• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Study of Electronic Structure, Formation Mechanism and Intramolecular Sulfoxide Imidation Reactivity of Iron Phthalocyanine Nitrene Complex①

    2021-06-11 02:56:12YUANBinBinSONGJinShuiYANXueYunXIAOHnLIChunSen
    結(jié)構(gòu)化學(xué) 2021年4期

    YUAN Bin-Bin SONG Jin-Shui YAN Xue-Yun XIAO Hn LI Chun-Sen, c

    Theoretical Study of Electronic Structure, Formation Mechanism and Intramolecular Sulfoxide Imidation Reactivity of Iron Phthalocyanine Nitrene Complex①

    YUAN Bin-Bina, bSONG Jin-Shuaia②YAN Xue-Yuana, bXIAO Hana, bLI Chun-Sena, b, c②

    a(350002)b(100049)c(361005)

    Density functional theory (DFT) calculations are performed to investigate recent experimentally studied ring-closing sulfoxide imidation catalyzed by Fe(II)-phthalocyanine (FeIIPc).Our results reveal that the ground state of iron phthalocyanine nitrene intermediate (PcFeNR, R = (CH2)3(SO)Ph), which is believed to mediate the intramolecular imitation, is triplet state featuring a diradical structure.The formation of PcFeNR is the result of a denitrification process with a calculated high-barrier of 23.4 kcal/mol which is in good agreement with the experimentally observed high reaction temperature of 100 ℃.The generated PcFeNR undergoes a low-barrier intramolecular nucleophilic attack by proximal nitrogen atom on the sulfur accomplishing the cyclization of sulfoxide.This study provides theoretical insights into the mechanism-based design of useful catalysts for nitrene transfer reactions.

    nitrene transfer, sulfoxide cyclization, iron phthalocyanine, DFT, reaction mechanism;

    1 INTRODUCTION

    Transition metal-nitrene complexes have been proved to be appealing reactive intermediates in the synthesis of versatile N-substituted pharmaceutical products[1], agrochemicals, and synthetic precursors, especially after the success of characterizing such unstable species[2, 3].Iminoiodanes (PhI = NTs)[4-8], haloamine-T compounds[9, 10]and carbamates[11]are widely accepted nitrene sources for many years.Recently, organic azides are becoming the new promising green nitrene alternatives with harmless nitrogen as the only byproduct[12, 13].For a long time, the noble metal (.rhodium[14, 15], ruthenium[16], silver[17, 18], etc.) complexes are used as effective catalysts for various aziridination, cyclopropanation and C–H amination reactions.Very recently, the abundant, low-cost and nontoxic first-row transition metals like manganese[19, 20], iron[21, 22], cobalt[12, 23, 24], nickel[25]and copper[18]are also found to be excellent catalysts in diverse nitrene transfer and other nitrogen- containing reactions.

    The transition-metal-nitrene complexes mainly involve low-coordinate geometries to avoid the unfavorable antibonding(metal)-(nitrogen) interactions.Thereby, these intermediates commonly exist in three- or four- coordinate trigonal[26, 28], (pseudo)tetrahedral[29, 30]and square-planar[26]conformations.Lately, a dozen of octahedral coordinate structures were reported with porphyrin derivatives[31], N4Py[32, 33]and other macrocyclic pentadentate ligands[34].Notably, the electronic structures of cobalt- and iron-nitrenes have attracted much attention.It was found that in the formation of Co(III)-nitrene intermediate, anelectron transfers from the reductive cobalt center to the nitrene moiety, leaving the unpaired electron residing mainly on the nitrene nitrogen moiety, thus generating the iminyl radical ligand[12, 18, 19].Such transformation was also reported in the intermolecular C–H amination reactions through crucial iron-porphyrin-nitrene intermediates by Liu et al[35].

    As discussed above, the electronic configuration and reactivity of the iron-nitrene[35, 36]have been preliminarily explored in some limited nitrene transfer reactions.Recently, a general method for the synthesis of cyclic sulfoximines by using the commercially available iron phthalocyanine (FeIIPc) was developed by Bolm et al[37].In this reaction, FeIIPc was employed to cyclize [(3-azidopropyl)sulfinyl]benzene (ASB) to form 4,5-dihydro-3H-isothiazole 1-oxide (DHI) through intramolecular sulfoxide imidation reaction (Scheme 1).They proposed that this reaction includes two steps: denitrification and cyclization, while the vital intermediate was speculated asiron (IV)-nitrene species.To the best of our knowledge, the detailed mechanism of this reaction has not been fully investigated and hence is the focus of the present study.Thus, we seek to elucidate electronic structure, formation mechanism and intramolecular sulfoxide imidation reactivity of the iron (IV)-nitrene species generated from FeIIPc and azido-containing sulfoxide substate.

    Scheme 1.Iron-catalyzed intramolecular imidations of sulfoxides

    2 COMPUTATION METHODS

    All calculations were performed using the DFT method as implemented in Gaussian 09 program[38].The geometries of all species were optimized in gas phase with the B3LYP[39, 40]functional using Ahlrichs def2-SVP basis set[41, 42].Vibrational frequency analysis at the same level of geometry optimization was carried out to check the stationary point or transition state and to obtain the thermodynamic correction to Gibbs free energy.Each transition state has been confirmed by the intrinsic reaction coordinate (IRC) calculations[43, 44].Single-point calculations were performed using the def2- TZVPP basis set[41, 42]on the gas-phase optimized geometries considering Grimme’s D3 dispersion corrections[45- 47].The solvation energy was calculated by polarizable continuum model (PCM)[48], which is a self-consistent reaction field (SCRF) approach, with toluene (= 2.3741) as solvent.The reported energy was obtained by adding the single-point energy with the free energy correction.ORCA program 4.2[49]was also used to calculate the spin natural orbitals.

