• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A 2D Layer Copper(II) Coordination Polymer with 3-Nitrophthalic Acid: Synthesis, Crystal Structure and Copper 3-Nitrophthalate Metal-organic Framework-graphene Oxide Nanocomposite①

    2021-06-11 03:27:44TANHongHuiLVXiaoLongLIUJiangLongCHENGYuFangZHOUQingLinLINYiTingMENGWei
    結(jié)構(gòu)化學(xué) 2021年4期

    TAN Hong-Hui LV Xiao-Long LIU Jiang-Long CHENG Yu-Fang ZHOU Qing-Lin LIN Yi-Ting MENG Wei

    A 2D Layer Copper(II) Coordination Polymer with 3-Nitrophthalic Acid: Synthesis, Crystal Structure and Copper 3-Nitrophthalate Metal-organic Framework-graphene Oxide Nanocomposite①

    TAN Hong-Hui LV Xiao-Long LIU Jiang-Long CHENG Yu-Fang ZHOU Qing-Lin LIN Yi-Ting MENG Wei②

    (413000)

    A 2D layer Cu(II) coordination polymer [Cu(npth)(H2O)]n(1)was crystallized from a mixture of 3-nitrophthalic acid and Cu(OAc)2·H2O in water under room temperature and structurally characterized by single-crystal X-ray diffraction, FT-IR and TGA.Compound 1 was applied to make a nanocomposite with graphene oxide (GO).A highly dispersible and stable nanocomposite of Cu(npth)-GO was successfully synthesized by a simple ultrasonication method.SEM, TEM, UV-vis, FT-IR and TGA were used to characterize the morphology and structure of the prepared composite.In accordance with the characterization results, we suspected that the binding mechanism of Cu(npth) and GO was assigned to be the cooperative interaction of Cu–O coordination,stacking and hydrogen bonding.

    copper 3-nitrophthalate metal-organic framework, crystal structure, graphene oxide, nanocomposite;

    1 INTRODUCTION

    Metal-organic frameworks (MOFs) known as coordination polymers or coordination networks have attracted increasing attention in recent years because of their intriguing architectures[1], coupled with their fascinating properties resulting in potential applications in various fields, such as magnetism, composite material, gas adsorption and separation,catalysis, electrochemistry and so on[2-7].Recently, the applications of MOFs have been focused on electrochemical field owing to the electroactivity of metal ions.On the other hand, a pathway forelectrons could be afford by ligands in MOFs[8, 9].Nevertheless, the straight utilization of single-phase MOFs is still restricted in electrochemistry in some aspects, such as their poor electrocatalytic ability, inferior electronic conductivity and low mechanical stability[10].Therefore, MOFs generally associate with other greatly conductive and mechanically durable materials in practice, forming MOFs-based composites[11-13].

    Graphene has aroused great interest in the past decades.The preeminent physical and chemical properties make graphene and its derivatives as a superb candidate widely used in various fields[14].In order to combine the unique properties of both MOFs and graphene/GO for diverse applications, a lot of efforts were taken to prepare MOFs-graphene/GO composites[15-18].A remarkable example was reported by Wang et al., in which the nanocomposite of Cu(tpa)-GO was transformed into Cu(tpa)-EGC and it was used to detect ACOP and DA[15].Liu et al.proposed theselective isolation of Hemoglobin by aLaMOF-GO3composite,which broadens the applications of MOFs and graphene/Go in the field of biological separations[16].Yang et al.developed a facile one-step method to prepare a Cu-MOF-GN and it was used for constructing H2O2and ascorbic acid sensors, showing excellent electrochemical response, wide linear range and long-term stability[17].Our group is interested in the study of coordination chemistry with multi-hydroxyl/carboxylate ligands in recent years[19, 20].

    In this work, we have used3-nitrophthalic acid and copper(II) to synthesize a novel 2D layer framework at room temperature, namely [Cu(npth)(H2O)]n(1).And it has been utilized to prepare a new hybrid nanocomposite of copper 3-nitropathalate MOF-graphene oxide (Cu(npth)-GO) by a simple and effective method.The gained composite was highly dispersible and stable in aqueous solution.The structure and morphology of the composite were investigated by UV-vis, Fourier transform infrared (FT-IR), thermo- gravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

    2 EXPERIMENTAL

    2.1 General materials and methods

    All of the reactants were reagent grade and used as purchased.IR spectra were measured on a PerkinElmer Spectrum 100 FT-IR spectrometer.Thermogravimetric analysis (TGA) measurements were carried out using a DSC/TG pan A1203 system in N2flow at a heating rate of 10 ℃/min.Elemental analyses were performed (C, H, N) by Thermo Scientific FLASH 2000 elemental analyzer; Cu was analyzed on a Varian (720) ICP atomic emission spectro- meter.Scanning Electron Microscope (SEM) images were acquired by using a Hitachi S-4800 microscope working at 5 kV.Atomic Force Microscopy (AFM) images were acquired under ambient conditions using SPM nanoscope IIIa multimode working on a tapping mode with a RTESPA tip at a working frequency of ~235 Khz.

