• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Coordination Polymers Based on Pamoic Acid and (1,4-Bis(imidazol-1-yl)-butane: Synthesis, Structures and Properties①

    2021-06-11 03:29:02TUChangZhengYANGYuTingWANGFanWANGJianLingYINHongJuCHENGFeiXiang
    結(jié)構(gòu)化學(xué) 2021年4期

    TU Chang-Zheng YANG Yu-Ting WANG Fan WANG Jian-Ling YIN Hong-Ju CHENG Fei-Xiang

    Two Coordination Polymers Based on Pamoic Acid and (1,4-Bis(imidazol-1-yl)-butane: Synthesis, Structures and Properties①

    TU Chang-Zheng YANG Yu-Ting WANG Fan WANG Jian-Ling YIN Hong-Ju CHENG Fei-Xiang②

    (655011)

    Two mixed-ligand compounds, namely [Mn2(bimb)(PA)2](1) and [Zn(bimb)(PA)](2) (H2PA = pamoic acid, bimb = 1,4-bis(imidazol-1-yl)-butane) have been synthesized under the same solvothermal conditions.Compound 1 can be described as (4,4) topology based on the 4-connected [Mn2(COO)4] paddle-wheel units, which contains both rotaxane- and catenane-like motifs.For 2, the 2wavy-like network interlocked with each other and resulted in a 2-fold interpenetrated 2→ 3architecture.The structural differences of the two compounds are mainly due to the differences of metal ions and coordination modes of the PA2-ligand.In addition, the magnetism and photoluminescent properties of them have also been explored.

    crystal structures, pamoic acid, luminescence, magnetic properties;

    1 INTRODUCTION

    Coordination polymers (Cps) have received more and more attention in recent years due to their structural diversity and promising applications in the areas of catalysis, gas storage, magnetism and optics[1-4].Particularly, the Cps with magnetism and/or luminescent properties are possibly useful for information storage and emitter for photoluminescence devices[5-7].The way to generate such Cps is to design ligands and select metal ions ingeniously, and to control the reaction conditions strictly and accurately.It is well known that the structures of such materials are usually governed by the crystallization conditions, including temperature, solvent, template, metal ion, guest, pH value, and so on[8-11].For example, we have reported two novel Cu(II) Cps by controlling the temperature of the reaction systems recently[12].Meanwhile, we are also interested in the influence of metal ions on the control of framework topology and the dimensionality of structures.

    Pamoic acid (HPA) is a very cheap and important feedstock in the chemical industry, which can be used as a counter ion to obtain long-term pharmaceutical preparations of some basic drugs[13, 14].However, the investigation about this ligand has been far less common in the construction of Cps.To the best of our knowledge, only a few examples have been investigated since the first groups of metal- pamoate coordination complexes were reported in 2007 by Du’s group[15-18].H2PA is composed of two naphthalene moieties connected with methylene (-CH2-) bridge.The two naphthalene arms can rotate freely around the -CH2- group by the small change of coordination environments, so as to minimize the steric hindrance and generate unusual structures.We are interested in H2PA as a bridging ligand, because the molecule can not only build bridges between multiple metal centers, but also show rich coordination modes[19, 20], and the coordination polymers based on such ligand may have unexpected properties.

    On the other hand, the employment of mixed ligands has been demonstrated to be an effective approach for cons- tructing diverse Cps.We have obtained many Cps with attractive architectures and properties through the skillful introduction of bis(imidazole) ligands as the coligands in our previous work[21, 22].In order to understand the coordination characteristics of H2PA, we have synthesized the compound [Mn2(bimb)(PA)2](1), and briefly reported its structure characteristics[23].Then, under the same synthesis conditions, compound [Zn(bimb)(PA)](2)was obtained.For the sake of investigating the influence of metal ions on the framework structures, compounds 1 and 2 were discussed together.The magnetism and photoluminescent properties of themwere also studied.

    2 EXPERIMENTAL

    2.1 Materials and measurements

    All commercially available chemicals were of reagent grade and were used as received without further purification.The ligand 1,4-bis(imidazol-1-yl)-butane (bimb) was synthesized by literature procedures[24, 25].The infrared spectra were performed on a Varian FT-IR 640 spectrometer with KBr pellets in the 400~4000 cm-1region.Elemental analyses were measured on a Perkin-Elmer 2400 C H N elemental analyzer (C, H and N).Powder X-ray diffraction (PXRD) patterns were collected on a Rigaku D/MAX-IIIC powder diffractometer with Cu-radiation.The thermogravimetric analysis (TGA) was performed with a Shimadzu TGA-50H TG analyzer in the range of 25~750 ℃under a nitrogen ?ow at a heating rate of 5 ℃/min.The fluorescence excitation and emission spectra were recorded at room temperature with a Hitachi F-4500 spectrophotometer equipped with a 150 W xenon lamp as an excitation source.Magnetic susceptibility measurements were carried out on a Quantum Design MPMSXL SQUID magnetometer and PPMS-9T system.A correction was made for the diamagnetic contribution prior to data analysis.

    2.2 Synthesis of [Mn2(bimb)(PA)2]n (1)

    A mixture of Mn(NO3)2·4H2O (0.5 mmol, 0.125 g), H2PA (0.5 mmol, 0.194 g), bimb (1.0 mmol, 0.190 g), distilled water (1 mL) and C2H5OH (5 mL) was placed in a Teflon-lined stainless-steel vessel (23 mL).The mixture was sealed and heated at 160 ℃ for 72 h.After the sample was gradually cooled to room temperature at the rate of 5 ℃/h, brown crystals of 1 were obtained with 69% yield based on Mn.Anal.Calcd.for 1 (C56H38Mn2N4O12): C, 62.93; H, 3.58; N, 5.24%.Found: C, 62.45; H, 4.26; N, 5.43%.Selected IR data (KBr pellet, cm-1): 3382(m), 2954(s), 2580(s), 1652(s), 1591(s), 1510(vs), 1449(m), 1426(m), 1374(s), 1310(m), 1257(m), 1159(m), 1089(s), 954(s), 840(m), 769(m), 738(m), 662(m).