    3 RESULTS AND DISCUSSION

    3.1 DFT optimized iron phthalocyanine nitrene

    The calculated results including relative Gibbs free energies, geometric parameters, natural population analysis (NPA) charges, spin densities and Mayer bond orders of the iron phthalocyanine nitrene (PcFeNR, R = (CH2)3(SO)Ph) in different spin states are summed up in Table 1, while Fig.1 presentsthe geometric and electronic features of PcFeNR at the triplet state.The results shown in Table 1 reveal that the triplet state is the ground state followed by the open-shell singlet (1OS), closed-shell singlet (1CS) and quintet states with 2.4, 6.3 and 7.5 kcal/mol higher in energy, respectively.An obvious geometric difference found for quintet species is that the protrusion of iron center from the phthalocyanine plane is the largest with 0.61 ?.The calculated bond length between iron center and the axially ligated nitrogen atom (dFe–N(1)) for triplet state is 1.71 ?, a distance shorter than the previously reported single bond length of ca 1.9 ?[35, 50, 51],but close to the double bond length of iron nitrene complexes (about 1.70~1.73 ?)[34, 52].Since the triplet state is the lowest energy lying state, the following discussions about PcFeNR are mainly focused on this spin state.As shown in Fig.1, the spin density occupancy numbers on the iron atom and nitrene nitrogen atom are 0.95 and 1.01, respectively, featuring the two-radical centers in triplet PcFeNR.NPA charges show that the metal iron atom bears the positive charge while the N(1) atom bears negative charge.These data imply the PcFeNR intermediatein triplet state can be described as an iron nitrene anion diradical complex, as suggested by Shaik et al[53, 54].Calculated Mayer bond order for Fe–N(1) at triplet state corresponds to 1.38, suggesting that the bond between iron and N(1) is not a normal double bond.The similar bond order of 1.40 for Fe–N(1) at 1OS state is obtained as well, while for 1CS state, the bond order corresponds to 1.93, a symbol of normal double bond.This indicates the interaction between iron and N(1) at triplet and 1OS state is weaker than that in 1CS state, which is consistent with the longer Fe–N(1) bond distance at the same states.For high-energy lying quintet state, the calculated bond order is 1.08, corresponding to its largest Fe–N(1) bond length of 1.78 ?.Thus, the ground state of PcFeNR complex does not feature a formal iron (IV) configuration in which the bond order of Fe–N(1) should be close to 2.

    Fig.1.Highlights of B3LYP/def2-SVP optimized distances (?, in black), spin densities (green), and NPA charges (red), for the triplet iron phthalocyanine nitrene (PcFeNR)

    Table 1.Relative Gibbs Free Energies, Geometric Parameters, NPA Charges, Spin Densities and Mayer Bond Orders of the Iron Phthalocyanine Nitrene at Different Spin States.d is the Protrusion of the Iron Center from the Phthalocyanine Plane.N(1) is the Axially Ligated Nitrogen Atom (see Fig.1)

    A diagram for the molecular orbital interaction of PcFeNR at the triplet state is depicted in Fig.2.The electronic state configuration is found to be ()2(*)1(*)1(*2)0(*22)0.Thebond in the axial Fe–N(1) is mainly generated by the interaction between2(Fe) and(N) orbitals.Two non-degenerated Fe–N-antibonding orbitals are formed by strong overlap between thedanddorbitals of iron andpandporbitals of nitrogen atom.When thebond between Fe and N(1) is formed, the electron-rich iron would transfer-electrons to the(N) orbitals to form-back-bonding interaction, which is beneficial to stabilizing the metalloradical complex.Moreover, from Fig.2, we can find that spin densities are delocalized to the carbon atom adjacent to the proximal nitrogen atom in iron nitrene, thereby further facilitating the mental-to-nitrene donation interaction.

    Fig.2.Schematic ofspin natural orbitals for iron phthalocyanine nitrene at triplet state computed by Orca program.Hydrogens are omitted for clarity

    It seems that the bonding pattern of PcFeNR at the triplet state is similar to that of iron (IV)-oxo complex, in which two single-electrons reside in two nearly degenerated*orbitals.However, in PcFeNR complex, the electron-donating nitrogen atom is also bonded to other functional groups.As a consequence, theπ*andπ*orbitals in PcFeNR complex are no longer degenerated.Besides, the Fe–N bond (1.71 ?) is obviously longer than Fe–O bond (~1.6 ?) in iron (IV)-oxo species, suggesting a higher reactivity for PcFeNR complex.Experimentally, it has been found that the iron-tosylimido complex is much more reactive in sulfoxidation and sulfimidation reactions than the homologous iron (IV)-oxo complex[7].Note that the iron-nitrene intermediate may exhibit different reactivities with the various alkyl chain bonding to the proximal electron-donating nitrogen atom, which increases the possibility for functional group design.

    3.2 Iron phthalocyanine nitrene formation

    3.2.1 Energy profiles for denitrification

    The proposed catalytic cycle is theoretically investigated using the optimized experimental conditions[37].The calculated results indicate that the entire catalytic cycle contains two reaction steps: denitrification and cyclization.The free energy profiles for denitrification are shown in Fig.3.It is seen that for all spin states, the complexation of the separated FeIIPc and ASB to reactant cluster (R) is exergonic by more than 8 kcal/mol.And throughout the denitrification, the triplet state is unequivocally the lowest profile.This result is in accord with the calculated spin order of PcFeNR shown above that the triplet state is the ground state.The triplet free energy barrier for denitrification is 23.4 kcal/mol.As will be shown below, the denitrification is the rate-determining step as this calculated free energy barrier is larger than that in the subsequent cyclization step.Recalling that high reaction temperature of 100 ℃ was needed for the synthesis of cyclic sulfoximines by using FeIIPc[37], the calculated high free energy barrier is in good agreement with experiment.Fig.4 shows the DFT optimized geometries of the corresponding reactant clusters (R) and transition states (TS1).In the R species, three connected nitrogen atoms (N(1)–N(2)–N(3)) in azide group are in linear configuration.However, in TS1, a bending structure for N(1)–N(2)–N(3) is obtained.From R to TS1, the Fe–N(1) bond length decreases from initial 2.0~2.4 to ~1.8 ? and the N(1)–N(2) bond length increases from 1.23 to 1.63 ?.

    Fig.3.Free energy profiles for the formation of iron phthalocyanine nitrene species

    Fig.4.Optimized structures of R (a) and TS1(b) at triplet, 1OS (inside the parentheses), 1CS (inside the bracket) and quintet (inside the braces) spin states.The spin densities are represented by, and distances are given in angstroms

    3.2.2 Insights into electronic structure change

    As shown in Fig.5, the ground electronic configuration for R species is found to be ()2(d)2(d)1(*2)1(*22)0, in accord with the spin density on iron (2.10, see Table 2).The process of cleaving N(1)–N(2) bond can be depicted as the consequence of bonding and antibonding interactions between iron and nitrene N(1) atom.Thereby, oneelectron on thed2orbital of iron (shown in Fig.5a) transfers to the empty nitrogen-centeredporbital.Furthermore, the singly occupied Norbital would interact with the doubly occupieddorbital of iron to form the bonding (π) and antibonding (π*) molecular orbitals with three electrons in total.Moreover, the one electron occupiedorbital mixed with the doubly occupied Nporbital also contribute to the similar bondingand antibonding combination.The resultant orbital schematic is shown in Fig.5b.This result is also consistent with the change of spin densities on iron (2.10 to 1.29) shown in Table2.We note that such one-electron- transfer is quite a common process in the formation of various metal nitrene/carbene intermediates[12, 55, 56].