    2.2 Synthesis of [Cu(npth)(H2O)]n (1)

    A mixture of Cu(OAc)2·H2O (199 mg, 1 mmol) and 3-nitrophthalic acid (211 mg, 1 mmol) was dissolved in water (10 mL), and gradually added in NaOH (4 mL, 1 M) while stirring.The mixture was stirred at room temperature for 6 h.Then the resulting blue-green solution was filtered and the filtrate was left undisturbed at ambient temperature.After several days, the green crystals were obtained by filtration, washed with MeOH and dried under vacuum.The yield is 68% based on copper.Anal.Calcd.for C8H9CuNO9: C, 29.38; H, 2.75; Cu, 19.44; N, 4.29%.Found: C, 29.29; H, 2.64; Cu, 19.50; N, 4.32%.IR (KBr, cm?1): 3518 s, 3463 s, 2745 w, 2534 w, 2365 w, 2141 w, 1600 s, 1560 m, 1487 m, 1374 s, 1142 m, 1086 m, 875 m, 776 s, 707 m, 650 m, 566 m, 510 w.

    2.3 Crystal structure determination

    A green block single crystal of 1 with dimensions of 0.28mm × 0.25mm × 0.30mm was selected and mounted on a glass fiber.Data collection was performed at 296 K on a Smart Apex II CCD with graphite-monochromated Moradiation (= 0.71073 ?).The structure of 1 was solved by direct methods and refined by full-matrix least-squares method on2using the SHELXTL-97 crystallographic software package[21].More details on the crystallographic studies as well as atomic displacement parameters are given in the CIF files.All carbon-bonded hydrogen atoms were placed in geometrically calculated positions; hydrogen atoms in water molecules were not assigned or directly included in the molecular formula.Compound 1 crystallizes in monoclinic2/space group with= 24.8556(19),= 10.7781(7),= 8.4579(6) ?,= 2264.4(3) ?3,= 8, C8H9CuNO9,M= 326.71,D= 1.917 g/cm3,(000) = 1320,(Mo) = 1.975 mm–1, the final= 0.0286 and= 0.0735 (= 1/[2(F2) + (0.0391)2+ 0.4206], where= (F2+ 2F2)/3),= 1.043.Selectedbond lengths are listed in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°)

    2.4 Preparation of Cu(npth)-GO nanocomposite

    The graphene oxide (GO) was synthesized from natural graphite powder (99.95%, 45 μm) by a modified Hummers' method[22].The Cu(npth)-GO nanocomposite was prepared by adding 1 mg of Cu(npth) to 1 mg/mL aqueous GO under stirring, followed by sonication at 100 W for 1 h to obtain a homogeneous dispersion.

    3 RESULTS AND DISCUSSION

    3.1 Crystal structure

    The single-crystal X-ray diffraction study reveals that complex 1 crystallizes in monoclinic space group2/.The crystal structure of [Cu(npth)(H2O)]nis constituted of Cu2+, 3-nitrophthalate and H2O.As shown in Fig.1a, each Cu(II) atom surrounded by six O atoms has a distorted octahedral coordination environment.For Cu(1), the basal plane of the octahedron is defined by four carboxylate-oxygen atoms (O1and O3) belonging to three differentnpht ligands.The apical coordination sites are occupied by two oxygen atoms (O7and O8) of other two H2O molecules.The Cu–O bond lengths range from 1.958 to 2.222 ? (Table 1).The two carboxylate groups of npht ligand coordinate to the Cu(II) center in one distinct mode: onecarboxyclate group chelating one Cu(II) ion, and the other bidentate bridging two Cu(II) ions (Fig.1b).In this way, the Cu(1) center bridges three npht ligands, and one npht ligand links to three Cu centrals.The [Cu(npth)(H2O)] structural units consist of a centrosymmetric metallocycle and the metallocycle extends to form a 2D-layered structure along the-axis direction (Fig.2).

    Fig.1. (a) A ball-and-stick representation of Cu2+, 3-nitrophthalate and H2O in 1 along theaxis.The Cu(II) center is represented by a octahedron.(b) Schematic views of coordination mode of the 3-nitrophthalate ligand in 1.Color scheme: Cu, blue; N, yellow; O, red; C, gray

    Fig.2. View of the 2-D structure of 1 along the-axis.Color scheme: Cu, blue; N, Yellow; O, red; C, gray

    3.2 Materials characterization

    Fig.3a shows the SEM image of the synthesized Cu(npth) particles, in which most particles were irregular.It indicates that the yield of Cu(npth) MOF is high.Fig.3b displays the SEM image of the Cu(npth)-GO composite.By virtue of the cooperative interaction of Cu–O coordination, hydrogen bonding andstacking between Cu-MOF and GO, the Cu-MOF had been coated well with GO host.The buck Cu(npth) and its combination with GO could be further observed through the TEM images of Cu(npth) (Fig.3c) and the Cu(npth)-GO composite (Fig.3d).

