午夜福利久久久久久| 久久精品国产亚洲网站| 亚洲av成人精品一二三区| 青春草视频在线免费观看| 一夜夜www| 夜夜看夜夜爽夜夜摸| 精品无人区乱码1区二区| 国产一区二区在线观看日韩| 亚洲在线观看片| 亚洲av一区综合| 插逼视频在线观看| 国产亚洲一区二区精品| 亚洲综合色惰| 国产激情偷乱视频一区二区| 亚洲av熟女| 亚洲欧美精品自产自拍| 啦啦啦啦在线视频资源| 97超视频在线观看视频| 在线播放无遮挡| 久久午夜福利片| 久久久久久九九精品二区国产| 欧美成人精品欧美一级黄| 丰满人妻一区二区三区视频av| 日韩在线高清观看一区二区三区| 色播亚洲综合网| 亚洲精品aⅴ在线观看| 又爽又黄无遮挡网站| 国产精品国产三级国产av玫瑰| 亚洲成av人片在线播放无| 国产精品久久视频播放| 又粗又爽又猛毛片免费看| 午夜精品国产一区二区电影 | 小蜜桃在线观看免费完整版高清| 日日摸夜夜添夜夜爱| 国产免费一级a男人的天堂| 干丝袜人妻中文字幕| 色吧在线观看| 尾随美女入室| 午夜免费激情av| 日韩欧美精品v在线| 国产免费又黄又爽又色| 视频中文字幕在线观看| 欧美三级亚洲精品| 干丝袜人妻中文字幕| 亚洲av免费在线观看| av在线亚洲专区| 春色校园在线视频观看| 亚洲欧美精品专区久久| 又黄又爽又刺激的免费视频.| 18禁在线播放成人免费| 国产极品精品免费视频能看的| 久久精品久久久久久久性| 国产精品,欧美在线| 国产亚洲精品av在线| 97热精品久久久久久| 久久欧美精品欧美久久欧美| 久久精品国产鲁丝片午夜精品| 综合色av麻豆| 最近中文字幕2019免费版| 久久精品国产亚洲网站| 我的女老师完整版在线观看| 国产亚洲精品av在线| 亚洲欧美清纯卡通|