    Fig.5.Schematic ofspin natural orbitals for R (a), TS1(b) and TS2(c) at the triplet state computed in Orca.Hydrogens are omitted for clarity

    Table 2.Spin Densities Changes in the Process of Denitrification at Triplet State

    3.3 Iron nitrene nucleophilic attack reactivity

    Fig.6 shows the free energy profiles for the cyclization step calculated starting from N2eliminated PcFeNR.Again here, the triplet state is the lowest profile throughout the reaction.As such, only results of triplet state are kept in discussions.During the nucleophilic attack of nitrene towards sulfur atom, the Fe–N(1) bond length increases from 1.7 ? in the bent nitrene intermediate to 1.8 ? in the TS2andfinally to 2.31 ? in the product P, as shown in Table 3.Simultaneously, one electron transfers from nitrene moiety back to the iron center as the spin density on iron accordingly increases to 2.27 in3TS2vs 0.96 in3I3.The free energy barrier for this intramolecular imidation is calculated to be 9.6 kcal/mol at the triplet state.As such, the denitrification process shown above is found to be the rate-determining step as it needs to overcome higher free energy barrier.This result is consistent with previously reported nitrene transfer reactions catalyzed by iron porphyrins and other metal catalysts[56, 57, 58].The formation of intramolecular imidation product3P is exergonic by more than 48 kcal/mol albeit to release the free DHI is less exergonic.Thus, the whole process for converting azide-containing sulfoxide to cyclic sulfoximine catalyzed by PcFeNR is highly thermodynamically favorable.

    Table 3.Geometric Parameters and Spin Densitiy Changes in the Process of Nucleophilic Reaction at Triplet State

    Fig.6.Free energy profiles for the formation of sulfoximine through nucleophilic attack

    In the cyclization step, anelectron transfers from the nitrogen-centered orbitals back to iron center*2orbital.At the same time, bothN–SandN–Sorbitals are formed in the3TS2when the nitrene nitrogen approaches sulfur atom and further interacts with each other.The electronic configuration of3TS2for-block is ()2(π*)2(π*)1(*2)1(*22)0(see Fig.5b), in agreement with the spin density 2.27 on iron, indicating the iron nitrene radical is reduced to ferrous complex at this stage.

    In order to investigate the influencing factors of the reaction energy barrier caused by azido sulfoxide substrate, we have performed corresponding calculations for the reactions with substrates containing different substituents (-N=N+=N–R, R=(CH2)(CH3)2(CH2)(SO)Ph, (CH2)2(CH)(CH3)(SO)Ph and (CH2)3(SO)C6H6, respectively) which have been employed in experiment[37].We only explored the denitrification process at triplet spin state as it has been found above that the denitrification is the rate-determining step.As shown in Fig.7, substrates with methyl-substituted zaidoalkyl chains (Sub-2 and Sub-3) require slightly higher barriers (24.8 and 25.2 kcal/mol, respectively) than Sub-1 (23.4 kcal/mol).This is in good agreement with the experiment that higher reaction temperature (140 ℃) and more dosage catalysts are required to promote the imidation reactions using Sub-2 and Sub-3 as substrates[37].In addition, with the non-aromatic substrate Sub-4,the reaction barrier calculated is 24.7 kcal/mol, again a slightly higher barrier than Sub-1, which is corresponding to the lower yield when using Sub-4 in the experiment[37].Thus, the substrates with electron-donating groups and aliphatic substituents are energy unfavorable for the denitrification step so that they exhibit low reactivity and need more harsh experimental conditions.In other words, our results suggest that azido sulfoxide substrates with electron-withdrawing substituents may be energy favorable for the dinitrogen reaction and thus promote the cyclic sulfoximines catalyzed by FeIIPc.

    Fig.7.Free energy profiles of denitrification for different substituents at triplet state

    4 CONCLUSION

    Our DFT calculations show that intramolecular imidation reaction for the synthesis of cyclic sulfoximine by using iron phthalocyanine as catalyst and azido sulfoxide as substrate contains two steps.First, azido-containing sulfoxide substrate releases dinitrogen to yield iron nitrene radical intermediate, which is found with higher energy barrier and thus is the rate-limiting step in the whole process.Second, the resulting iron nitrene intermediate [FePcN(CH2)3(SO)Ph] undergoes a low-barrier intramolecular imidation to accomplish the cyclization of sulfoxide.The ground state for the [FePcN(CH2)3(SO)Ph] intermediate is triplet spin state with two unpaired electrons residing on the iron and nitrene moiety, respectively.Theoretical analysis on four substrates with different substituents show that the electron donating groups play an adverse role in the formation of iron nitrene intermediates.This work may provide deeper insight for understanding the electronic property of iron-based nitrene intermediates and developing better substrates for the synthesis of heterocyclic sulfoximine.

    (1) Roughley, S.D.; Jordan, A.M.The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates.2011, 54, 3451-3479.

    (2) Mehn, M.P.; Peters, J.C.Mid-to high-valent imido and nitrido complexes of iron.2006,100, 634-643.

    (3) Holland, P.L.Electronic structure and reactivity of three-coordinate iron complexes.2008,41, 905-914.

    (4) Manche?o, O.G.; Dallimore, J.; Plant, A.; Bolm, C.Iron(II) triflate as an efficient catalyst for the imination of sulfoxides.2009, 11, 2429-2432.

    (5) Manche?o, O.G.; Dallimore, J.; Plant, A.; Bolm, C.Synthesis of sulfoximines and sulfilimines with aryl and pyrazolylmethyl substituents.2010,352, 309-316.

    (6) Wang, J.; Frings, M.; Bolm, C.Enantioselective nitrene transfer to sulfides catalyzed by a chiral iron complex.2013,52, 8661-8665.

    (7) Kumar, S.; Faponle, A.S.; Barman, P.; Vardhaman, A.K.; Sastri, C.V.; Kumar, D.; Visser, S.P.D.Long-range electron transfer triggers mechanistic differences between iron(IV)-oxo and iron(IV)-imido oxidants.2014,136, 17102-17115.