    Fig.3. SEM images of Cu(npth) (a) and Cu(npth)-GO (b), TEM images of Cu(npth) (c) and Cu(npth)-GO (d)

    The UV-vis spectroscopy was further performed to confirm the binding mechanism of the composite material between Cu(npth) and GO.As can be seen in Fig.4A, a broad absorption peak around 231 nm and a weak shoulder peak at 300 nm could be assigned to the GO in water (curve a), in accordance with the previous research of GO[23].A sharp absorption peak of Cu(npth) in water at about 202 nm was belonging to the characteristic absorption peak of benzene rings in 3-nitrophthalate ligands (curve b).The Cu(npth)-GO in water showed a new band at 234 nm and a red-shift in absorption bands compared to Cu-MOF at 204 nm (curve c) due to the presence of GO in Cu(npth)-GO creating a new band at 234 nm.It was assigned to thetotransitions of aromatic domains in GO and a red-shift in the absorption bands was characteristic of charge or energy transfer interaction between the poly aromatic scaffold in GO sheets and MOF[18].

    For further investigating the interaction between Cu(npth) and GO, the composite was characterized by FT-IR spectroscopy, as shown in Fig.4B.For GO (curve a) as reported in the literature[15], four absorption bands at 3427, 1746, 1219 and 1052 cm?1were ascribed to the characteristic vibrations of O–H, C=O, C–OH and C–O–C (epoxy) bonds, respectively, while for Cu(npth)-GO, the O–H, C=O and C–O–C peaks of GO shifted to 3146, 1733 and 1044 cm?1(curve c).More importantly, the peak at 1219 cm?1(C–OH) disappeared and a new absorption peak at 1395 cm?1was found, which can be attributed to the benzene ring of Cu(npth).These changes testified that the interactions between the two species werepacking and hydrogen bonding[24].Furthermore, the peaks of Cu(npth) such as 1388 and 1619 cm?1(curve b) were observed in the FT-IR of Cu(npth)-GO (curve c), indicating that the composites were incorporated with Cu-MOF successfully.

    The thermal stability of GO, Cu(npth), and Cu(npth)-GO was examined by thermogravimetric analysis (TGA).In Fig.4C, the GO underwent first weight loss below 100 °C because of the removal of its physically adsorbed water molecules.Then the mass loss gradually appeared with the increase of temperature (curve a).Cu(npth) began to lose weight at 160 °C, and the second weight loss step presented from 200 to 260 °C.As the temperature went up to 260 °C (curve b), a sharp increase in the weight loss occurred, indicating the decomposition of the ligand in Cu(npth).The TGA curve of Cu(npth)-GO composite showed the expected thermal behavior (curve c).The first loss is found below 100 °C attributable to the adsorbed water of GO, and then the second and third losses were observed at 190 and 215 °C, respectively.These changes were fairly consistent with the combined thermal decomposition behaviors of GO and Cu(npth).

    Fig.4. UV-vis absorption spectra (A), FT-IR spectra (B), and TGA curves (C) of GO (a), Cu(npth) (b), and Cu(npth)-GO (c)

    4 CONCLUSION

    In this work, a novel 2D layer copper(II) coordination compound based on 3-nitrophthalic acid was synthesized.Structures of the compound were characterized by X-ray, FT-IR and TGA.Furthermore, we have demonstrated a facile method for preparation of a Cu(npth) MOF-based composite using GO and Cu(npth).SEM, TEM, UV-vis, FT-IR and TGA were performed to characterize the structure and composition of this composite.Due to the high hydrophilicity ofGO and its interaction with Cu(npth), the composite showsexcellent dispersibility and stability in water.The work to apply this composite in electrochemistry and catalysis is in progress.

    (1) Liu, X.; Wang, X.; Kapteijn, F.Water and metal-organic frameworks: from interaction toward utilization..2020, 10.1021/acs.chemrev.9b00746.

    (2) Jiang, Y.; Tan, P.; Qi, S.C.; Liu, X.Q.; Yan, J.H.; Fan, F.; Sun, L.B.Metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO2capture.2019, 58, 6457–6457.

    (3) Wan, X.Y.; Zhang, G.L.; Cheng, L.; Jiang, F.L.; Hong, M.C.Metal-induced coordination networks using a C2v-based hexacarboxylate ligand: syntheses, structures and properties..2019, 38, 1370–1379.

    (4) Mchugh, L.N.; Terracina, A.; Wheatley, P.S.; Buscarino, G.; Smith, M.W.; Morris, R.E.Metal-organic framework-activated carbon composite materials for the removal of ammonia from contaminated airstreams..2019, 58, 11747–11751.

    (5) Xiao, J.D.; Jiang, H.L.Metal-organic frameworks for photocatalysis and photothermal catalysis..2019, 52, 2, 356–366.

    (6) Sengupta, A.; Datta, S.; Su, C.L.; Herng, T.S.; Ding, J.; Jittal, J.J.; Loh, K.P.Tunable electrical conductivity and magnetic property of the two dimensional metal organic framework [Cu(TPyP)Cu2(O2CCH3)4].2016,8, 16154–16159.