    2.3 Synthesis of [Zn(bimb)(PA)]n (2)

    The synthesis procedure of compound 2 was similar to that of 1 except that Mn(NO3)2·4H2O was replaced by Zn(NO3)2·6H2O.A colorless block-shaped crystal of 2 was obtained with 53% yield based on Zn.Anal.Calcd.for 2 (C33H28N4O6Zn): C, 61.74; H, 4.40; N, 8.73%.Found: C, 60.98; H, 5.06; N, 8.04%.Selected IR data (KBr pellet, cm-1): 3380(m), 2960(s), 2589(s), 1657(s), 1601(s), 1514(vs), 1452(m), 1426(m), 1377(s), 1315(m), 1257(m), 1152(m), 1074(s), 954(s), 844(m), 763(m), 735(m), 660(m).

    We have tried to use chloride, perchlorate, and acetate of Zn(II) and Mn(II) instead of nitrates to prepare compounds 1 and 2.The results indicating that the anions have no effect on the final products.

    2.4 X-ray crystallography and structure determination

    Table 1.Selected Bond Lengths (?) and Bond Angles (°) for 1

    Symmetry transformations used to generate the equivalent atoms: #1: –+ 3, –+ 3, –; #2: –+ 1,–+ 1, –; #3: –+ 1, –+ 2, –; #4:,+ 1,; #5:,– 1,

    Table 2.Selected Bond Lengths (?) and Bond Angles (°) for 2

    Symmetry transformations used to generate the equivalent atoms: #1:– 1,,; #2:, –+ 3/2,– 1/2; #3:+ 1,,; #4:, –+ 3/2,+ 1/2

    3 RESULTS AND DISCUSSION

    3.1 Structural description

    3.1.1 [Mn2(bimb)(PA)2](1)

    Fig.1.View of the local coordination environment for Mn(II) centers in 1.Symmetry codes: A: 1–, 2 –, –; B:, 1 +,

    The completely deprotonated PA2-ligand adopts4:1,1,1,1coordination mode (Scheme 1(I)), which acts as twobridges to connect four Mn(II) ions, resulting in [Mn2(COO)4] units.The paddle-wheel [Mn2(COO)4] units locating about other inversion centers are linked together by the PA2-ligands, creating the [Mn4(PA)2] loop and extended 1tape structure along thedirection.Further, the bimb ligand is connected to the tapes via the Mn–N bonds, thus resulting in the 2net (Fig.2a).In topology, such a net can be described by (4,4) topology based on the 4-connected [Mn2(COO)4] paddle-wheel units.It is worth noting that the fascinating feature of the structure is that it comprises not one but two such nets which interlock with each other in an uncommon way, viz.the [Mn4(PA)2] loops of each net are penetrated by one bimb ligand of the other net, and vice versa.Thereby, the structure of 1 cannot be simply considered to consist of two-fold interpenetrating layers, as it has both polyrotaxane and polycatenane characters and is topologically described by the 6-connected net (Fig.2b).Such feature is consistent with the structure of Cd2(L1)(L2)2(L1 = 1,1?-(1,4-butanediyl)bis(imidazole), L2 = pamoic acid) that has been reported by Luo groups[28].

    Scheme 1.Coordination modes of PA2-anion

    Fig.2.(a) 2network of 1.(b) View of the interlocked nets of 1 with its polyrotaxane and polycatenane motifs

    3.1.2 [Zn(bimb)(PA)](2)

    Reactions of the same organic ligands were carried out through the same conditions.Interestingly, the resulting products were largely different for different metal ions.When the metal ion was changed to Zn(II), a 2→ 3network [Zn(bimb)(PA)](2) formed.Clearly, the kinds of metal ions play a key role in the formation of the final product.As shown in Fig.3, each Zn(II) ion is five- coordinated and surrounded by two nitrogen atoms of two bimb ligands (Zn(1)–N(2) = 1.738(4) ?, Zn(1)–N(1B) = 2.054(4) ?, B =– 1,,) and three carboxyl oxygen atoms of two different PA2-anions (Zn(1)–O(3A) = 2.483(4) ?, Zn(1)–O(4A) = 2.394(5) ?, Zn(1)–O(6) = 2.137(4) ?, A =, –+ 1.5,– 0.5).Thus, the Zn(II) ion displays a distorted square pyramidal coordination arrangement [ZnO3N2].The two carboxyl groups of PA2-ligand adopt monodentate and chelating bidentate bridging coordination modes, respectively (Scheme 1-II) to connect two Zn(II) ions into a zigzag chain.Such chains are further linked by bimb ligand to form a 2wavy-like network (Fig.4a).The network also can be regarded as undulated (4,4) grid layers, which are arranged in a parallel fashion to afford 1rectangle channels (Fig.4b).

    Fig.3.View of the local coordination environment for Zn(II) centers in 2.Symmetry codes: A =, –+1.5,–0.5; B =–1,,

    Fig.4.(a) View of 2network of 2.(b) Schematic description of the 4-connected framework

    Both hydroxide groups of PA2-are uncoordinated, and bound to carboxyl O atoms (O(1), O(3)) with strong intramolecular hydrogen bonds of O(5)–H(2A)···O(1) 2.540(3) ? and O(2)–H(1A)···O(3) 2.467(3) ?.The ?exible PA2-is twisted and the hydroxy and carboxyl groups adopt aconformation in order to minimize the steric hindrance.The dihedral angle between both naphthyl rings is 69.8°.Through aborative observation, we found that there are two identical 2undulated networks interlocked with each other, thus directly leading to the formation of a 2-fold interpene- trated 2→ 3architecture (Fig.5a, b).