    (8) Manche?o, O.G.; Bolm, C.Iron-catalyzed imination of sulfoxides and sulfides.2006, 8, 2349-2352.

    (9) Barman, D.N.; Liu, P.; Houk, K.N.; Nicholas, K.M.On the mechanism of ligand-assisted, copper, catalyzed benzylic amination by chloramine-T.2010,29, 3404-3412.

    (10) Vyas, R.; Gao, G.Y.; Harden, J.D.; Zhang, X.P.Iron(III) porphyrin catalyzed aziridination of alkenes with bromamine-T as nitrene source.2004,6, 1907-1910.

    (11) Lebel, H.; Huard, K.; Lectard, S.N-tosyloxycarbamates as a source of metal nitrenes: rhodium-catalyzed C-H insertion and aziridination reactions.2005,127, 14198-14199.

    (12) Suarez, A.I.O.; Jiang, H.L.; Zhang, X.P.; De Bruin, B.The radical mechanism of cobalt(II) porphyrin-catalyzed olefin aziridination and the importance of cooperative H-bonding.2011,40, 5697-5705.

    (13) Intrieri, D.; Zardi, P.; Caselli, A.; Gallo, E.Organic azides: "energetic reagents'' for the intermolecular amination of C–H bonds.2014,50, 11440-11453.

    (14) Geer, A.M.; Tejel, C.; Lopez, J.A.; Ciriano, M.A.Terminal imido rhodium complexes.2014,53, 5614-5618.

    (15) Scheibel, M.G.; Wu, Y.L.; Stuckl, A.C.; Krause, L.; Carl, E.; Stalke, D.; De Bruin, B.; Schneider, S.Synthesis and reactivity of a transient, terminal nitrido complex of rhodium.2013, 135, 17719-17722.

    (16) Manca, G.; Gallo, E.; Intrieri, D.; Mealli, C.DFT mechanistic proposal of the ruthenium porphyrin-catalyzed allylic amination by organic azides.2014,4, 823-832.

    (17) Zhang, J.; Shan, C.H.; Zhang, T.; Song, J.S.; Liu, T.; Lan, Y.Computational advances aiding mechanistic understanding of silver-catalyzed carbene/nitrene/silylene transfer reactions.2019,382, 69-84.

    (18) Díaz-Requejo, M.M.; Pérez, P.J.The TpxM core in C3–H bond functionalization reactions: comparing carbene, nitrene, and oxo insertion processes (Tpx= scorpionate ligand; M = Cu, Ag).2020,879-885.

    (19) Wang, J.P.; Zheng, K.C.; Li, T.; Zhan, X.J.Mechanism and chemoselectivity of mn-catalyzed intramolecular nitrene transfer reaction: C–H aminationC=C aziridination.2020,10, 292-303.

    (20) Ning, T.R.; Song, J.S.; Wei, J.; Zhang, M.Y.; Lu, Q.Q.; Huang, J.; Li C.S.Control of the electronic structure of manganese nitrido complexes by pararing substituents: a theoretical study.2018,37, 1541-1549.

    (21) Che, C.M.; Lo, V.K.Y.; Zhou, C.Y.; Huang, J.S.Selective functionalisation of saturated C–H bonds with metalloporphyrin catalysts.2011,40, 1950-1975.

    (22) Zheng, J.; Liu, Z.Y.; Jin, X.J.; Dang, Y.F.Unveiling the mechanism and regioselectivity of iron-dipyrrinato-catalyzed intramolecular C(3)–H amination of alkyl azides.2019, 9, 1279-1288.

    (23) Hopmann, K.H.; Ghosh, A.Mechanism of cobalt-porphyrin-catalyzed aziridination.2011,1, 597-600.

    (24) Lyaskovskyy, V.; Suarez, A.I.O.; Lu, H.J.; Jiang, H.L.; Zhang, X.P.; De Bruin, B.Mechanism of cobalt(II) porphyrin-catalyzed C–H amination with organic azides: radical nature and H-atom abstraction ability of the key cobalt(III)-nitrene intermediates.2011, 133, 12264-12273.

    (25) Camasso, N.M.; Canty, A.J.; Ariafard, A.; Sanford, M.S.Experimental and computational studies of high-valent nickel and palladium complexes.2017, 36, 4382-4393.

    (26) Baek, Y.; Betley, T.A.Catalytic C-H amination mediated by dipyrrin cobalt imidos.2019,141, 7797-7806.

    (27) Wang, L.; Hu, L.R.; Zhang, H.Z.; Chen, H.; Deng, L.Three-coordinate iron(IV) bisimido complexes with aminocarbene ligation: synthesis, structure, and reactivity.2015,137, 14196-14207.

    (28) Reckziegel, A.; Pietzonka, C.; Kraus, F.; Werncke, C.G.C-H bond activation by an imido cobalt(III) and the resulting amido cobalt(II) complex.2020, 59, 8527-8531.

    (29) Searles, K.; Fortier, S.; Khusniyarov, M.M.; Carroll, P.J.; Sutter, J.; Meyer, K.A-divacant octahedral and mononuclear iron(IV) imide.2014,53, 14139-14143.

    (30) Liu, Y.; Du, J.Z.; Deng, L.Synthesis, structure, and reactivity of low-spin cobalt(II) imido complexes [(Me3P)3Co(NAr)].2017,56, 8278-8286.

    (31) Fantauzzi, S.; Caselli, A.; Gallo, E.Nitrene transfer reactions mediated by metallo-porphyrin complexes.2009, 5434-5443.

    (32) Vardhaman, A.K.; Lee, Y.M.; Jung, J.; Ohkubo, K.; Nam, W.; Fukuzumi, S.Enhanced electron transfer reactivity of a nonheme iron(IV)-imido complex as compared to the iron(IV)-oxo analogue.2016,55, 3709-3713.

    (33) Vardhaman, A.K.; Barman, P.; Kumar, S.; Sastri, C.V.; Kumar, D.; De Visser, S.P.Comparison of the reactivity of nonheme iron(IV)-oxo versus iron(IV)-imido complexes: which is the better oxidant?2013, 52, 12288-12292.

    (34) Sabenya, G.; Gamba, I.; Gomez, L.; Clemancey, M.; Frisch, J.R.; Klinker, E.J.Octahedral iron(iv)-tosylimido complexes exhibiting single electron-oxidation reactivity.2019,10, 9513-9529.