    (7) Wang, K.; Huang, X.K.; Zhu, L.; Chen, Z.L.; Liang, F.P.A chain cadmium(II) coordination polymer with diacylhydrazide: synthesis, crystal structure and luminescent property..2016, 35, 1912–1919.

    (8) Chen, L.Y.; Li, D.Z.; Wang, Y.X.; Duan, C.Y.Highly efficient solar steam generation of supported metal-organic framework membranes by a photoinduced electron transfer process.2019, 11121–11127.

    (9) Qu, F.; Li, X.N.; Lv, X.X.; You, J.M.; Han, W.L.Highly selective metal-organic framework-based sensor for protamine through photoinduced electron transfer.2019, 54, 3144–3155.

    (10) Xiao, Y.H.; Gu, Z.G.; Zhang, J.Surface-coordinated metal-organic framework thin films (SURMOFs) for electrocatalytic applications.2020, 12, 12712–12730.

    (11) Tang, J.; Salunkhe, R.R.; Liu, J.; Torad, N.L.;Imura, M.;Furukawa, S.; Yamauchi, Y.Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon.2015, 137, 1572–1580.

    (12) Lu, C.; Ben, T.; Xu, S.;Qiu, S.Electrochemical synthesis of a microporous conductive polymer based on a metal-organic framework thin film..2014, 53, 6454–6458.

    (13) Li, S.Z.;Yang, K.;Tan, C.L.;Huang, X.; Huang, W.;Zhang, H.Preparation and applications of novel composites composed of metal-organic frameworks and two-dimensional materials.2016, 52, 1555–1562.

    (14) Costa, P.; Gon?alves, S.; Mora, H.; Carabineiro, S.A.C.; Viana, J.C.; Mendez, S.L.Highly sensitive piezoresistive graphene-based stretchable composites for sensing applications.2019, 11, 46286–46295.

    (15) Wang, X.; Wang, Q.X.; Wang, Q.H.; Gao, F.; Yang, Y.Z.; Guo, H.X.College of highly dispersible and stable copper terephthalate metal-organic framework-graphene oxide nanocomposite for an electrochemical sensing application.2014, 6, 11573–11580.

    (16) Liu, J.W.; Zhang, Y.; Chen, X.W.; Wang, J.H.Graphene oxide-rare earth metal-organic framework composites for the selective isolation of hemoglobin.2014, 6, 10196–10204.

    (17) Yang, J.; Zhao, F.Q.; Zeng, B.Z.One-step synthesis of a copper-based metal-organic framework-graphene nanocomposite with enhanced electrocatalytic activity..2015, 5, 22060–22065.

    (18) Xiao, Y.; Guo, B.; Zhang, J.; Hu, C.; Ma, R.G.; Wang, D.Y.; Wang, J.C.Bimetallic MOFs@Graphene oxide composites as efficient bifunctional oxygen electrocatalysts in rechargeable Zn-Air batteries.2020, 49, 5730–5735.

    (19) Meng, W.; Xu, F.; Xu, W.J.An anionic heptacopper(II) oxo-cluster {CuII7} with an S = 7/2 ground state..2016, 55, 540–542.

    (20) Meng, W.; Ye, H.F.; Liu, S.; Xu, F.; Xu, W.J.Emergence of complex chiral coordination clusters {CuII48Na12} by using multiple ligands under oxidizing conditions.2019, 48, 3204–3208.

    (21) Sheldrick, G.M..University of G?ttingen: G?ttingen, Germany 1997.

    (22) William, S.; Hummers, J.; Richard, E.Preparation of graphitic oxide..1958, 80, 1339–1342.

    (23) Li, D.; Muller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G.Processable aqueous dispersions of graphene nanosheets..2008, 3, 101–105.

    (24) Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X.Graphene oxide doped polyaniline for supercapacitors..2009, 11, 1158–1161.

    28 August 2020;

    29 September 2020 (CCDC 2025132)

    ① Supported by the National Natural Science Foundation of China (No.22001064), the Natural Science Foundation of Hunan Province (No.2020JJ4155), the 2020 Hunan Province College Students' Innovation Entrepreneurship Training Program (No.3373), and the Scientific Research Project of Hunan Province Department of Education (No.20B105)