    Fig.5.(a) View of 2→ 3network of 2.(b) Schematic representation of the 2-fold interpenetrated structure

    3.3 Thermogravimetric analysis and powder X-ray diffraction

    Thermogravimetric analyses (TGA) were carried out to examine the thermal stabilities of synthesized compounds 1 and 2.The experiments were performed on samples consisting of numerous single crystals of each complex from room temperature to 750 ℃ under the N2atmosphere at the heating rate of 5 ℃/min.As shown in Fig.6, both compounds 1 and 2 display excellent thermal stability.Compound 1 kept intact until about 300 ℃, and then began to decompose upon further heating.For 2, the rapid weight loss are from about 230 to 481 ℃, which corresponds to the removal of bimb and PA2-ligands.The resulting residue of 2 is ZnO (calcd.: 12.6%, found: 13.2%) after the complete decomposition of the organic ligands.

    Fig.6.Thermogravimetric curves of 1 and 2

    PXRD was used to check the purity of complexes 1 and 2.As shown in Fig.7, all the peaks displayed in the measured patterns for each compound closely match those in the simulated patterns generated from single-crystal diffraction data, indicating that the single phases of 1 and 2 were formed.

    Fig.7.Exp.and simulated PXRD patterns of 1 and 2

    3.4 Magnetic properties

    The magnetic susceptibility measurements for 1 were performed with polycrystalline sample at an applied ?eld of 1000 Oe in the temperature range of 2~300 K.The temperature dependence ofMand χM-1is shown in Fig.8.At room temperature, theMvalue is 8.40 cm3·K·mol-1, which is comparable with the expected value of 8.75 cm3·K·mol-1(per Mn2,= 5/2,= 2.0[29]).After smooth decrease from 300 to about 84 K, theχTvalue decreases sharply and reaches 0.79 cm3·K·mol-1at 2 K.The data above 12 K obeyed the Curie-Weiss law (=/(–))), resulting in the Curie constant () of 9.09 cm3·K·mol-1, and the Weiss constant () of –11.82 K.The Curie constant is in agreement with the expected for two magnetically isolated high-spin Mn(II) ions.The negative values ofindicate dominating antiferromagnetic coupling between the manganese ions and the shape of the curve is also characteristic of dominant antiferromagnetic exchange interaction, as expected for Mn(II) ions bridged by fourcarboxylate groups[30].

    Fig.8.Plots of theMproduct andχ-1versus T for 1.The solid lines represent the best fit to the corresponding classical model and Curie-Weiss law

    According to the structure of 1, two Mn(II) centers are linked by four carboxylate bridges since the coupling through PA2-and bimb ligands can almost be negligible.Thus, two coupling parametersandshould be considered to interpret the two possible magnetic interactions, in whichis the exchange coupling parameter between Mn1-Mn1A, and' accounts for the rest of interactions.By assuming isotropic exchange, the exchange Hamiltonian of 1 is= –2JSS, where= 5/2, and the susceptibility per mol of the paddle wheel dimer unit is given by[30, 31]:

    A = exp[2/kT] + 5exp[6/kT] + 14exp[12/kT] + 30exp[20/kT] + 55exp[30/kT]

    B = 1 + 3exp[2/kT] + 5exp[6/kT] + 7exp[12/kT] + 9exp[20/kT] + 11exp[30/kT]

    where,,, andBhave their usual meanings.Least-squares analysis of magnetic susceptibility data led to= –1.36 cm-1,' = –0.22 cm-1,= 2.03 and= 1.38 × 10-4(red solid lines in Fig.8).

    3.4 Photoluminescence properties

    Photoluminescent compounds are of great interest currently due to their various applications in chemical sensors, photochemistry, and electroluminescent display.It is well known that metal-organic polymeric complexes with a10closed-shell electronic con?guration have been found to exhibit photoluminescent properties[19].Here, the photoluminescent property of compound 2 in the solid state at room temperature was examined (Fig.9).Excitation of the microcrystalline samples at 410 nm leads to the generation of similar fluorescent emissions, with the peak maxima occurring at 552 nm.To further understand the origin of the emission band, the fluorescent spectra of H2PA and bimb ligands have also been measured.For 2, the significant red shift of ca.48 nm relative to that of the free H2PA ligand shows an emission band at 473 nm (ex= 428 nm), and a very obvious red shift of ca.211 nm relative to that of the free bimb ligand holds an emission band at 341 nm (ex= 288 nm).Presumably, the emissions of compound 2 should originate from the intraligand*-transitions[32], whereas the significant redshifts in comparison to H2PA should be ascribed to the metal-ligand coordinative interactions, and similar red shifts have been observed before[15].The change of the intensity may result from conformational ligands and weak interactions in the interpenetrating crystalline lattice, which may affect the rigidity of the whole network and further the energy transfer involved in the luminescence[33].

    Fig.9.Emission spectra of 2, H2PA and bimb in the solid state at room temperature

    4 CONCLUSION

    In conclusion, in this work we have reported two metal ions-dependent coordination polymers synthesized under the same solvothermal conditions.The PA2-ligand displays different coordination modes in the two compounds.Compound 1 has both polyrotaxane and polycatenane characters.Differently, compound 2 displays a 2-fold interpenetrated 2→ 3architecture.Such results reveal that the kinds of metal ions have a great in?uence on the ?nal structures.Further, magnetic studies show that 1 indicates antiferromagnetic coupling between the adjacent Mn(II) ions, while compound 2 may be good candidate for novel hybrid inorganic-organic photoactive materials.

    (1) Chen, X.; Jiang, H.; Li, X.; Hou, B.; Gong, W.; Wu, X.W.; Han, X.; Zheng, F.F.; Liu, Y.; Jiang, J.W.; Cui, Y.Chiral phosphoric acids in metal-organic frameworks with enhanced acidity and tunable catalytic selectivity..2019, 58, 14748–14757.

    (2) Fan, W.D.; Yuan, S.; Wang, W.J.; Feng, L.; Liu, X.P.; Zhang, X.R.; Wang, X.; Kang, Z.X.; Dai, F.N.; Yuan, D.Q.; Sun, D.F.; Zhou, H.C.Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2separation.2020, 142, 8728–8737.

