• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of Axial Magnetic Field in Vacuum Arc Interrupters at Intermediate Frequency

    2021-06-10 02:38:28JiangYuanLiQingXiaLinaWuJianwenJiaBowenXiaShangwen
    電工技術(shù)學(xué)報 2021年11期
    關(guān)鍵詞:剩磁滅弧磁感應(yīng)

    Jiang Yuan Li Qing Xia Lina Wu Jianwen Jia Bowen Xia Shangwen

    Simulation of Axial Magnetic Field in Vacuum Arc Interrupters at Intermediate Frequency

    Jiang Yuan1Li Qing1Xia Lina1Wu Jianwen2Jia Bowen2Xia Shangwen2

    (1. Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education School of Automation and Electrical Engineering University of Science and Technology Beijing Beijing 100083 China 2. School of Automation Science and Electrical Engineering Beihang University Beijing 100083 China)

    Characteristics of axial magnetic field (AMF) vacuum interrupters in intermediate-frequency (IF, 400-800Hz) power system of more electric aircraft is researched in this paper. The AMF distribution is solved by Maxwell. It can be concluded by the calculation as follows: In the process of current change, the axial magnetic field changes slower in the central region than in other regions. The peak area of the magnetic field is located between the interlaced slots, and there is a significant residual magnetic field in the center area at current zero. When the frequency increases, the eddy effect is so serious that the magnetic flux density of the AMF decreases. For the center point, the residual magnetic field is stronger and the lag phase is bigger on account of the frequency increase, which will prevent the arc plasmas from diffusing. The eddy effect can be reduced by adding the number of slot in the contact blade. The maximum of the magnetic flux density is increased approximately linearly by adding the rotation angle of contact. The influence of magnetic field hysteresis on the breaking capacity of the vacuum interrupter is verified by experiments including arc appearance and arc voltage.

    More electric aircraft, axial magnetic field, vacuum interrupters, intermediate frequency, eddy current effect

    0 Introduction

    In recent years, more-electric/all-electric aircraft has become the focus of research around world. Compared to a constant frequency power supply system in traditional aircraft, electricity is generated by a frequency-varying generator and the current frequency is in the range of 360-800Hz in the intermediate frequency (IF) power supply system, such as in A380, B787 and C919[1-2]. As the frequency and current increase, the interruption process becomes difficult, then a new type circuit breaker is required to ensure the electrical safety of the aircraft[3-4]. Vacuum circuit breakers have been widely used in medium/low voltage power systems, and are potentially suitable for use in the IF power supply system[5-9].

    For the axial magnetic field (AMF) type vacuum interrupter, an axial magnetic field will be generated when current is through the contact coil, which can improve the interruption ability of the vacuum interrupter[10]. The research shows that an appropriate AMF can make the arc diffuse in the high current mode. As a result, the arc energy and the degree of ablation on the contact surface are reduced[11-13].

    At present, numerical method is usually used to study the magnetic field distribution in electrical equipment. 3D finite element method has been used to analyze the magnetic field characteristics of the AMF interrupter and the calculated results were very close to the measured results[14-15]. Liu Zhiyuan analyzed AMF distribution in slot-type axial magnetic field contacts with and without iron plates, using commercial 3D FEM electromagnetic field simulation software Maxwell 3D[16]. Shi Zongqian investigated the influence of the distribution of AMF on high current vacuum arc with three pairs of specially designed testing electrodes generating a conventional bell-shaped AMF profile and different saddle-shaped AMF distributions. The transient AMF distribution was computed by a commercial software Ansys[17]. A. Henon studied the interruption ability of vacuum circuit breakers with AMF. The numerical model involves three-dimensional AMF simulations and the experimental study evaluates their performance in short-circuit interruption tests. The calculations are analyzed for AMF distribution[18].

    The above research results mainly focus on the power frequency, and do not involve the situation when the frequency is increased to 360-800Hz. The AMF distribution in vacuum interrupter in IF is studied in this paper, and magnetic flux density at current peak (CP) and current zero (CZ) moment are paid attention. Considering the simulation and experimental results, eddy current effect and current interruption ability influenced by frequency is analysed. The effect on magnetic field hysteresis and maximum value of magnetic induction intensity by contact structure, such as the number of contact blade slots and the angle of cup coil, is also analyzed.

    1 AMF Interrupters Model

    The structure of cup-type AMF vacuum contact is shown in Fig.1. The AMF contact consists of conductive rod, coil, contact blade and stainless steel support. The arc area is between the two contacts.

    Fig.1 The structure of cup-type AMF vacuum interrupter

    The main structural parameters of the cup-type AMF contact are shown in Tab. 1, and= π/3 and= 6 is chosen as a basic contact.