    .E-mail: mengw198503@163.com

    10.14102/j.cnki.0254–5861.2011–2970

    免费看日本二区| 久久6这里有精品| 天堂中文最新版在线下载 | 日本爱情动作片www.在线观看| av免费在线看不卡| 国产高潮美女av| 精品久久久久久久人妻蜜臀av| 极品教师在线视频| 亚洲精品中文字幕在线视频 | 国产白丝娇喘喷水9色精品| 欧美+日韩+精品| 成人亚洲欧美一区二区av| 永久免费av网站大全| 黄片无遮挡物在线观看| 亚洲国产欧美在线一区| 激情五月婷婷亚洲| 97热精品久久久久久| 一级毛片我不卡| 国产精品嫩草影院av在线观看| 亚洲精品日本国产第一区| 少妇熟女欧美另类| 久久精品国产鲁丝片午夜精品| av在线老鸭窝| 黄色欧美视频在线观看| 国产精品麻豆人妻色哟哟久久| 美女cb高潮喷水在线观看| 人妻系列 视频| 18禁裸乳无遮挡免费网站照片| 少妇被粗大猛烈的视频| 91精品一卡2卡3卡4卡| 日本三级黄在线观看| 性色avwww在线观看| 亚洲精品日本国产第一区| av女优亚洲男人天堂| 熟女人妻精品中文字幕| 久久韩国三级中文字幕| 日本av手机在线免费观看| 一级爰片在线观看| 精品人妻一区二区三区麻豆| 国产大屁股一区二区在线视频| 国产在视频线精品| 好男人在线观看高清免费视频| 插阴视频在线观看视频| 五月天丁香电影| 久久久色成人| 亚洲精品国产av成人精品| 18禁在线无遮挡免费观看视频| av播播在线观看一区| 人体艺术视频欧美日本| 伦理电影大哥的女人| 在线播放无遮挡| 中文字幕亚洲精品专区| 午夜福利视频1000在线观看| 日本猛色少妇xxxxx猛交久久| 自拍偷自拍亚洲精品老妇| 少妇被粗大猛烈的视频| 色吧在线观看| 婷婷色综合大香蕉| 久久精品人妻少妇| 国产老妇女一区| 亚洲经典国产精华液单| 九草在线视频观看| 成人亚洲精品一区在线观看 | 国产精品人妻久久久影院| 国产黄色免费在线视频| 哪个播放器可以免费观看大片| 在线观看av片永久免费下载| 国内精品美女久久久久久| 日本-黄色视频高清免费观看| 97超碰精品成人国产| 天堂网av新在线| 51国产日韩欧美| 日韩亚洲欧美综合| 亚洲国产精品成人久久小说| 一本久久精品| 日本欧美国产在线视频| 三级国产精品片| 亚洲精品中文字幕在线视频 | 久久久久国产精品人妻一区二区| 一级毛片久久久久久久久女| kizo精华| 91精品一卡2卡3卡4卡| 可以在线观看毛片的网站| 尾随美女入室| 精品少妇黑人巨大在线播放| 99久久精品一区二区三区| 欧美 日韩 精品 国产| 特大巨黑吊av在线直播| 日本欧美国产在线视频| av女优亚洲男人天堂| 亚洲欧美中文字幕日韩二区| 免费黄色在线免费观看| 亚洲久久久久久中文字幕| 精品人妻一区二区三区麻豆| 精品人妻一区二区三区麻豆| 国产色爽女视频免费观看| 久久久久国产网址| 日本与韩国留学比较| 国产男女超爽视频在线观看| 天堂中文最新版在线下载 | 成人免费观看视频高清| 在线a可以看的网站| 国产精品一区二区三区四区免费观看| 日韩一区二区三区影片| 亚洲精品国产av蜜桃| av专区在线播放| 亚洲av日韩在线播放| 久久久久久久久大av| 欧美日韩视频高清一区二区三区二| 亚洲高清免费不卡视频| 欧美日韩亚洲高清精品| 青春草视频在线免费观看| 一个人看视频在线观看www免费| 欧美日本视频| 亚洲欧美日韩东京热| 欧美精品一区二区大全| 亚洲自偷自拍三级| 国产在视频线精品| 国产v大片淫在线免费观看| 国产成人a区在线观看| 黄色日韩在线| av网站免费在线观看视频| 日日啪夜夜撸| 男女下面进入的视频免费午夜| 午夜视频国产福利| 午夜激情福利司机影院| 2021少妇久久久久久久久久久| 毛片女人毛片| 欧美xxxx性猛交bbbb| 国产精品久久久久久久久免| 亚洲图色成人| 日日啪夜夜爽| 老女人水多毛片| 日韩视频在线欧美| kizo精华| 日本免费在线观看一区| 日本与韩国留学比较| 22中文网久久字幕| 亚洲国产精品专区欧美| 成人特级av手机在线观看| 少妇裸体淫交视频免费看高清| 偷拍熟女少妇极品色| 亚洲va在线va天堂va国产| 老司机影院成人| 亚洲色图综合在线观看| 午夜亚洲福利在线播放| 欧美日韩国产mv在线观看视频 | 国产 一区 欧美 日韩| 久久精品夜色国产| 国产亚洲一区二区精品| 如何舔出高潮| 