    (3) Cao, C.; Liu, S.J.; Yao, S.L.; Zheng, T.F.; Chen, Y.Q.; Chen, J.L.; Wen, H.R.Spin-canted antiferromagnetic ordering in transition metal-organic frameworks based on tetranuclear clusters with mixed V- and Y-shaped ligands.2017, 17, 4757–4765.

    (4) Yao, S.L.; Liu, S.J.; Tian, X.M.; Zheng, T.F.; Cao, C.; Niu, C.Y.; Chen, Y.Q.; Chen, J.L.; Huang, H.; Wen, H.R.A Zn(II)-based metal-organic framework with a raretopology as a turn-on fluorescent sensor for acetylacetone.2019, 58, 3578–3581.

    (5) Liu, S.J.; Han, S.D.; Zhao, J.P.; Xu, J.; Bu, X.H.synthesis of molecular magnetorefrigerant materials.2019, 394, 39–52.

    (6) Zhao, Y.; Hao, R.H.Structural diversity and photoluminescent properties of two zinc coordination polymers based on 5--propoxyisophthalate and flexible N-donor ligands..2020, 1–7.

    (7) Zhao, Y.; Wang, R.L.; Wu, X.X.; Yang, C.D.A water-stable metal organic framework for the detection of explosives and antibiotics..2019, 38, 991–998.

    (8) Li, Z.S.; Li, X.Y.; Liu, J.W.; He, T.; Yue, K.F.Substituent and temperature effect on the assemblies of three lead(II) coordination polymers based on asymmetrical biphenyl tritopic ligands..2015, 641, 2570–2575.

    (9) Gu, J.Z.; Cui, Y.H.; Liang, X.X.; Wu, J.; Lv, D.Y.; Kirillov, A.M.Structurally distinct metal-organic and H-bonded networks derived from 5-(6-carboxypyridin-3-yl)isophthalic acid: coordination and template effect of 4,4′-bipyridine.2016, 16, 4658–4670.

    (10) Dong, X.Y.; Si, C.D.; Fan, Y.; Hu, D.C.; Yao, X.Q.; Yang, Y.X.; Liu, J.C.Effect of N-donor ligands and metal ions on the coordination polymers based on a semirigid carboxylic acid ligand: structures analysis, magnetic properties, and photoluminescence.2016, 16, 2062–2073.

    (11) Pinta, N.D.; Fidalgo, L.; Madariaga, G.; Lezama, L.; Cortés, R.Guest driven structural correlations in DPDS [di(4-pyridyl)disulfide]-based coordination polymers.2012, 12, 5069–5078.

    (12) Yang, Y.T.; Tu, C.Z.; Miao J.J.; Li J.L.; Chen, G.Temperature-dependent hydrothermal synthesis of two distinct three-dimensional copper complexes..2016, 35, 597–604

    (13) Hu, H.Y.; Horton, J.K.; Gryk, M.R.; Prasad, R.; Naron, J.M.; Sun, D.A.; Hecht, S.M.; Wilson.S.H.; Mullen, G.P.Identification of small molecule synthetic inhibitors of DNA polymerase beta by NMR chemical shift mapping..2004, 279, 39736–39744.

    (14) J?rgensen, M.Quantitative determination of pamoic acid in dog and rat serum by automated ion-pair solid-phase extraction and reversed-phase high-performance liquid chromatography.1998, 716, 315–323.

    (15) Du, M.; Li, C.P.; Zhao, X.J.; Yu, Q.Interplay of coordinative and supramolecular interactions in engineering unusual crystalline architectures of low-dimensional metal-pamoate complexes under co-ligand intervention.2007, 9, 1011–1028.

    (16) He, Y.P.; Yuan, L.B.; Chen, G.H.; Lin, Q.P.; Wang, F.; Zhang, L.; Zhang, J.Water-soluble and ultrastable Ti4L6tetrahedron with coordination assembly function.2017, 139, 16845–16851.

    (17) He, Y.P.; Chen, G.H.; Yuan, L.B.; Zhang, L.; Zhang, J.Ti4(embonate)6cage-ligand strategy on the construction of metal-organic frameworks with high stability and gas sorption properties..2020, 59, 964–967.

    (18) Chen, G.H.; He, Y.P.; Zhang, S.H.; Zhang, J.Syntheses, crystal structures and fluorescent properties of two metal-organic frameworks based on pamoic acid.2019, 270, 335–338.

    (19) Shi, X.M.; Li, M.X.; He, X.; Liu, H.J.; Shao, M.Crystal structures and properties of four coordination polymers constructed from ?exible pamoic acid.2010, 29, 2075–2080.

    (20) Wang, S.N.; Peng, Y.Q.; Wei, X.L.; Zhang, Q.F.; Wang, D.Q.; Dou, J.M.; Li, D.C.; Bai, J.F.Temperature-dependent supramolecular isomerism in three zinc coordination polymers with pamoic acid and 1,4-bis(imidazol-1-ylmethyl)-benzene.2011, 13, 5313–5316.

    (21) Yang, Y.T.; Tu, C.Z.; Yin, H.J.; He, C.X.; Zhao, Q.; Cheng, F.X.Synthesis, structures, and properties of five metal-organic frameworks based on oxidized 3,3?-azodibenzoic acid and different N-donor ligands..2019, 4582–4591.

    (22) Yang, Y.T.; Tu, C.Z.; Xu, L.L.; Yan, B.L.; Wang, F.Flexible bis(benzimidazole)-based ligands directed the structure characteristics of coordination polymers based on diphenic acid Co-ligands: syntheses, structures and properties..2019, 38, 155–164.

    (23) Tu, C.Z.; Wang, W.H.; Guo, B.; Miao, J.J.; Yang, Y.T.A novel example of Mn-compound showing rotaxane-like motif.2014, 33, 19–22.

    (24) Li, S.L.; Lan, Y.Q.; Ma, J.F.; Yang, J.; Wei, G.H.; Zhang, L.P.; Su, Z.M.Structures and luminescent properties of seven coordination polymers of zinc(II) and cadmium(II) with 3,3′,4,4′-benzophenone tetracarboxylate anion and bis(imidazole)..2008, 8, 675–684.