    Tab.1 Parameters for AMF Interrupters

    In this paper, Maxwell 3D electromagnetic field finite element module in ANSYS is used to analyze the magnetic field characteristics in the AMF contact[19]. The current frequency is 400-800Hz, and the effective value is 1kA. The contact blade material is CuCr50 and the electrical conductivity is 1.044×107S/m[16]. It is supposed that the arc is a cylinder with the same diameter to contact diameter and the same height to separation distance, and the arc conductivity is 400S/m. The selection is based on the experimental results of IF vacuum arc: as the contact diameter is 41mm and the separation is 3mm, the maximum arc voltage is about 60V when current is 10kA[5]. The calculation field is 10 times the size of the model, and the simulation is terminated when the error criterion of calculation matrix is set to less than 1% in the software.

    2 Simulation Results

    2.1 AMF Distribution at CP Moment

    When the current frequency is 400Hz, the AMF distribution at CP moment is shown in Fig.2, in which point Q refers to the center of the magnetic field, and point P refers to the maximum magnetic flux density. The line between P and Q is a specified observation diameter.

    Fig.2 AMF distribution at CP moment (f=400Hz)

    It can be seen from the simulation results that the magnetic flux density in the contact center is significantly lower than that in the surrounding area at CP moment. There are six peak areas, which must be related to the form of slots on the surface of contact blade and the staggered placement of contacts (see Fig. 1). As the current flows along the shortest path, the slot shortens the conduction path of the eddy current and the eddy current decreases. Therefore, the magnetic flux intensity of the AMF between the two slots is higher and the delay phase is less. However, in the middle of the contact blade, the eddy current has a large closed conduction path, and the AMF at this area is greatly affected by the eddy current, with low magnetic flux density and large delay phase. The distribution of this multi-peak region may be the reason that makes the cathode spots and arc columns appear multi-distribution[5-6].

    2.2 AMF Distribution at CZ Moment

    Fig.3 shows the AMF distribution at the CZ moment with current frequency of 400Hz.

    Fig.3 AMF distribution in middle plane at CZ moment (f = 400Hz)

    As at CZ moment, there are 13 peak areas of magnetic flux density in the middle plane, among which 12 are in two adjacent slots where the contact is staggered, and 1 is in the center.is higher in the central peak area. Fig.4 shows the magnetic flux density in the middle plane of P-Q diameter at different current phases.

    It can be seen that, before the current peak, the AMF of each point in P-Q diameter increases with the increase of current. However the increase rate of the center is slow and theis lower than that of other regions. At CP moment, the maximumat point P reaches 15.94mT, and at this time,of point Q is only 10.53mT. After CP, the further away from the center, the faster the AMF decreases, whereis almost zero. In the center, the AMF decrease slowly and there is residual magnetic field, which is consistent with Fig.3. The residualat point Q is about 3.67mT. The change process also indicates that the magnetic field of the contact center is the most affected by the eddy current, and the hysteresis of AMF is the most obvious. In the interruption process, residual plasmas in arc gap will be under the control of residual magnetic field over a long phase and are difficult to spread quickly at IF. Moreover, if the residual magnetic field is strong, the interruption may be failed under the transient recovery voltage (TRV) after CZ[20-21].

    Fig.4 Magnetic flux density of P-Q diameter at different current phases

    2.3 AMF Hysteresis

    When the current frequency increases from 400Hz to 800Hz, the distribution of AMF is similar to that at 400Hz. The effect of frequency on the center point Q is shown in Fig.5.

    With the frequency increases, the hysteresis of AMF is much more obvious. When the frequency is 400Hz, the residual magnetic flux density of Q is 2.80mT at CZ, and the hysteresis phase is about 20°. When the frequency is 800Hz, the residual magnetic flux density of Q is 3.65mT, and the hysteresis phase is much higher than 30°. And the effect of frequency on point P is shown in Fig.6.

    Fig.6 Magnetic flux density of P

    With the frequency increases, the maximum value of P reduces. When the frequency is 400Hz, the maximum magnetic flux density of P is 15.94mT, and when the frequency is 800Hz, the maximum value of P is 15.72mT.

    It can be seen that as the current frequency increases, the eddy current effect of the AMF will be stronger, causing the magnetic flux density of the eddy current magnetic field much stronger. In order to maintain a vector synthesis relationship, the amplitude ofdecrease, and the hysteresis increases. Therefore, the eddy current effect and the hysteresis phenomenon will be strengthened by the increase of frequency.

    Interruption ability experiment is carried out in AMF type vacuum interrupter. Vacuum circuit breaker of AMF type with contact materials of CuCr50 and a diameter of 41mm is selected for experiment in this section, with an open distance of 3mm. During the experiment, the current frequency is changed, and the current peak values of successful and failed breaking at different frequencies are obtained, as shown in Tab.2. Thesuccesscolumn in Tab.2 indicates the maximum first-half current peak value of the successful breaking whereas thefailedcolumn represents the current peak value when the breaking fails. For each frequency, the limit breaking test is carried out for more than 10 times. It should be noted that when the current frequency is 500Hz and current peak is 16.5kA. Sometimes the breaking is successful and sometimes it isn’t. The current value 16.5kA is considered to be the critical value of breaking. There is a similar situation for 15.5kA at 600Hz.