国产欧美日韩精品一区二区| 久久久久久久亚洲中文字幕| 免费看不卡的av| 在线a可以看的网站| 成人高潮视频无遮挡免费网站| 大香蕉久久网| 永久网站在线| 亚洲欧洲国产日韩| 免费av毛片视频| 日韩av免费高清视频| 综合色av麻豆| 精品久久久久久久久av| 六月丁香七月| 亚洲精品日本国产第一区| 久久久久久久大尺度免费视频| 国产在线一区二区三区精| 成年女人在线观看亚洲视频 | 国产高潮美女av| 你懂的网址亚洲精品在线观看| 2021天堂中文幕一二区在线观| 一区二区三区精品91| 久久精品人妻少妇| 亚洲天堂av无毛| 色吧在线观看| 成人特级av手机在线观看| 亚洲av福利一区| 国产成人免费无遮挡视频| 水蜜桃什么品种好| 三级国产精品片| 日本黄色片子视频| 三级国产精品片| 小蜜桃在线观看免费完整版高清| 国产有黄有色有爽视频| 久久久成人免费电影| 免费av毛片视频| 日本av手机在线免费观看| 好男人在线观看高清免费视频| 久久久久久久国产电影| 丝袜脚勾引网站| 成年免费大片在线观看| 乱码一卡2卡4卡精品| 欧美激情国产日韩精品一区| 肉色欧美久久久久久久蜜桃 | 啦啦啦在线观看免费高清www| 一级片'在线观看视频| 中国国产av一级| 王馨瑶露胸无遮挡在线观看| 国产在视频线精品| 色视频www国产| 免费黄频网站在线观看国产| 亚洲av中文字字幕乱码综合| 精品人妻一区二区三区麻豆| 久久鲁丝午夜福利片| 国产乱人视频| 欧美日韩在线观看h| 中国三级夫妇交换| 91久久精品国产一区二区三区| 夫妻午夜视频| 日本av手机在线免费观看| 狂野欧美激情性bbbbbb| 亚洲精品一区蜜桃| 日韩欧美一区视频在线观看 | 国产免费福利视频在线观看| 国产精品无大码| av一本久久久久| 在线 av 中文字幕| 久久99热6这里只有精品| av在线老鸭窝| 国产毛片在线视频| 亚洲av日韩在线播放| 久久精品久久久久久噜噜老黄| 中文字幕av成人在线电影| 日韩三级伦理在线观看| 一级毛片久久久久久久久女| 午夜爱爱视频在线播放| 亚洲精品乱码久久久v下载方式| 精品视频人人做人人爽| 内射极品少妇av片p| 亚洲激情五月婷婷啪啪| 免费不卡的大黄色大毛片视频在线观看| 国产精品三级大全| 日韩免费高清中文字幕av| 国产精品久久久久久久久免| 成人综合一区亚洲| 伦精品一区二区三区| 成人毛片a级毛片在线播放| 久久久久久久久大av| 97在线视频观看| 最近手机中文字幕大全| 禁无遮挡网站| 久久久久性生活片| 久久久久久久国产电影| 97超碰精品成人国产| 精品国产露脸久久av麻豆| 国产高潮美女av| 国产午夜福利久久久久久| 在线精品无人区一区二区三 | 麻豆精品久久久久久蜜桃| 免费看av在线观看网站| 国产又色又爽无遮挡免| av天堂中文字幕网| .国产精品久久| 男女啪啪激烈高潮av片| 中国三级夫妇交换| 亚洲精品影视一区二区三区av| 最近手机中文字幕大全| 99久久人妻综合| 色综合色国产| 日韩不卡一区二区三区视频在线| 国产成人福利小说| 亚洲色图综合在线观看| 人妻系列 视频| 97超碰精品成人国产| 日韩,欧美,国产一区二区三区| 午夜日本视频在线| 成人国产av品久久久| av免费观看日本| 中国三级夫妇交换| 91精品伊人久久大香线蕉| 51国产日韩欧美| 亚洲国产精品国产精品| 亚洲国产精品999| 久久久久久九九精品二区国产| 22中文网久久字幕| 欧美精品国产亚洲| 嫩草影院新地址| 嘟嘟电影网在线观看| 亚洲av中文字字幕乱码综合| 久久久久国产网址| 国产成人精品久久久久久| 精品午夜福利在线看| 精品久久国产蜜桃| 狂野欧美激情性bbbbbb| 国产在线男女| 男的添女的下面高潮视频| 国产视频首页在线观看| 99热6这里只有精品| 亚洲av在线观看美女高潮| 成人亚洲精品一区在线观看 | 免费看av在线观看网站| 久久久欧美国产精品| 一区二区三区精品91| 美女xxoo啪啪120秒动态图| 国产精品久久久久久精品电影小说 | 日本免费在线观看一区| 国产成人免费观看mmmm| 黄色怎么调成土黄色| 国产v大片淫在线免费观看| 国产精品不卡视频一区二区| 亚洲成人精品中文字幕电影| 日韩av免费高清视频| 午夜激情福利司机影院| 成年女人在线观看亚洲视频 | 激情 狠狠 欧美| 男人爽女人下面视频在线观看| 99久久人妻综合| 亚洲国产日韩一区二区| 亚洲综合色惰| 国产精品久久久久久av不卡| 亚洲国产精品国产精品| 成人毛片60女人毛片免费| 精品午夜福利在线看| 最近手机中文字幕大全| 在线观看人妻少妇| 国产有黄有色有爽视频| 大片电影免费在线观看免费| 六月丁香七月| 国产亚洲av片在线观看秒播厂| av在线亚洲专区| 色综合色国产| 免费不卡的大黄色大毛片视频在线观看| 男人和女人高潮做爰伦理| 欧美高清性xxxxhd video| 欧美xxⅹ黑人| 国产黄片视频在线免费观看| 男人爽女人下面视频在线观看| 又黄又爽又刺激的免费视频.