    (35) Li, X.Y.; Dong, L.H.; Liu, Y.Theoretical study of iron porphyrin nitrene: formation mechanism, electronic nature, and intermolecular C–H amination.2020,59, 1622-1632.

    (36) Conradie, J.; Ghosh, A.Electronic structure of an iron-porphyrin-nitrene complex.2010,49, 243-248.

    (37) Yu, H.; Li, Z.; Bolm, C.Three-dimensional heterocycles by iron-catalyzed ring-closing sulfoxide imidation.2018,57, 12053-12056.

    (38) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.,; Gaussian, Inc.: Wallingford CT 2013.

    (39) Becke, A.D.Density-functional thermochemistry.III.The role of exact exchange.1993, 98, 5648-5652.

    (40) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H.Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr.1989,157, 200-206.

    (41) Weigend, F.; Ahlrichs, R.Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy.2005,7, 3297-3305.

    (42) Zheng, J.; Xu, X.; Truhlar, D.G.Minimally augmented Karlsruhe basis sets.2011, 128, 295-305.

    (43) Fukui, K.A formulation of the reaction coordinate.1970, 74, 4161-4163.

    (44) Fukui, K.The path of chemical reactions - the IRC approach.1981, 14, 363-368.

    (45) Grimme, S.Semiempirical GGA-type density functional constructed with a long-range dispersion correction.2006,27, 1787-1799.

    (46) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H.A consistent and accurateparametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu.2010,132, 154104-19.

    (47) Grimme, S.; Ehrlich, S.; Goerigk, L.Effect of the damping function in dispersion corrected density functional theory.2011, 32, 1456-1465.

    (48) Miertu, S.; Scrocco, E.; Tomasi, J.Electrostatic interaction of a solute with a continuum.A direct utilizaion ofmolecular potentials for the prevision of solvent effects.1981,55, 117-129.

    (49) Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C.The ORCA quantum chemistry program package.2020,152, 224108-18.

    (50) Conradie, J.; Ghosh, A.Electronic structure of an iron-porphyrin-nitrene complex.2010,49, 243-248.

    (51) Wang, J.; Gao, H.; Yang, L.; Gao, Y.Q.Role of engineered iron-haem enzyme in reactivity and stereoselectivity of intermolecular benzylic C–H bond amination.2020,10, 5318-5327.

    (52) Spasyuk, D.M.; Carpenter, S.H.; Kefalidis, C.E.; Piers, W.E.; Neidig, M.L.; Maron, L.Facile hydrogen atom transfer to iron(III) imido radical complexes supported by a dianionic pentadentate ligand.2016,7, 5939-5944.

    (53) Sharon, D.A.; Mallick, D.; Wang, B.; Shaik, S.Computation sheds insight into iron porphyrin carbenes' electronic structure, formation, and N–H insertion reactivity.2016,138, 9597-9610.

    (54) Khade, R.L.; Zhang, Y.Catalytic and biocatalytic iron porphyrin carbene formation: effects of binding mode, carbene substituent, porphyrin substituent, and protein axial ligand.2015,137, 7560-7563.

    (55) Hopmann, K.H.; Ghosh, A.Mechanism of cobalt-porphyrin-catalyzed aziridination.2011, 1, 597-600.

    (56) Lyaskovskyy, V.; Suarez, A.I.O.; Lu, H.; Jiang, H.; Zhang, X.P.; De Bruin, B.Mechanism of cobalt(ll) porphyrin-catalyzed C–H amination with organic azides: radical nature and H-atom abstraction ability of the key cobalt(lll)-nitrene intermediates.2011,133, 12264-12273.

    (57) Ansari, A.J.; Pathare, R.S.; Maurya, A.K.; Agnihotri, V.K.; Khan, S.; Roy, T.K.Synthesis of diverse nitrogen heterocycles via palladium-catalyzed tandem azide-isocyanide cross-coupling/cyclization: mechanistic insight using experimental and theoretical studies.2018,360, 290-297.

    (58) Xiao, X.S.; Hou, C.; Zhang, Z.H.; Ke, Z.F.; Lan, J.Y.; Jiang, H.F.Iridium(III)-catalyzed regioselective intermolecular unactivated secondary C3–H bond amidation.2016,55, 11897-11901.

    20 July 2020;

    12 October 2020

    ① Supported by the NSFC (21933009) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000)

    Prof.Li Chun-Sen, E-mail: chunsen.li@fjirsm.ac.cn; Dr.Song Jin-Shuai, E-mail: jssong@zzu.edu.cn