    Tab.2 Results of interruption experiment at different frequency

    Fig.7b shows the current and arc image of the vacuum arc at a frequency of360Hz.Don the time axis represents the current zero-crossing moment. When the current crosses zero, the post-arc discharge channel can be observed from the arc image, and the post-arc current can be clearly observed in the current curve. This is because the magnetic field hysteresis caused by the eddy current effect hinders the diffusion of the remaining plasma. A similar phenomenon can also be found in the current and arc image of the 500Hz vacuum arc as shown in Fig.7c.

    Fig.7 Interruption experiment at different frequency (AMF, CuCr50, 41mm)

    3 Discussion

    3.1 Eddy Current Effect

    The eddy effect will cause a magnetic field hysteresis. As the cycle time is changed with variation in frequency, the delay time is not sufficient to explain the hysteresis. Thus, in this paper, current phase, is introduced to analyze the AMF distribution with the same instantaneous current value but with different frequency. For example, current phase is π/2 (90°) at CP time. The current is given by

    wherepeakis the current peak,is the frequency andis the current phase. The AMF,, in the contact gap is related to the current magnetic fieldi, generated by the current, and eddy current magnetic fielde, generated by the eddy currente.

    According to Maxwell's equations, if displacement current is not taken into account, then there will be

    As known from Equ.(2), the current, which flows through the contacts, is in the same phase as the current magnetic fieldi. The eddy currente, is inducted by AMF and the eddy current magnetic field,e, lags behindby π/2. The composition of the AMF is shown in Fig. 8, in which the angle,, indicates the phase by which the current magnetic fieldi, lags behind the AMF.

    Fig.8 The AMF generated by the contacts

    While the current frequency is constant and the amplitude increases,iandewill increase in proportion; thus the hysteresis phase,, is constant. However, if the current amplitude is constant and the frequency increases, the amplitude ofiis constant and the amplitude ofeincreases. To maintain a vector synthesis relationship, the amplitude ofmust decrease, as well as the hysteresis phase α must increase, as displayed in Fig.8b. Therefore, the eddy current effect and the hysteresis phenomenon will be strengthened by the increase of frequency.

    3.2 Slot Number of Blade

    The AMF type vacuum interrupters with 6 and 4 slots are displayed in Fig.9.

    Fig.9 AMF type vacuum interrupters with 6 and 4 slots

    As the current flows along the shortest path, the slot will shorten the conduction path of the eddy current. The slot number of contact blade will affect the distribution of AMF. When the current frequency is 400 Hz and the slot number 4, the AMF distribution is shown in Fig.10.

    Compared with the vacuum interrupter with 6 slots, the peak area of magnetic flux density reduces from 6 to 4 at CP moment. While at CZ, it decreases from 13 to 9. It indicates that the number of peak areas of AMF is related to the slot number and staggered placement of contacts. And in Fig.11, the effect of frequency change on theat the center point Q and P is shown.

    Fig.10 AMF in the middle plane (f = 400Hz, n = 4)

    Fig.11 Magnetic flux density ofQ and P at different frequencies

    As the frequency increases, the hysteresis of AMF is much more obvious. When the frequency is 400Hz, the residual magnetic flux densityQrofQis 3.88mT at CZ, and the hysteresis phase is about 20°. When the frequency is 800Hz, the residual magnetic flux densityQrofQ is 5.00mT, and the hysteresis phase is much higher than 35°. As the frequency is 400Hz, the maximum magnetic flux density of P is 14.85mT, and when the frequency is 800Hz, the maximum value of P is 15.53mT. Compared with the data in 2.3, when the slot number of blade is reduced from 6 to 4, as shown in Tab. 3, for the center point Q, the hysteresis is much more obvious at CZ. For the point P, the maximum value of magnetic flux density decreases. It can be seen that the decrease of the slot number makes the eddy effect more obvious.

    Tab.3 Magnetic flux density for Q and P

    3.3 Angle of Coil

    The AMF type vacuum interrupters with= π/2, π/3, π are displayed respectively in Fig.12.

    Fig.12 AMF type vacuum interrupters with γ = π/2, π/3, π

    When the current frequency is 400Hz and= π/2 and π, the AMF distribution at CP are shown in Fig.13.

    As can be seen from Fig.13, the rotation angle of the coil affects the maximum value of the AMF. Then the relation between the maximum value of magnetic flux density and rotation angle at CP moment can beobtained, as shown in Fig.14. Withincreases, the maximum value of the magnetic induction intensity increases approximately linearly, and the change trend is independent of frequency. For example at 400Hz, the maximum magnetic flux density is 13.42mT for= π/2, and the maximum magnetic flux density is 21.38mT for= π.

    Fig.14 Relation between the maximum value of magnetic flux density and rotation angle of coil

    4 Conclusion

    The AMF distribution in vacuum interrupter in IF (400-800Hz) system of more electric aircraft is studied in this paper.

    1) In the process of current variation, the change of magnetic field in the central region lags behind that in other regions. At CP moment, there are peak areas of magnetic flux density where the contact slot is staggered. And there is obvious residual magnetic field in the central area at CZ.