    (25) Wen, L.L.; Lu, Z.D.; Lin, J.G.; Tian, Z.F.; Zhu, H.Z.; Meng, Q.J.Syntheses, structures, and physical properties of three novel metal-organic frameworks constructed from aromatic polycarboxylate acids and flexible imidazole-based synthons..2007, 7, 93–99.

    (26) Sheldrick, G.M..University of G?ttingen,Germany 1997.

    (27) Sheldrick, G.M..University of G?ttingen, Germany 1997.

    (28) Luo, F.; Yang, Y.T.; Che, Y.X.; Zheng, J.M.An unusual metal-organic framework showing both rotaxane- and cantenane-like motifs.2008, 10, 981–982.

    (29) Yi, F.Y.; Sun, Z.M.Solvent-controlled syntheses, structure, and magnetic properties of trinuclear Mn(II)-based metal-organic frameworks..2012, 12, 5693–5700.

    (30) Zhao, Y.; Chang, X.H.; Liu, G.Z.; Ma, L.F.; Wang, L.Y.Five Mn(II) coordination polymers based on 2,3?,5,5?-biphenyl tetracarboxylic acid: syntheses, structures, and magnetic properties..2015, 15, 966–974.

    (31) Ma, L.F.; Wang, L.Y.; Du, M.A novel 3Mn(II) coordination polymer involving 4,4?-dipyridylsulfide and 4,4?-dipyridyltrisulfide obtained by in situ ligand formation from 4,4′-dipyridyldisulfide.2009, 11, 2593?2596.

    (32) Gou, L.; Wu, Q.R.; Hu, H.M.; Qin, T.; Xue, G.L.; Yang, M.L.; Tang, Z.X.An investigation of the positional isomeric e?ect of terpyridine derivatives: self-assembly of novel cadmium coordination architectures driven by N-donor covalence and···non-covalent interactions.2008, 27, 1517–1526.

    (33) Han, Z.X.; Wang J.J.; Hu, H.M.; Chen, X.L.; Wu, Q.R.; Li, D.S.; Shi, Q.Z.Effects of the size of aromatic chelate ligands and10metal ions on the structures of dicarboxylate complexes: from dinuclear molecule to helical chains and 2network.2008, 891, 364–369.

    27 July 2020;

    14 October 2020 (CCDC 1022408 for 1 and 2012755 for 2)

    ① This work was supported by the Shanghai Key Laboratory of Rare Earth Functional Materials, the project of teaching quality and teaching reform of Yunnan Province (2073010023), the National Teaching Quality and Teaching Reform Project (201810684012), the National Natural Science Foundation of China (81601602), and the Innovative Research Team of Functional complexes and Magnetic materials in University of Yunnan Province