    10.14102/j.cnki.0254–5861.2011–2956

    色在线成人网| 日本a在线网址| 亚洲三区欧美一区| 国产精品久久久久成人av| 国产精品野战在线观看 | 久久久久精品国产欧美久久久| 亚洲人成伊人成综合网2020| 丝袜人妻中文字幕| 免费看十八禁软件| а√天堂www在线а√下载| 日韩视频一区二区在线观看| 亚洲av美国av| 国产一区二区三区视频了| 亚洲成人免费电影在线观看| 欧美日韩国产mv在线观看视频| 久久午夜综合久久蜜桃| 日本vs欧美在线观看视频| 69av精品久久久久久| 久久人妻熟女aⅴ| 女性生殖器流出的白浆| 国产有黄有色有爽视频| 欧美日本中文国产一区发布| 91精品三级在线观看| avwww免费| 国产精品影院久久| 亚洲精品中文字幕在线视频| 一级黄色大片毛片| 亚洲精品成人av观看孕妇| 亚洲一区中文字幕在线| 色综合婷婷激情| 国产精品一区二区免费欧美| 天堂影院成人在线观看| 亚洲一区高清亚洲精品| 久久久精品国产亚洲av高清涩受| 国产欧美日韩一区二区精品| 成年人黄色毛片网站| 国产成人影院久久av| 人成视频在线观看免费观看| 欧美激情高清一区二区三区| 18禁美女被吸乳视频| 丝袜美腿诱惑在线| 在线观看一区二区三区激情| 亚洲一区二区三区色噜噜 | 在线观看一区二区三区激情| 欧美av亚洲av综合av国产av| 涩涩av久久男人的天堂| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲精品久久久久久毛片| 97人妻天天添夜夜摸| 757午夜福利合集在线观看| 热99国产精品久久久久久7| 午夜福利影视在线免费观看| 99久久99久久久精品蜜桃| 亚洲av片天天在线观看| 亚洲专区字幕在线| 欧美 亚洲 国产 日韩一| 欧美乱码精品一区二区三区| 老司机深夜福利视频在线观看| 国产伦一二天堂av在线观看| 成人永久免费在线观看视频| 中文字幕精品免费在线观看视频| 色播在线永久视频| 久久精品国产综合久久久| 欧美日韩国产mv在线观看视频| 中文字幕高清在线视频| 男男h啪啪无遮挡| 一本综合久久免费| 丝袜美足系列| 热re99久久国产66热| 国产熟女xx| 午夜福利影视在线免费观看| 9热在线视频观看99| 757午夜福利合集在线观看| www日本在线高清视频| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜精品国产一区二区电影| 波多野结衣av一区二区av| 日韩精品免费视频一区二区三区| 午夜a级毛片| 国产不卡一卡二| 日本欧美视频一区| 午夜a级毛片| 精品国产一区二区三区四区第35| 亚洲美女黄片视频| 国产高清激情床上av| 18禁国产床啪视频网站| 99国产精品免费福利视频| 久久久水蜜桃国产精品网| av有码第一页| 国产成人精品在线电影| 国产伦人伦偷精品视频| 99久久精品国产亚洲精品| 一进一出抽搐动态| 在线播放国产精品三级| av天堂久久9| 夫妻午夜视频| 高清在线国产一区| 午夜免费鲁丝| 99久久99久久久精品蜜桃| 国产熟女xx| 曰老女人黄片| 女同久久另类99精品国产91| 久久国产精品影院| 动漫黄色视频在线观看| 天天躁夜夜躁狠狠躁躁| 一进一出抽搐gif免费好疼 | 亚洲精品美女久久av网站| 久久香蕉国产精品| 高清黄色对白视频在线免费看| 丝袜人妻中文字幕| 久久久国产成人免费| 成人黄色视频免费在线看| 久99久视频精品免费| 亚洲一区高清亚洲精品| 欧美日韩亚洲国产一区二区在线观看| 久久影院123| 国产精品电影一区二区三区| 男男h啪啪无遮挡| 欧美性长视频在线观看| 97人妻天天添夜夜摸| 一进一出抽搐gif免费好疼 | 在线观看午夜福利视频| 欧美色视频一区免费| 国产精品亚洲av一区麻豆| 国产亚洲欧美精品永久| 丰满迷人的少妇在线观看| 久久精品国产综合久久久| 日韩精品中文字幕看吧| 欧美精品亚洲一区二区| 999久久久精品免费观看国产| av天堂在线播放| 成人三级黄色视频| 在线永久观看黄色视频| 99精品欧美一区二区三区四区| 亚洲精品粉嫩美女一区| 亚洲av第一区精品v没综合| 桃红色精品国产亚洲av| 十分钟在线观看高清视频www| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲男人的天堂狠狠| 日日摸夜夜添夜夜添小说| 99国产精品99久久久久| 一本大道久久a久久精品| 麻豆成人av在线观看| 老汉色∧v一级毛片| 欧美+亚洲+日韩+国产| 国产精品香港三级国产av潘金莲| 亚洲激情在线av| 国产一区二区三区综合在线观看| 91av网站免费观看| 大香蕉久久成人网| 欧美人与性动交α欧美精品济南到| 亚洲人成伊人成综合网2020| 成年女人毛片免费观看观看9| 欧洲精品卡2卡3卡4卡5卡区| 午夜免费鲁丝| 国产成人精品久久二区二区免费| 欧美日韩av久久| 欧美日韩亚洲高清精品| 在线观看一区二区三区激情| 一进一出好大好爽视频| 亚洲av电影在线进入| 人成视频在线观看免费观看| 一区二区三区精品91| 精品久久久久久电影网| 久久热在线av| 免费日韩欧美在线观看| 国产一区二区三区视频了| 午夜免费成人在线视频| 久久狼人影院| 亚洲成av片中文字幕在线观看| 成在线人永久免费视频| a级毛片在线看网站| 麻豆国产av国片精品| 少妇的丰满在线观看| 两个人看的免费小视频| 午夜日韩欧美国产| 欧美激情久久久久久爽电影 | 麻豆成人av在线观看| 18禁观看日本| 波多野结衣av一区二区av| 十八禁网站免费在线| 国产成人精品久久二区二区91| 青草久久国产| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲色图综合在线观看| 国产精品乱码一区二三区的特点 | 老司机在亚洲福利影院| 好男人电影高清在线观看| 国产精品久久久人人做人人爽| 99国产综合亚洲精品| 69精品国产乱码久久久| 老司机福利观看| 亚洲 欧美一区二区三区| 欧美激情久久久久久爽电影 | 69精品国产乱码久久久| av网站在线播放免费| 