    2) As the frequency increases, the eddy effect becomes more obvious, weakening the magnetic induction intensity of the AMF. For the center point, the frequency increase leads to the increase of residual magnetic field at CZ, and the hysteresis phase of magnetic field is much bigger. The effect of magnetic field hysteresis on breaking ability is verified by experiments.

    3) The eddy effect can be reduced by increasing the slot number of blade. When the rotation angle of the coil is increased, the maximum magnetic flux density in the middle plane increases approximately linearly.

    [1]Zhang Zhuoran, Geng Weiwei, Liu Ye, et al. Feasibility of a new ironless-stator axial flux permanent magnet machine for aircraft electric propulsion application[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(1): 30-38.

    [2]He Yong, Zhao Wenxiang, Tang Hongyu, et al. Auxiliary teeth design to reduce short-circuit current in permanent magnet generators[J]. China Electrotechnical Society Transactions on Electrical Machines and Systems, 2020, 4(3): 198-205.

    [3]Jiang Yuan, Li Qing, Cui Jiarui, et al. Re-ignition of intermediate frequency vacuum arc at axial magnetic field[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3860-3868.

    [4]Jiang Yuan, Wu Jianwen, Tang Wei. External axial magnetic field excitation system in intermediate-frequency current interruption experiment[J]. Transactions of China Electrotechnical Society, 2015, 30(9): 39-45.

    [5]Jiang Yuan, Wu Jianwen. Interruption phenomenon in intermediate-frequency vacuum arc[J]. Plasma Science and Technology, 2016, 18(3): 311-318.

    [6]Wang Jing, Wu Jianwen, Zhu Liying, et al. Arc behavior of intermediate-frequency vacuum arc on axial magnetic field contacts[J]. IEEE Transactions on Plasma Science, 2011, 39(6): 1336-1343.

    [7]Wang Jing, Wu Jianwen, Zhu Liying. Properties of intermediate-frequency vacuum arc under axial magnetic field[J]. IEEE Transactions on Plasma Science, 2009, 37(8): 1477-1483.

    [8]Zhu Liying, Wu Jianwen, Jiang Yuan. Motion and split of vacuum arc column in transverse magnetic field contacts at intermediate-frequency[J]. Plasma Science and Technology, 2014, 16(5): 454-459.

    [9]Zhu Liying, Wu Jianwen, Zhang Xueming. Arc movement of intermediate-frequency vacuum arc on TMF contacts[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2014-2021.

    [10]Yanabu S, Souma S, Tamagawa T, et al. Vacuum arc under an axial magnetic field and its interrupting ability[J]. Proceedings of the Institution of Electrical Engineers, 1979, 126(6): 313-320.

    [11]Bo Kai, Zhou Xue, Zhai Guofu, et al. Experiments and simulation analysis of the temperature-rise characteristics of high current vacuum contactor[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5135-5143.

    [12]Fu Si, Cao Yundong, Li Jing, et al. Simulation researches on vacuum metal vapor arc formationat the initial moment of contact parting[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2922-2931.

    [13]Wang Zhongyi, Zheng Yuesheng, Liu Zhiyuan, et al. Arc behaviours in vacuum interrupters with axial magnetic field electrodes[J]. Plasma Science and Technology, 2008, 10(5): 569-574.

    [14]Li Yongjian, Yan Xinxiao, Zhang Changgeng, et al. Numerical prediction of losses and local overheating in transformer windings based on magnetic-thermal-fluid model[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4483-4491.

    [15]Wang Ning, Wang Huifang, Yang Shiyou. 3D eddy current and temperature field analysis of large hydro-generators in leading phase operations[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(2): 210-215.

    [16]Liu Zhiyuan, Wang Dong, Rong Mingzhe, et al. Comparison of vacuum arc behaviors for slot-type axial magnetic field contacts with and without iron plates[J]. IEEE Transactions on Plasma Science, 2009, 37(8): 1458-1468.

    [17]Shi Zongqian, Jia Shenli, Song Xiaochuan, et al. The influence of axial magnetic field distribution on high-current vacuum arc[J]. IEEE Transactions on Plasma Science, 2009, 37(8): 1446-1451.

    [18]Henon A, Altimani T, Picot P, Schellekens H. 3D finite element simulation and synthetic tests of vacuum interrupters with axial magnetic field contacts[C]//20th International Symposium on Discharges and Electrical Insulation in Vacuum, Tours, France, 2002: 463-466.

    [19]Wang Lijun, Hu Lilan, Zhou Xin, et al. Simulation of high-current vacuum arc characteristics with big-size electrode conditions[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 163-170.

    [20]Schade E, Dullni E. Recovery of breakdown strength of a vacuum interrupter after extinction of high currents[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2002, 9(2): 207-215.

    [21]Ge Guowei, Cheng Xian, Wang Huaqing, et al. Investigation on the vacuum arc current commutation criteria of the low voltage DC hybrid circuit breaker[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4038-4047.