| 精品国产露脸久久av麻豆| 亚洲欧美日韩无卡精品| 毛片一级片免费看久久久久| 久久久久久久亚洲中文字幕| 亚洲精品,欧美精品| 最后的刺客免费高清国语| 国产午夜精品一二区理论片| 亚洲美女视频黄频| 2021少妇久久久久久久久久久| 国产精品国产av在线观看| 我的老师免费观看完整版| 大片电影免费在线观看免费| 亚洲精品第二区| 岛国毛片在线播放| www.色视频.com| 精品一区二区三区视频在线| 免费看不卡的av| 久久精品国产自在天天线| 五月天丁香电影| 一个人看视频在线观看www免费| 免费观看a级毛片全部| 禁无遮挡网站| 国产大屁股一区二区在线视频| 夜夜看夜夜爽夜夜摸| 国产精品国产三级国产av玫瑰| 日本一二三区视频观看| a级一级毛片免费在线观看| 中文欧美无线码| 一本久久精品| 欧美老熟妇乱子伦牲交| 亚洲怡红院男人天堂| 国产淫片久久久久久久久| 亚洲,欧美,日韩| 草草在线视频免费看| 欧美国产精品一级二级三级 | 欧美人与善性xxx| 99久久精品热视频| 日韩免费高清中文字幕av| 日韩在线高清观看一区二区三区| 免费高清在线观看视频在线观看| 中国国产av一级| 伊人久久国产一区二区| 日韩av在线免费看完整版不卡| 久久久久久久久久成人| 国产精品福利在线免费观看| 国产黄色免费在线视频| 一个人观看的视频www高清免费观看| 亚洲美女搞黄在线观看| 日韩av在线免费看完整版不卡| 在线观看免费高清a一片| 赤兔流量卡办理| 亚洲欧美日韩无卡精品| 久久久久网色| 看免费成人av毛片| 精品久久国产蜜桃| 久久人人爽人人片av| 三级男女做爰猛烈吃奶摸视频| 免费电影在线观看免费观看| 下体分泌物呈黄色| 伦精品一区二区三区| 亚洲内射少妇av| 在线亚洲精品国产二区图片欧美 | 国产成人freesex在线| 亚洲性久久影院| 国产 一区精品| 久久人人爽人人片av| 国产午夜福利久久久久久| 大码成人一级视频| 水蜜桃什么品种好| www.av在线官网国产| 激情五月婷婷亚洲| 国产在线一区二区三区精| 午夜福利高清视频| 国国产精品蜜臀av免费| 国产久久久一区二区三区| 欧美日本视频| 神马国产精品三级电影在线观看| 亚洲欧洲日产国产| 一级黄片播放器| 大香蕉久久网| 国产欧美另类精品又又久久亚洲欧美| 蜜桃亚洲精品一区二区三区| 成年女人看的毛片在线观看| 国产精品爽爽va在线观看网站| 亚洲不卡免费看| 国产黄色免费在线视频| 亚洲精品影视一区二区三区av| 亚洲欧美成人精品一区二区| xxx大片免费视频| 国产乱人偷精品视频| 一区二区三区精品91| 亚洲va在线va天堂va国产| 在线播放无遮挡| 亚洲国产日韩一区二区| 寂寞人妻少妇视频99o| 美女xxoo啪啪120秒动态图| 国产一区有黄有色的免费视频| 国产乱人视频| 久久韩国三级中文字幕| kizo精华| 日韩伦理黄色片| 国产乱来视频区| 亚洲国产高清在线一区二区三| 欧美少妇被猛烈插入视频| 女的被弄到高潮叫床怎么办| 亚洲成人av在线免费| 交换朋友夫妻互换小说| 激情 狠狠 欧美| 亚洲人成网站高清观看| 久久久久久九九精品二区国产| 欧美xxxx黑人xx丫x性爽| 中国美白少妇内射xxxbb| xxx大片免费视频| 亚洲精品中文字幕在线视频 | 有码 亚洲区| 亚洲天堂国产精品一区在线| 国产 一区精品| 麻豆精品久久久久久蜜桃| 久久精品人妻少妇| 日韩免费高清中文字幕av| 看十八女毛片水多多多| 精品少妇久久久久久888优播| 久久久精品免费免费高清| 久久久国产一区二区| 免费黄频网站在线观看国产| 一级毛片 在线播放| 国产日韩欧美亚洲二区| 最新中文字幕久久久久| 蜜桃亚洲精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 欧美日韩在线观看h| 男女边吃奶边做爰视频| 高清在线视频一区二区三区| 