窝窝影院91人妻| 欧美不卡视频在线免费观看 | av中文乱码字幕在线| 国产一卡二卡三卡精品| 天堂中文最新版在线下载| 久久午夜亚洲精品久久| 成人三级做爰电影| 搡老乐熟女国产| 色婷婷久久久亚洲欧美| 成人国产一区最新在线观看| 精品国产美女av久久久久小说| 叶爱在线成人免费视频播放| 一级,二级,三级黄色视频| 在线观看免费日韩欧美大片| 欧美日韩视频精品一区| 免费av中文字幕在线| 欧美日韩国产mv在线观看视频| 天堂俺去俺来也www色官网| 成人三级黄色视频| 午夜福利在线免费观看网站| 一区二区三区精品91| 国产精品 欧美亚洲| 国产亚洲精品一区二区www| 成人av一区二区三区在线看| 日韩欧美一区二区三区在线观看| 黄色视频,在线免费观看| 波多野结衣一区麻豆| 男女高潮啪啪啪动态图| 中文字幕精品免费在线观看视频| 国产深夜福利视频在线观看| 欧美黑人欧美精品刺激| 69av精品久久久久久| bbb黄色大片| 黄色怎么调成土黄色| 久热爱精品视频在线9| 亚洲国产毛片av蜜桃av| 成年人免费黄色播放视频| 精品乱码久久久久久99久播| 国产片内射在线| 久久精品国产亚洲av香蕉五月| 久久午夜亚洲精品久久| 日本黄色视频三级网站网址| 最新在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 国产精品亚洲一级av第二区| 欧美激情 高清一区二区三区| 久久精品91无色码中文字幕| 亚洲人成伊人成综合网2020| 中文字幕av电影在线播放| 女同久久另类99精品国产91| 欧美黑人精品巨大| 丝袜美腿诱惑在线| 精品久久久久久电影网| 窝窝影院91人妻| 国产99白浆流出| 91麻豆精品激情在线观看国产 | 精品国产乱子伦一区二区三区| 久久久久国产精品人妻aⅴ院| 欧美日本亚洲视频在线播放| 一个人免费在线观看的高清视频| 99久久国产精品久久久| 黑人欧美特级aaaaaa片| 欧美日韩精品网址| 啦啦啦免费观看视频1| 中文字幕另类日韩欧美亚洲嫩草| 三级毛片av免费| 黄色毛片三级朝国网站| 女人被躁到高潮嗷嗷叫费观| 91精品三级在线观看| 日韩大码丰满熟妇| www.熟女人妻精品国产| 两性午夜刺激爽爽歪歪视频在线观看 | 免费av中文字幕在线| 色老头精品视频在线观看| 久久国产乱子伦精品免费另类| 国产精品九九99| 午夜精品在线福利| 99久久综合精品五月天人人| 无限看片的www在线观看| 国产野战对白在线观看| 亚洲av电影在线进入| 如日韩欧美国产精品一区二区三区| www.熟女人妻精品国产| 国产精品免费视频内射| 久久精品aⅴ一区二区三区四区| 久久99一区二区三区| x7x7x7水蜜桃| 9191精品国产免费久久| 最好的美女福利视频网| 成人亚洲精品一区在线观看| 免费在线观看黄色视频的| 一级毛片精品| 老司机靠b影院| 国产三级黄色录像| 精品熟女少妇八av免费久了| 看免费av毛片| 三上悠亚av全集在线观看| 黄色视频不卡| 午夜老司机福利片| 欧美日韩国产mv在线观看视频| 欧美+亚洲+日韩+国产| 淫秽高清视频在线观看| 午夜老司机福利片| 欧美日韩国产mv在线观看视频| 成人三级黄色视频| 国产精品久久久久久人妻精品电影| 免费久久久久久久精品成人欧美视频| 色老头精品视频在线观看| 国产主播在线观看一区二区| 一级,二级,三级黄色视频| 国产片内射在线| 久久精品91蜜桃| 黄色丝袜av网址大全| 国产精品免费视频内射| 在线永久观看黄色视频| 18美女黄网站色大片免费观看| 高清在线国产一区| 成人特级黄色片久久久久久久| 亚洲第一青青草原| 午夜精品在线福利| 一级毛片精品| 婷婷精品国产亚洲av在线| 久久人妻福利社区极品人妻图片| 狂野欧美激情性xxxx| 又黄又爽又免费观看的视频| 在线观看免费视频网站a站| www.www免费av| 国产精品电影一区二区三区| 欧美+亚洲+日韩+国产| 精品国产乱码久久久久久男人| 性欧美人与动物交配| 超碰成人久久| 色在线成人网| 少妇裸体淫交视频免费看高清 | 国产精品免费一区二区三区在线| a在线观看视频网站| 一级毛片女人18水好多| 三上悠亚av全集在线观看| 精品国产乱码久久久久久男人| 久久久国产一区二区| 亚洲精品成人av观看孕妇| 日本精品一区二区三区蜜桃| 亚洲人成电影免费在线| 亚洲av成人一区二区三| 美女大奶头视频| 最近最新免费中文字幕在线| 国产aⅴ精品一区二区三区波| 在线观看www视频免费| 午夜福利免费观看在线| 两人在一起打扑克的视频| 在线十欧美十亚洲十日本专区| 少妇被粗大的猛进出69影院| 欧美色视频一区免费| 91在线观看av| 精品人妻在线不人妻| 男人的好看免费观看在线视频 | 欧美人与性动交α欧美软件| 国产精品久久久人人做人人爽| 青草久久国产| 亚洲午夜理论影院| 天天影视国产精品| 久久久久久久久久久久大奶| 久久久久久久久免费视频了| 日韩欧美国产一区二区入口| av超薄肉色丝袜交足视频| 人妻丰满熟妇av一区二区三区| 日本五十路高清| 啪啪无遮挡十八禁网站| 黑人欧美特级aaaaaa片| av中文乱码字幕在线| 日本a在线网址| 99精品在免费线老司机午夜| 午夜视频精品福利| 少妇裸体淫交视频免费看高清 | 日本wwww免费看| 亚洲成a人片在线一区二区| 久久人人爽av亚洲精品天堂| 一级a爱片免费观看的视频| 免费搜索国产男女视频| 丁香六月欧美| 美女高潮喷水抽搐中文字幕| 免费久久久久久久精品成人欧美视频| 999精品在线视频| av超薄肉色丝袜交足视频| 9191精品国产免费久久| 中文字幕人妻丝袜一区二区| 日日干狠狠操夜夜爽| 亚洲av成人一区二区三| 99热只有精品国产| 一级片'在线观看视频| 日韩欧美国产一区二区入口| 在线观看午夜福利视频| 亚洲精品美女久久av网站| bbb黄色大片| 国产精品国产高清国产av| 日韩欧美一区二区三区在线观看| 欧美日韩福利视频一区二区| 亚洲专区字幕在线| a级片在线免费高清观看视频| 日本一区二区免费在线视频| 久久久久国产精品人妻aⅴ院| 日本精品一区二区三区蜜桃| 人人妻人人澡人人看| 