    中頻條件下真空滅弧室的縱向磁場仿真

    蔣 原1李 擎1夏麗娜1武建文2賈博文2夏尚文2

    (1. 工業(yè)過程知識自動化教育部重點實驗室(北京科技大學(xué)自動化學(xué)院) 北京 100083 2. 北京航空航天大學(xué)自動化科學(xué)與電氣工程學(xué)院 北京 100083)

    該文研究了中頻400~800Hz條件下縱磁真空滅弧室內(nèi)的磁場特性,利用Ansys Maxwell求解了三維瞬態(tài)縱向磁場分布。由計算結(jié)果可知:在電流變化的過程中,中心區(qū)域縱向磁場的變化明顯滯后于其他區(qū)域。電流峰值時在觸頭片開槽交錯放置的位置有磁場峰值區(qū)域,電流過零時中心區(qū)域有明顯剩磁。當頻率增加時,渦流效應(yīng)更明顯,使縱向磁場的磁感應(yīng)強度值減弱。對中心點,頻率提高導(dǎo)致過零時剩磁增加,磁場滯后相位更明顯,影響電弧擴散。增加觸頭片開槽數(shù)可以減弱渦流效應(yīng),而增加觸頭杯座槽旋轉(zhuǎn)角,觸頭中間平面磁感應(yīng)強度的最大值近似線性增加。文中通過分析電弧形態(tài)和電壓等實驗結(jié)果驗證了磁場滯后對真空滅弧室的開斷能力的影響。

    多電飛機 縱向磁場 真空滅弧室 中頻 渦流效應(yīng)

    TM561

    10.19595/j.cnki.1000-6753.tces.L90123

    This work is supported by National Natural Science Foundation of China (51977002), and Guangdong Basic and Applied Basic Research Foundation (No.2020A1515110725), Aviation Science Fund (2020Z025074001), and Fundamental Research Funds for the Central Universities (FRT-TP-19-035A1).

    June 25, 2020;

    January 4, 2021.

    male, Member IEEE, PhD, Major research interests include the theory and application of avia-vacuum arcs, electrical appliances detection and fault diagnosis, intelligent micro-grid and new energy technology.E-mail: jiangy_luckystar@163.com

    , male, Professor, PhD, Major research interests include intelligent control and intelligent optimization.E-mail: liqing@ies.ustb.edu.cn (Corresponding author)

    (編輯 郭麗軍)