    .E-mail: chengfx2019@163.com

    10.14102/j.cnki.0254–5861.2011–2946

    欧美丝袜亚洲另类 | 一个人免费在线观看的高清视频| 亚洲熟妇熟女久久| 噜噜噜噜噜久久久久久91| 嫩草影院精品99| 最近最新中文字幕大全免费视频| 天天躁日日操中文字幕| tocl精华| 亚洲成a人片在线一区二区| 国产成人欧美在线观看| svipshipincom国产片| 99热精品在线国产| 亚洲无线观看免费| 岛国在线观看网站| 亚洲专区国产一区二区| 亚洲精品在线美女| 午夜福利在线在线| av欧美777| 天堂动漫精品| 国产一区二区三区在线臀色熟女| 免费搜索国产男女视频| 免费人成视频x8x8入口观看| 亚洲五月天丁香| 亚洲人成电影免费在线| 狂野欧美激情性xxxx| 日本在线视频免费播放| 在线观看av片永久免费下载| 日韩中文字幕欧美一区二区| 又黄又粗又硬又大视频| 白带黄色成豆腐渣| 麻豆久久精品国产亚洲av| 亚洲第一欧美日韩一区二区三区| 国产爱豆传媒在线观看| 欧美+亚洲+日韩+国产| 一级a爱片免费观看的视频| 国产私拍福利视频在线观看| 欧美一区二区国产精品久久精品| 性色av乱码一区二区三区2| 母亲3免费完整高清在线观看| 免费观看的影片在线观看| 免费在线观看成人毛片| www国产在线视频色| 久久国产精品人妻蜜桃| 小蜜桃在线观看免费完整版高清| 在线十欧美十亚洲十日本专区| 日本成人三级电影网站| 日韩精品青青久久久久久| 一区福利在线观看| 哪里可以看免费的av片| 一夜夜www| 给我免费播放毛片高清在线观看| 很黄的视频免费| 欧洲精品卡2卡3卡4卡5卡区| 成人欧美大片| www日本在线高清视频| 亚洲一区二区三区色噜噜| 亚洲乱码一区二区免费版| 国产精品久久久人人做人人爽| 欧美日韩中文字幕国产精品一区二区三区| а√天堂www在线а√下载| 男人的好看免费观看在线视频| 国产精品嫩草影院av在线观看 | 动漫黄色视频在线观看| 亚洲真实伦在线观看| 日韩欧美一区二区三区在线观看| 久久久国产精品麻豆| 欧美黑人巨大hd| 51国产日韩欧美| 亚洲不卡免费看| 夜夜躁狠狠躁天天躁| 国产探花极品一区二区| 亚洲专区国产一区二区| 国产极品精品免费视频能看的| 日本与韩国留学比较| 男女做爰动态图高潮gif福利片| 久久精品综合一区二区三区| 欧美成人一区二区免费高清观看| 三级毛片av免费| 老司机福利观看| a级一级毛片免费在线观看| 白带黄色成豆腐渣| 国内精品美女久久久久久| 国产成人系列免费观看| 在线免费观看的www视频| 免费看美女性在线毛片视频| 久久性视频一级片| 最新在线观看一区二区三区| 特大巨黑吊av在线直播| 欧美最黄视频在线播放免费| 内射极品少妇av片p| 国内精品美女久久久久久| 少妇丰满av| 国产亚洲欧美在线一区二区| 亚洲五月天丁香| 国产视频内射| 国产在线精品亚洲第一网站| 欧美日韩瑟瑟在线播放| 国产极品精品免费视频能看的| 国产一区二区在线观看日韩 | 俺也久久电影网| 国产麻豆成人av免费视频| 日韩欧美在线二视频| 看免费av毛片| 欧美不卡视频在线免费观看| 精品人妻偷拍中文字幕| av欧美777| 久久久精品欧美日韩精品| 一区二区三区免费毛片| 一进一出抽搐动态| 亚洲国产精品久久男人天堂| a级一级毛片免费在线观看| 日韩精品中文字幕看吧| 在线观看av片永久免费下载| 国产精品香港三级国产av潘金莲| 一进一出好大好爽视频| 亚洲内射少妇av| 亚洲欧美一区二区三区黑人| 99热这里只有精品一区| 久久香蕉精品热| 国产欧美日韩一区二区三| 18美女黄网站色大片免费观看| 日本在线视频免费播放| 精品一区二区三区人妻视频| 哪里可以看免费的av片| 99久久精品国产亚洲精品| 国产成人a区在线观看| 亚洲人成网站高清观看| 国产亚洲精品一区二区www| 久久久久国内视频| 久99久视频精品免费| 成人精品一区二区免费| 国产精品香港三级国产av潘金莲| 久久久色成人| 国产亚洲精品一区二区www| 日本五十路高清| 一个人免费在线观看电影| 亚洲av不卡在线观看| 免费无遮挡裸体视频| 丰满的人妻完整版| 久久久久国内视频| 午夜视频国产福利| 丁香欧美五月| 18美女黄网站色大片免费观看| 男女那种视频在线观看| 又粗又爽又猛毛片免费看| 久久久国产精品麻豆| 欧美中文日本在线观看视频| 全区人妻精品视频| 有码 亚洲区| 国产成人av教育| 特级一级黄色大片| 国产一区在线观看成人免费| 亚洲成av人片免费观看| 9191精品国产免费久久| 亚洲激情在线av| 久久午夜亚洲精品久久| 看免费av毛片| 国产一区在线观看成人免费| 精品一区二区三区视频在线 | 亚洲av一区综合| 亚洲国产中文字幕在线视频| 不卡一级毛片| 99国产精品一区二区蜜桃av| 国内精品久久久久精免费| 精品人妻偷拍中文字幕| 欧美黑人巨大hd| 成人一区二区视频在线观看| 男人舔女人下体高潮全视频| 精品欧美国产一区二区三| 久久精品国产综合久久久| 色噜噜av男人的天堂激情| www.www免费av| 两个人看的免费小视频| 九九在线视频观看精品| 97人妻精品一区二区三区麻豆| 麻豆国产97在线/欧美| 俺也久久电影网| 国产中年淑女户外野战色| 国产精品永久免费网站| 国产亚洲精品av在线| 国产爱豆传媒在线观看| 88av欧美| 免费搜索国产男女视频| 免费看日本二区| 亚洲成av人片在线播放无| 在线观看免费视频日本深夜| 国产一区在线观看成人免费| 制服丝袜大香蕉在线| 黄色片一级片一级黄色片| 国产成人av激情在线播放| 老司机在亚洲福利影院| 一a级毛片在线观看| 深爱激情五月婷婷| 精品无人区乱码1区二区| 国产色婷婷99| 我的老师免费观看完整版| 日韩欧美三级三区| 制服丝袜大香蕉在线| 99热6这里只有精品| 亚洲一区二区三区不卡视频| 亚洲av美国av| 狂野欧美激情性xxxx| 国产极品精品免费视频能看的| 