欧美精品亚洲一区二区| 在线天堂中文资源库| 亚洲欧美精品综合久久99| 欧美亚洲日本最大视频资源| 久久99一区二区三区| 亚洲欧洲精品一区二区精品久久久| 欧美+亚洲+日韩+国产| 免费看十八禁软件| 色播在线永久视频| 日韩 欧美 亚洲 中文字幕| 欧美日韩福利视频一区二区| 一二三四在线观看免费中文在| 日韩三级视频一区二区三区| 亚洲国产中文字幕在线视频| 男人舔女人的私密视频| 中亚洲国语对白在线视频| 色综合婷婷激情| 另类亚洲欧美激情| 97超级碰碰碰精品色视频在线观看| 亚洲欧美日韩另类电影网站| 国产一区二区三区在线臀色熟女 | 久久国产精品影院| 90打野战视频偷拍视频| 亚洲欧洲精品一区二区精品久久久| 久久欧美精品欧美久久欧美| 中国美女看黄片| 在线国产一区二区在线| 一进一出好大好爽视频| 九色亚洲精品在线播放| 美女福利国产在线| 国产欧美日韩一区二区三| 久久久精品国产亚洲av高清涩受| 欧美精品啪啪一区二区三区| 黄色视频不卡| 法律面前人人平等表现在哪些方面| 日韩欧美国产一区二区入口| 亚洲五月天丁香| 9191精品国产免费久久| 国产av在哪里看| 日日干狠狠操夜夜爽| 国产精品野战在线观看 | 人妻久久中文字幕网| 亚洲成人久久性| 久久久久久久久久久久大奶| 搡老熟女国产l中国老女人| 亚洲熟妇中文字幕五十中出 | 国产精品香港三级国产av潘金莲| 午夜老司机福利片| 超碰97精品在线观看| 国产精品久久久久久人妻精品电影| 午夜日韩欧美国产| 男女床上黄色一级片免费看| 中出人妻视频一区二区| 久久人人97超碰香蕉20202| a在线观看视频网站| 亚洲国产精品合色在线| 俄罗斯特黄特色一大片| 黄色毛片三级朝国网站| 国产91精品成人一区二区三区| 国产精品亚洲av一区麻豆| 男人舔女人的私密视频| 午夜精品在线福利| 侵犯人妻中文字幕一二三四区| 精品免费久久久久久久清纯| 99精品在免费线老司机午夜| 人人妻人人爽人人添夜夜欢视频| 亚洲国产中文字幕在线视频| 在线视频色国产色| 美女 人体艺术 gogo| 老司机靠b影院| 中文欧美无线码| 老司机在亚洲福利影院| 香蕉丝袜av| 色播在线永久视频| 天堂√8在线中文| 黑人欧美特级aaaaaa片| 两个人免费观看高清视频| 精品久久蜜臀av无| 免费看a级黄色片| 欧美日韩一级在线毛片| 欧美日韩黄片免| 亚洲av第一区精品v没综合| 欧美日韩国产mv在线观看视频| 女性生殖器流出的白浆| 50天的宝宝边吃奶边哭怎么回事| 欧美黑人精品巨大| 亚洲欧美精品综合久久99| 色在线成人网| 日本vs欧美在线观看视频| 日本免费一区二区三区高清不卡 | 黄片大片在线免费观看| 日韩国内少妇激情av| 亚洲狠狠婷婷综合久久图片| 日日夜夜操网爽| 亚洲熟妇熟女久久| 黄片播放在线免费| 免费在线观看完整版高清| 国产av一区在线观看免费| 男人舔女人下体高潮全视频| 桃色一区二区三区在线观看| 国产一区二区三区视频了| 高清毛片免费观看视频网站 | 久久天堂一区二区三区四区| 亚洲国产中文字幕在线视频| 亚洲第一av免费看| 三级毛片av免费| 久久久久久人人人人人| tocl精华| 亚洲 欧美 日韩 在线 免费| 中亚洲国语对白在线视频| 免费日韩欧美在线观看| 欧美日韩亚洲综合一区二区三区_| 精品高清国产在线一区| 女生性感内裤真人,穿戴方法视频| 久久青草综合色| 久久精品影院6| 高潮久久久久久久久久久不卡| 亚洲男人天堂网一区| 成人18禁高潮啪啪吃奶动态图| 欧美老熟妇乱子伦牲交| 搡老乐熟女国产| 午夜免费观看网址| 成人影院久久| 另类亚洲欧美激情| 正在播放国产对白刺激| 午夜a级毛片| 熟女少妇亚洲综合色aaa.| 亚洲自拍偷在线| 桃色一区二区三区在线观看| av天堂在线播放| 亚洲免费av在线视频| 免费看a级黄色片| 桃色一区二区三区在线观看| 亚洲美女黄片视频| 久久久国产成人精品二区 | 日本wwww免费看| 99国产极品粉嫩在线观看| 99久久国产精品久久久| 婷婷精品国产亚洲av在线| 最新在线观看一区二区三区| 久久人人精品亚洲av| 少妇的丰满在线观看| 啦啦啦免费观看视频1| 欧美另类亚洲清纯唯美| avwww免费| 国产av一区在线观看免费| 亚洲,欧美精品.| 91大片在线观看| 亚洲成人国产一区在线观看| 最新美女视频免费是黄的| 精品乱码久久久久久99久播| xxx96com| 国产一区二区三区综合在线观看| 中文字幕av电影在线播放| 久久久久久久午夜电影 | 天堂动漫精品| 国产精品野战在线观看 | 麻豆一二三区av精品| 久久久久久大精品| 日韩免费高清中文字幕av| 国产有黄有色有爽视频| 99国产精品一区二区三区| 亚洲av熟女| 国产精品一区二区精品视频观看| a级毛片在线看网站| 国产精品亚洲一级av第二区| 两性夫妻黄色片| 欧美亚洲日本最大视频资源| 操出白浆在线播放| 人人妻,人人澡人人爽秒播| 国产成人欧美在线观看| 久久亚洲精品不卡| 国产精品一区二区在线不卡| 国产成年人精品一区二区 | 亚洲熟妇熟女久久| 男男h啪啪无遮挡| 俄罗斯特黄特色一大片| 欧美日韩瑟瑟在线播放| 最近最新免费中文字幕在线| 亚洲熟女毛片儿| 在线观看免费午夜福利视频| 自线自在国产av| aaaaa片日本免费| 日本欧美视频一区| 午夜久久久在线观看| 亚洲视频免费观看视频| 人妻丰满熟妇av一区二区三区| 女性生殖器流出的白浆| 好看av亚洲va欧美ⅴa在| 亚洲一码二码三码区别大吗| 亚洲专区国产一区二区| 国产色视频综合| 亚洲免费av在线视频| 久久久国产欧美日韩av| 欧美中文综合在线视频| 亚洲视频免费观看视频| 脱女人内裤的视频| 成在线人永久免费视频| 日韩精品中文字幕看吧| 18禁裸乳无遮挡免费网站照片 | 天堂√8在线中文| 真人做人爱边吃奶动态| 亚洲九九香蕉| 曰老女人黄片| 两性夫妻黄色片| 波多野结衣高清无吗| 久久草成人影院| 国产高清激情床上av| 国产成人av激情在线播放| 免费高清在线观看日韩| 国产精品乱码一区二三区的特点 | a在线观看视频网站| 国产精品综合久久久久久久免费 | 夜夜爽天天搞| 在线观看www视频免费|