    猜你喜歡
    剩磁滅弧磁感應(yīng)
    空間用太陽電池陣雙回路型剩磁消除方法研究
    跨空海界面磁感應(yīng)通信特性分析及應(yīng)用
    交流接觸器滅弧結(jié)構(gòu)對電壽命影響的試驗研究
    電磁感應(yīng)中的“知三求三”
    城市軌道交通裝備的雙向直流接觸器滅弧方式比較
    發(fā)電機剩磁磁場對輪胎吊起重機控制系統(tǒng)的影響分析
    防爆電機(2021年5期)2021-11-04 08:16:32
    真空滅弧室漏電流的機理分析及對策
    小型斷路器加速滅弧的改進設(shè)計與實驗分析
    火場條件對剩磁的影響研究
    電流互感器飽和鐵心的剩磁在額定工況下的狀態(tài)分析
    電測與儀表(2014年2期)2014-04-04 09:03:54
    a 毛片基地| 大香蕉久久网| 青春草视频在线免费观看| 成人午夜精彩视频在线观看| 国产毛片在线视频| 国产一区二区三区综合在线观看| 精品人妻熟女毛片av久久网站| 国产高清不卡午夜福利| 久久国产精品大桥未久av| 国产福利在线免费观看视频| 久久人妻熟女aⅴ| 在线看a的网站| 国产福利在线免费观看视频| 日韩av不卡免费在线播放| 男女免费视频国产| www.av在线官网国产| 国产欧美日韩一区二区三区在线| 女的被弄到高潮叫床怎么办| 国产精品一二三区在线看| 亚洲一区中文字幕在线| 欧美成人午夜精品| 天堂俺去俺来也www色官网| 高清欧美精品videossex| 2021少妇久久久久久久久久久| 两个人看的免费小视频| 男女边吃奶边做爰视频| 日本wwww免费看| 日韩精品有码人妻一区| 久久精品久久久久久噜噜老黄| 中文欧美无线码| 岛国毛片在线播放| netflix在线观看网站| 老司机在亚洲福利影院| 久久久久久久国产电影| tube8黄色片| 国产精品国产av在线观看| 亚洲人成77777在线视频| 欧美精品人与动牲交sv欧美| 亚洲欧洲国产日韩| 又粗又硬又长又爽又黄的视频| 中文字幕最新亚洲高清| 综合色丁香网| 丝袜美足系列| 女性被躁到高潮视频| 性色av一级| 国产免费又黄又爽又色| 久久久亚洲精品成人影院| 国产成人啪精品午夜网站| 在线 av 中文字幕| kizo精华| 少妇被粗大猛烈的视频| 又黄又粗又硬又大视频| 在线观看免费视频网站a站| 满18在线观看网站| 中文字幕最新亚洲高清| 国产日韩欧美视频二区| 捣出白浆h1v1| 国产一区二区在线观看av| 丁香六月欧美| 男女午夜视频在线观看| 成人毛片60女人毛片免费| 日韩av免费高清视频| 在线 av 中文字幕| 欧美黄色片欧美黄色片| 少妇被粗大猛烈的视频| 最近手机中文字幕大全| 久久狼人影院| 大香蕉久久成人网| 91精品国产国语对白视频| 九九爱精品视频在线观看| 性高湖久久久久久久久免费观看| 亚洲免费av在线视频| 女人爽到高潮嗷嗷叫在线视频| 高清在线视频一区二区三区| 国产成人精品无人区| av网站在线播放免费| 国产老妇伦熟女老妇高清| 亚洲国产看品久久| 国产精品偷伦视频观看了| 两个人看的免费小视频| 国产精品一二三区在线看| 亚洲国产毛片av蜜桃av| 精品亚洲成国产av| 狂野欧美激情性bbbbbb| 狂野欧美激情性bbbbbb| 建设人人有责人人尽责人人享有的| 丝袜喷水一区| www.av在线官网国产| 亚洲国产日韩一区二区| 国产精品蜜桃在线观看| 婷婷成人精品国产| 亚洲五月色婷婷综合| 国产精品久久久av美女十八| 大香蕉久久网| av在线观看视频网站免费| 日本午夜av视频| 免费在线观看黄色视频的| 少妇的丰满在线观看| 丰满迷人的少妇在线观看| 国产成人免费无遮挡视频| 久久久久国产精品人妻一区二区| 国产在线一区二区三区精| 国产男女超爽视频在线观看| 一级片'在线观看视频| 国产高清不卡午夜福利| 日韩中文字幕视频在线看片| 久久人人爽人人片av| 99国产精品免费福利视频| 69精品国产乱码久久久| 久久精品国产综合久久久| 亚洲成人免费av在线播放| 男女之事视频高清在线观看 | 精品免费久久久久久久清纯 | 九色亚洲精品在线播放| 捣出白浆h1v1| 操出白浆在线播放| 91精品国产国语对白视频| 丁香六月天网| 视频在线观看一区二区三区| 国产1区2区3区精品| 人人妻,人人澡人人爽秒播 | 69精品国产乱码久久久| 久久精品亚洲熟妇少妇任你| 欧美老熟妇乱子伦牲交| 亚洲国产av影院在线观看| 午夜日韩欧美国产| 亚洲国产精品成人久久小说| 只有这里有精品99| 亚洲精品视频女| 69精品国产乱码久久久| 国产成人啪精品午夜网站| 2021少妇久久久久久久久久久| 久久久久久人人人人人| 18禁国产床啪视频网站| 高清黄色对白视频在线免费看| 别揉我奶头~嗯~啊~动态视频 | 国产片特级美女逼逼视频| av卡一久久| 免费日韩欧美在线观看| 狂野欧美激情性bbbbbb| 天天躁夜夜躁狠狠躁躁| 亚洲成人国产一区在线观看 | 蜜桃在线观看..