久久久久久大精品| 国产 一区 欧美 日韩| 中文字幕av成人在线电影| 成人午夜高清在线视频| 久久久久久久久中文| 精品国产三级普通话版| 亚洲国产精品成人综合色| 国产精品 欧美亚洲| 国产黄片美女视频| 国产精品综合久久久久久久免费| 男人舔女人下体高潮全视频| 国产淫片久久久久久久久 | 久久精品亚洲精品国产色婷小说| 九色成人免费人妻av| 亚洲人成电影免费在线| 小蜜桃在线观看免费完整版高清| 丰满人妻一区二区三区视频av | 亚洲人成网站在线播放欧美日韩| 欧美日韩乱码在线| 日日摸夜夜添夜夜添小说| 97人妻精品一区二区三区麻豆| 美女cb高潮喷水在线观看| 欧美日韩国产亚洲二区| 变态另类丝袜制服| 成人亚洲精品av一区二区| 亚洲人成网站在线播放欧美日韩| 日日干狠狠操夜夜爽| 丁香六月欧美| 久久久久久久久大av| 日本黄色片子视频| 国产精品亚洲一级av第二区| 久久精品综合一区二区三区| 两个人看的免费小视频| 热99在线观看视频| 国产97色在线日韩免费| 国内少妇人妻偷人精品xxx网站| 欧美日韩乱码在线| 欧美国产日韩亚洲一区| 欧美乱码精品一区二区三区| 亚洲国产中文字幕在线视频| 欧美+日韩+精品| 午夜福利在线观看免费完整高清在 | 男人和女人高潮做爰伦理| 久久人妻av系列| 婷婷精品国产亚洲av| 色综合亚洲欧美另类图片| 欧美成人一区二区免费高清观看| 最近最新中文字幕大全电影3| 成人特级黄色片久久久久久久| 美女高潮喷水抽搐中文字幕| 一本一本综合久久| 国产av麻豆久久久久久久| 日本免费一区二区三区高清不卡| 19禁男女啪啪无遮挡网站| 在线观看免费午夜福利视频| 脱女人内裤的视频| 国产精品久久久久久亚洲av鲁大| 久久香蕉精品热| 久久精品国产清高在天天线| 在线观看美女被高潮喷水网站 | 亚洲最大成人手机在线| 午夜久久久久精精品| 国产极品精品免费视频能看的| 亚洲内射少妇av| 精品无人区乱码1区二区| netflix在线观看网站| 村上凉子中文字幕在线| 成人午夜高清在线视频| 老司机福利观看| 国产精品亚洲一级av第二区| 久久婷婷人人爽人人干人人爱| 日韩欧美精品免费久久 | 国产探花在线观看一区二区| 国内精品美女久久久久久| 久久久久久久午夜电影| 99热6这里只有精品| 天堂av国产一区二区熟女人妻| 欧美日本亚洲视频在线播放| 亚洲av熟女| 精品日产1卡2卡| 国产精品1区2区在线观看.| 国产精品,欧美在线| 亚洲成av人片免费观看| 啦啦啦韩国在线观看视频| 欧美又色又爽又黄视频| 日韩欧美免费精品| 成人亚洲精品av一区二区| 又紧又爽又黄一区二区| 亚洲,欧美精品.| 久99久视频精品免费| 欧美乱码精品一区二区三区| 国产真人三级小视频在线观看| 最近最新免费中文字幕在线| 国产成人av激情在线播放| 国产三级中文精品| 日本免费a在线| av黄色大香蕉| 国产一级毛片七仙女欲春2| 97超视频在线观看视频| 午夜激情欧美在线| 又黄又粗又硬又大视频| 久久亚洲精品不卡| 久久午夜亚洲精品久久| 好看av亚洲va欧美ⅴa在| 国产真人三级小视频在线观看| 在线观看午夜福利视频| 国产欧美日韩精品一区二区| 午夜福利在线在线| 日日干狠狠操夜夜爽| 高清在线国产一区| 成人特级黄色片久久久久久久| 99在线人妻在线中文字幕| 精品熟女少妇八av免费久了| 亚洲无线观看免费| 国内揄拍国产精品人妻在线| 午夜老司机福利剧场| 窝窝影院91人妻| 午夜福利18| 欧美xxxx黑人xx丫x性爽| 色av中文字幕| 91在线观看av| 麻豆久久精品国产亚洲av| 日韩欧美一区二区三区在线观看| 日韩亚洲欧美综合| 一本综合久久免费| 一a级毛片在线观看| 一区二区三区免费毛片| 啦啦啦观看免费观看视频高清| 国产爱豆传媒在线观看| 亚洲av一区综合| 亚洲av不卡在线观看| 欧美区成人在线视频| 国产成人福利小说| 美女高潮的动态| 老司机在亚洲福利影院| 十八禁网站免费在线| 在线观看午夜福利视频| 欧美一级a爱片免费观看看| 精品国产超薄肉色丝袜足j| 国产亚洲欧美在线一区二区| 欧美黄色淫秽网站| 老熟妇乱子伦视频在线观看| 精品国产三级普通话版| 男人和女人高潮做爰伦理| 韩国av一区二区三区四区| 啦啦啦免费观看视频1| 一区二区三区免费毛片| xxx96com| 欧美+亚洲+日韩+国产| 我要搜黄色片| 成人18禁在线播放| 国产高潮美女av| 听说在线观看完整版免费高清| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品久久久久久毛片| 亚洲精品美女久久久久99蜜臀| 日韩亚洲欧美综合| 在线国产一区二区在线| 3wmmmm亚洲av在线观看| 日本 欧美在线| 久久国产精品人妻蜜桃| 日韩免费av在线播放| 成人午夜高清在线视频| 久久人妻av系列| 两个人的视频大全免费| 欧美日韩中文字幕国产精品一区二区三区| 久久草成人影院| 麻豆久久精品国产亚洲av| 亚洲内射少妇av| 欧美另类亚洲清纯唯美| 99久久久亚洲精品蜜臀av| 国产精品日韩av在线免费观看| 日本黄色片子视频| 国产精品国产高清国产av| 色噜噜av男人的天堂激情| 国产日本99.免费观看| 国产免费一级a男人的天堂| 免费看十八禁软件| 国产视频一区二区在线看| 久久6这里有精品| 久久久久免费精品人妻一区二区| 天堂√8在线中文| 黄色丝袜av网址大全| 久久精品国产自在天天线| 成年免费大片在线观看| 亚洲精品亚洲一区二区| xxxwww97欧美| 久久国产乱子伦精品免费另类| 精品无人区乱码1区二区| 欧美一区二区精品小视频在线| tocl精华| 一区二区三区高清视频在线| 在线观看日韩欧美| 久久久久久九九精品二区国产| 精品欧美国产一区二区三| 欧美最新免费一区二区三区 | 最近最新中文字幕大全免费视频| 亚洲欧美日韩东京热| 国产伦人伦偷精品视频| 一个人看的www免费观看视频| 亚洲黑人精品在线| 国产视频一区二区在线看| 丰满乱子伦码专区| 99久久99久久久精品蜜桃| 最近视频中文字幕2019在线8| 国产亚洲精品av在线| 欧美性感艳星| 免费无遮挡裸体视频| 国产精品 国内视频| 在线观看66精品国产| 中亚洲国语对白在线视频| 99久久99久久久精品蜜桃| 淫秽高清视频在线观看| 真人做人爱边吃奶动态| 国产精品三级大全| 香蕉久久夜色| 69人妻影院| 老司机在亚洲福利影院| 一区二区三区免费毛片| 小说图片视频综合网站| 国产精品嫩草影院av在线观看 | 少妇的丰满在线观看| 身体一侧抽搐| 亚洲av一区综合| 熟女少妇亚洲综合色aaa.