日本色播在线视频| 久久久久性生活片| 99久久九九国产精品国产免费| 丰满乱子伦码专区| 久久精品熟女亚洲av麻豆精品| 日韩制服骚丝袜av| 尤物成人国产欧美一区二区三区| 国产精品国产三级国产av玫瑰| 成人美女网站在线观看视频| 久久ye,这里只有精品| 不卡视频在线观看欧美| 国模一区二区三区四区视频| 22中文网久久字幕| 香蕉精品网在线| 亚洲国产精品专区欧美| 国产伦精品一区二区三区四那| 国产精品爽爽va在线观看网站| 亚洲国产精品999| 午夜福利视频精品| 永久免费av网站大全| 国产亚洲一区二区精品| 69人妻影院| 免费大片黄手机在线观看| 18禁裸乳无遮挡免费网站照片| 国产午夜福利久久久久久| 亚洲国产色片| av在线观看视频网站免费| 亚洲精品国产av蜜桃| 亚洲精品色激情综合| 精品视频人人做人人爽| 观看美女的网站| 少妇高潮的动态图| 久久久色成人| 久久久亚洲精品成人影院| 色视频www国产| 欧美日韩在线观看h| 精品亚洲乱码少妇综合久久| 有码 亚洲区| 免费看光身美女| 天天躁日日操中文字幕| 一级毛片黄色毛片免费观看视频| 男人爽女人下面视频在线观看| 亚洲精品自拍成人| 内地一区二区视频在线| 少妇的逼好多水| 日韩国内少妇激情av| 日韩免费高清中文字幕av| 亚洲精品视频女| 在线亚洲精品国产二区图片欧美 | av国产精品久久久久影院| av.在线天堂| 人妻系列 视频| 日本wwww免费看| av专区在线播放| 国产黄片视频在线免费观看| 成年女人看的毛片在线观看| 午夜激情福利司机影院| 亚洲熟女精品中文字幕| 亚洲av成人精品一区久久| 亚洲av免费在线观看| 波多野结衣巨乳人妻| 久久久久久久精品精品| 亚洲欧美一区二区三区黑人 | 18禁在线无遮挡免费观看视频| 国产毛片a区久久久久| 丰满少妇做爰视频| 亚洲av国产av综合av卡| 久久精品国产a三级三级三级| 大码成人一级视频| 伊人久久精品亚洲午夜| 国产精品嫩草影院av在线观看| 亚洲激情五月婷婷啪啪| av线在线观看网站| 亚洲精品国产色婷婷电影| 亚洲经典国产精华液单| 最近2019中文字幕mv第一页| 日韩不卡一区二区三区视频在线| 国产色婷婷99| 日本爱情动作片www.在线观看| 99视频精品全部免费 在线| 国产美女午夜福利| 日韩中字成人| 免费人成在线观看视频色| 91在线精品国自产拍蜜月| 亚洲欧美精品自产自拍| 国产一级毛片在线| 国产男人的电影天堂91| 看免费成人av毛片| 人妻少妇偷人精品九色| 最新中文字幕久久久久| 午夜视频国产福利| 欧美成人一区二区免费高清观看| 男的添女的下面高潮视频| 亚洲人成网站在线播| 高清av免费在线| 大香蕉久久网| 狂野欧美激情性bbbbbb| 菩萨蛮人人尽说江南好唐韦庄| 久久精品熟女亚洲av麻豆精品| 日韩成人av中文字幕在线观看| 在线a可以看的网站| 国产精品99久久99久久久不卡 | 欧美高清性xxxxhd video| 欧美少妇被猛烈插入视频| .国产精品久久| 久久久久性生活片| www.色视频.com| 久久亚洲国产成人精品v| 日韩欧美精品免费久久| 国产午夜精品久久久久久一区二区三区| 亚洲国产精品国产精品| 美女xxoo啪啪120秒动态图| 精品熟女少妇av免费看| 特大巨黑吊av在线直播| 啦啦啦在线观看免费高清www| 国产在线男女| 最后的刺客免费高清国语| 黄片无遮挡物在线观看| 成人综合一区亚洲| 久久韩国三级中文字幕| 午夜福利在线在线| av线在线观看网站| 美女xxoo啪啪120秒动态图| 亚洲欧美一区二区三区黑人 | 欧美成人a在线观看| 国产精品国产三级专区第一集| 亚洲精品一区蜜桃| 国产精品精品国产色婷婷| 在线a可以看的网站| 秋霞在线观看毛片| 日韩三级伦理在线观看| www.av在线官网国产| 97精品久久久久久久久久精品| 亚洲天堂av无毛| 午夜免费观看性视频| 欧美日韩国产mv在线观看视频 | av又黄又爽大尺度在线免费看| 91狼人影院| 成年人午夜在线观看视频| 精品国产三级普通话版| 男女那种视频在线观看| 天美传媒精品一区二区| 日韩欧美 国产精品| 晚上一个人看的免费电影| 欧美国产精品一级二级三级 | 午夜福利视频精品| 免费高清在线观看视频在线观看| 直男gayav资源| 视频中文字幕在线观看| 国产高潮美女av| 亚洲美女搞黄在线观看| 一级二级三级毛片免费看| 三级国产精品欧美在线观看| 久久久久久久国产电影|