| 亚洲久久久国产精品| 性高湖久久久久久久久免费观看| 国产有黄有色有爽视频| 日韩大码丰满熟妇| 少妇的丰满在线观看| 久久精品久久精品一区二区三区| 麻豆乱淫一区二区| 日韩 欧美 亚洲 中文字幕| 大陆偷拍与自拍| 交换朋友夫妻互换小说| 美女主播在线视频| 搡老乐熟女国产| 男人爽女人下面视频在线观看| 丝瓜视频免费看黄片| 精品一品国产午夜福利视频| 丝袜美腿诱惑在线| 一区在线观看完整版| 国产精品女同一区二区软件| 国产精品久久久久成人av| 久久人人爽人人片av| 麻豆乱淫一区二区| 国产亚洲av片在线观看秒播厂| 免费看不卡的av| 美女脱内裤让男人舔精品视频| 欧美日韩视频精品一区| 啦啦啦在线观看免费高清www| 国产精品免费大片| 亚洲国产欧美网| 精品少妇一区二区三区视频日本电影 | 18在线观看网站| 国产精品免费大片| 亚洲国产最新在线播放| 蜜桃国产av成人99| 久久久精品免费免费高清| 久久国产精品大桥未久av| 国产精品无大码| 婷婷色综合大香蕉| 国产视频首页在线观看| 亚洲,一卡二卡三卡| 97人妻天天添夜夜摸| 日韩制服丝袜自拍偷拍| tube8黄色片| 国产毛片在线视频| 亚洲精品久久久久久婷婷小说| 国产亚洲欧美精品永久| 欧美人与性动交α欧美软件| 久久精品国产a三级三级三级| 久久av网站| 欧美亚洲 丝袜 人妻 在线| 啦啦啦在线观看免费高清www| 在线观看www视频免费| 午夜福利在线免费观看网站| 中国国产av一级| 蜜桃国产av成人99| 看免费成人av毛片| 街头女战士在线观看网站| 青春草亚洲视频在线观看| 不卡av一区二区三区| 女人高潮潮喷娇喘18禁视频| 国产精品一区二区在线观看99| 亚洲一卡2卡3卡4卡5卡精品中文| 中国国产av一级| 久久久久网色| 美女午夜性视频免费| 成人毛片60女人毛片免费| 久久久久视频综合| 国产精品久久久久久精品电影小说| 精品一品国产午夜福利视频| 老司机影院毛片| 午夜免费男女啪啪视频观看| 精品国产超薄肉色丝袜足j| 久久精品国产亚洲av涩爱| 国产熟女午夜一区二区三区| 交换朋友夫妻互换小说| 街头女战士在线观看网站| 久久人人爽av亚洲精品天堂| 黄网站色视频无遮挡免费观看| 亚洲精品美女久久久久99蜜臀 | 天天添夜夜摸| 成人国产av品久久久| 欧美日韩综合久久久久久| 亚洲av中文av极速乱| 国产精品免费大片| 国产一级毛片在线| 国产成人精品在线电影| 日韩中文字幕视频在线看片| 国产亚洲av高清不卡| 不卡视频在线观看欧美| av片东京热男人的天堂| av在线播放精品| 欧美 日韩 精品 国产| 午夜免费观看性视频| 一级片免费观看大全| 精品午夜福利在线看| 啦啦啦中文免费视频观看日本| 国产精品一区二区精品视频观看| 国产一区有黄有色的免费视频| 国产精品一区二区在线观看99| 精品一区二区免费观看| 观看美女的网站| 久久精品久久久久久久性| 亚洲视频免费观看视频| 日韩av免费高清视频| 纯流量卡能插随身wifi吗| 欧美精品人与动牲交sv欧美| 热99国产精品久久久久久7| 国产一区二区三区综合在线观看| 伦理电影免费视频| 青春草视频在线免费观看| 国产欧美日韩综合在线一区二区| 建设人人有责人人尽责人人享有的| 亚洲欧美一区二区三区黑人| 咕卡用的链子| 十八禁网站网址无遮挡| 久久午夜综合久久蜜桃| 少妇被粗大的猛进出69影院| 免费久久久久久久精品成人欧美视频| 无遮挡黄片免费观看| 如日韩欧美国产精品一区二区三区| 亚洲国产精品成人久久小说| 国产免费福利视频在线观看| 人妻人人澡人人爽人人| 亚洲成av片中文字幕在线观看| 成年女人毛片免费观看观看9 | 18禁观看日本| 亚洲色图 男人天堂 中文字幕| 欧美日韩av久久| 久久国产精品大桥未久av| 午夜免费鲁丝| 国产成人一区二区在线| 国产精品三级大全| 波多野结衣av一区二区av| 观看av在线不卡| 狂野欧美激情性bbbbbb| 老鸭窝网址在线观看| 精品卡一卡二卡四卡免费| 国产伦理片在线播放av一区| 国产亚洲最大av| 国产精品麻豆人妻色哟哟久久| 又大又黄又爽视频免费| 国产欧美日韩一区二区三区在线| 两性夫妻黄色片| 一级a爱视频在线免费观看| 国产熟女欧美一区二区| 精品卡一卡二卡四卡免费| 精品少妇黑人巨大在线播放| 久久影院123| 久久婷婷青草| 免费久久久久久久精品成人欧美视频| 欧美97在线视频| 日本wwww免费看| 飞空精品影院首页| 日本午夜av视频| 建设人人有责人人尽责人人享有的| 交换朋友夫妻互换小说| 久久久久精品性色| 精品免费久久久久久久清纯 | 亚洲国产毛片av蜜桃av| 十分钟在线观看高清视频www| 999久久久国产精品视频| 两性夫妻黄色片| 侵犯人妻中文字幕一二三四区| 免费女性裸体啪啪无遮挡网站| 亚洲婷婷狠狠爱综合网| 亚洲av电影在线进入| 色视频在线一区二区三区| av视频免费观看在线观看| 成年女人毛片免费观看观看9 | 亚洲,欧美精品.