| 中文字幕av成人在线电影| 天天躁日日操中文字幕| 亚洲国产欧美网| 国产高清视频在线观看网站| 国产精品电影一区二区三区| 深爱激情五月婷婷| 国内精品一区二区在线观看| 嫩草影院入口| 熟女电影av网| 国产亚洲av嫩草精品影院| 色哟哟哟哟哟哟| 在线观看免费午夜福利视频| 亚洲精品在线观看二区| 亚洲欧美精品综合久久99| 国产精品久久久久久亚洲av鲁大| 好男人在线观看高清免费视频| 国产视频一区二区在线看| а√天堂www在线а√下载| 99久久精品一区二区三区| 亚洲一区二区三区色噜噜| 日日干狠狠操夜夜爽| 亚洲人与动物交配视频| 黄色日韩在线| 丰满乱子伦码专区| 国产探花在线观看一区二区| 免费av毛片视频| 特大巨黑吊av在线直播| 亚洲 国产 在线| 久久久久九九精品影院| 亚洲内射少妇av| 在线免费观看不下载黄p国产 | 亚洲精品粉嫩美女一区| 国产又黄又爽又无遮挡在线| АⅤ资源中文在线天堂| 成人一区二区视频在线观看| 欧美一区二区亚洲| 婷婷亚洲欧美| 免费看十八禁软件| 精品国产超薄肉色丝袜足j| 99国产精品一区二区蜜桃av| 成人精品一区二区免费| 热99在线观看视频| 欧美日韩福利视频一区二区| 搞女人的毛片| 乱人视频在线观看| 天堂av国产一区二区熟女人妻| 美女黄网站色视频| 99热这里只有精品一区| 国产成人系列免费观看| 免费在线观看亚洲国产| 久久久久久人人人人人| 国产精品嫩草影院av在线观看 | 日日干狠狠操夜夜爽| 成人永久免费在线观看视频| 国产三级黄色录像| 国产在线精品亚洲第一网站| 最新中文字幕久久久久| 老司机午夜十八禁免费视频| 亚洲国产高清在线一区二区三| 老鸭窝网址在线观看| 又黄又爽又免费观看的视频| 超碰av人人做人人爽久久 | 日韩中文字幕欧美一区二区| 听说在线观看完整版免费高清| 人妻丰满熟妇av一区二区三区| 91麻豆精品激情在线观看国产| 国产亚洲欧美98| 成人特级黄色片久久久久久久| 99久久无色码亚洲精品果冻| 波多野结衣巨乳人妻| 久久久久久久久久黄片| av黄色大香蕉| 久久精品国产自在天天线| 最新在线观看一区二区三区| 又粗又爽又猛毛片免费看| 精品欧美国产一区二区三| 亚洲精品一卡2卡三卡4卡5卡| 欧美性猛交╳xxx乱大交人| 国产精品一区二区免费欧美| 亚洲美女视频黄频| 久久久国产成人精品二区| 亚洲真实伦在线观看| 午夜激情福利司机影院| 身体一侧抽搐| 国产成人影院久久av| 在线十欧美十亚洲十日本专区| 18禁在线播放成人免费| 天堂av国产一区二区熟女人妻| 日本精品一区二区三区蜜桃| 亚洲avbb在线观看| 3wmmmm亚洲av在线观看| 亚洲成a人片在线一区二区| 日韩人妻高清精品专区| 久久久色成人| 精品国产超薄肉色丝袜足j| www.www免费av| av天堂中文字幕网| 日本免费a在线| 亚洲欧美日韩东京热| 天美传媒精品一区二区| 成人永久免费在线观看视频| 最近视频中文字幕2019在线8| 麻豆一二三区av精品| 久久精品综合一区二区三区| 国产精品野战在线观看| 国产国拍精品亚洲av在线观看 | 三级男女做爰猛烈吃奶摸视频| а√天堂www在线а√下载| 国产熟女xx| АⅤ资源中文在线天堂| 国产成人啪精品午夜网站| 欧美在线黄色| 又爽又黄无遮挡网站| 午夜福利18| 日本黄色片子视频| av中文乱码字幕在线| 18禁黄网站禁片午夜丰满| 国产高清视频在线播放一区| 国产精品嫩草影院av在线观看 | 久久香蕉国产精品| a级一级毛片免费在线观看| 亚洲精品美女久久久久99蜜臀| 精品一区二区三区av网在线观看| 国产高清激情床上av| 99热这里只有精品一区| 一区福利在线观看| 校园春色视频在线观看| 久久精品人妻少妇| 日韩欧美精品免费久久 | 91字幕亚洲| 麻豆成人午夜福利视频| 亚洲成人久久性| 99在线视频只有这里精品首页| 日本黄大片高清| 麻豆国产av国片精品| 国产高清视频在线播放一区| 在线观看日韩欧美| 国产精品综合久久久久久久免费| 亚洲国产色片| 不卡一级毛片| 国产精品嫩草影院av在线观看 | 日本a在线网址| 色老头精品视频在线观看| 制服丝袜大香蕉在线| 久久久久国产精品人妻aⅴ院| av视频在线观看入口| 黄色日韩在线| 性色avwww在线观看| 全区人妻精品视频| 国产精华一区二区三区| 精品国产超薄肉色丝袜足j| 日本 欧美在线| 婷婷精品国产亚洲av| 欧美xxxx黑人xx丫x性爽| 国内精品一区二区在线观看| 91久久精品国产一区二区成人 | 美女高潮喷水抽搐中文字幕| 一级毛片女人18水好多| 欧美性猛交黑人性爽| 欧美+日韩+精品| 免费看十八禁软件| 成年女人看的毛片在线观看| 别揉我奶头~嗯~啊~动态视频| 此物有八面人人有两片| 成人鲁丝片一二三区免费| 一a级毛片在线观看| 一本精品99久久精品77| 深夜精品福利| 一级毛片高清免费大全| 最近视频中文字幕2019在线8| 久久精品亚洲精品国产色婷小说| 免费搜索国产男女视频| 中文亚洲av片在线观看爽| 好男人在线观看高清免费视频| 精品人妻1区二区| 亚洲精品456在线播放app | 免费av观看视频| 亚洲av一区综合| 欧美区成人在线视频| 麻豆成人午夜福利视频| 亚洲自拍偷在线| 日本三级黄在线观看| 中文字幕人妻丝袜一区二区| 美女被艹到高潮喷水动态| 国产精品女同一区二区软件 | 国产麻豆成人av免费视频| 色在线成人网|