| 亚洲成国产人片在线观看| 韩国精品一区二区三区| 精品久久久久久电影网| av线在线观看网站| 操出白浆在线播放| 免费黄网站久久成人精品| 成人手机av| 一级a爱视频在线免费观看| 成人毛片60女人毛片免费| 夜夜骑夜夜射夜夜干| 国产精品.久久久| 黄片播放在线免费| 亚洲成人国产一区在线观看 | 国产乱来视频区| 国产精品 国内视频| 亚洲一区中文字幕在线| 国产精品久久久久久人妻精品电影 | 热99久久久久精品小说推荐| 国产精品欧美亚洲77777| 一个人免费看片子| 777米奇影视久久| 丁香六月天网| 成人国产av品久久久| 日韩人妻精品一区2区三区| 一区二区三区乱码不卡18| 久久女婷五月综合色啪小说| 亚洲欧美一区二区三区久久| 国产有黄有色有爽视频| 国产在视频线精品| 亚洲成人av在线免费| 热re99久久国产66热| 十八禁网站网址无遮挡| 欧美日韩视频高清一区二区三区二| 蜜桃在线观看..| 亚洲精品国产色婷婷电影| 午夜免费观看性视频| 亚洲国产中文字幕在线视频| 另类亚洲欧美激情| 两个人看的免费小视频| 捣出白浆h1v1| 美女福利国产在线| 大陆偷拍与自拍| 午夜91福利影院| 亚洲成色77777| 男男h啪啪无遮挡| 女性生殖器流出的白浆| 精品少妇内射三级| 欧美日韩综合久久久久久| 精品国产国语对白av| 久久久国产精品麻豆| 美女福利国产在线| 国产精品av久久久久免费| 一级毛片我不卡| 最近中文字幕2019免费版| 国产精品人妻久久久影院| 亚洲精品国产av蜜桃| 日本色播在线视频| 国产欧美日韩一区二区三区在线| 视频区图区小说| 999久久久国产精品视频| 99精品久久久久人妻精品| 国产无遮挡羞羞视频在线观看| 免费高清在线观看视频在线观看| 久久久久久免费高清国产稀缺| 国产黄频视频在线观看| 国产一级毛片在线| 中文字幕人妻熟女乱码| 久久人人97超碰香蕉20202| 欧美人与性动交α欧美精品济南到| 久久久精品区二区三区| av免费观看日本| 晚上一个人看的免费电影| 亚洲美女黄色视频免费看| 国产精品国产三级国产专区5o| 亚洲av中文av极速乱| 韩国av在线不卡| 国产黄频视频在线观看| 国产欧美日韩一区二区三区在线| 日本色播在线视频| 亚洲欧美一区二区三区国产| 欧美激情高清一区二区三区 | 免费人妻精品一区二区三区视频| 久久热在线av| 无遮挡黄片免费观看| 日韩人妻精品一区2区三区| av国产久精品久网站免费入址| 在线精品无人区一区二区三| 欧美国产精品一级二级三级| 999久久久国产精品视频| 男女免费视频国产| 亚洲欧美清纯卡通| 国产高清不卡午夜福利| 国产av国产精品国产| 欧美老熟妇乱子伦牲交| √禁漫天堂资源中文www| 精品亚洲乱码少妇综合久久| 成人黄色视频免费在线看| 国产精品嫩草影院av在线观看| 国产毛片在线视频| 精品午夜福利在线看| 在线亚洲精品国产二区图片欧美| 欧美精品人与动牲交sv欧美| 丝袜美足系列| 国产成人一区二区在线| 精品午夜福利在线看| 18禁动态无遮挡网站| 国产精品国产三级专区第一集| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产亚洲av涩爱| 国产成人啪精品午夜网站| 亚洲少妇的诱惑av| 久久精品亚洲av国产电影网| 久久精品亚洲熟妇少妇任你| 伦理电影大哥的女人| www.熟女人妻精品国产| 亚洲欧美色中文字幕在线| 国产国语露脸激情在线看| 久久久精品区二区三区| 电影成人av| 高清欧美精品videossex| 国产一区二区激情短视频 | 色网站视频免费| 青青草视频在线视频观看| 日韩电影二区| √禁漫天堂资源中文www| 欧美黄色片欧美黄色片| 大片免费播放器 马上看| 免费在线观看完整版高清| 欧美另类一区| 中文乱码字字幕精品一区二区三区| 亚洲欧美日韩另类电影网站| 日韩熟女老妇一区二区性免费视频| 亚洲av福利一区| 老司机在亚洲福利影院| 啦啦啦啦在线视频资源| 国产女主播在线喷水免费视频网站| 国产免费视频播放在线视频| 深夜精品福利| 男女边吃奶边做爰视频| 亚洲图色成人| 午夜av观看不卡| 亚洲精品成人av观看孕妇| 欧美日韩综合久久久久久| 国产免费视频播放在线视频| 日本黄色日本黄色录像| 久久综合国产亚洲精品| 久久天堂一区二区三区四区| 夫妻午夜视频| 精品视频人人做人人爽| 国产一区亚洲一区在线观看| 高清在线视频一区二区三区| 欧美日韩一级在线毛片| 成年人午夜在线观看视频| 美女高潮到喷水免费观看| 在线观看免费午夜福利视频| 久久久久久人妻| 99热网站在线观看| 女人高潮潮喷娇喘18禁视频| 一级毛片 在线播放| 精品人妻一区二区三区麻豆| 在线观看免费午夜福利视频| 亚洲五月色婷婷综合| 亚洲精品美女久久久久99蜜臀 | 国产一区亚洲一区在线观看| www.自偷自拍.com| 国产精品一国产av| 久久精品久久久久久久性| 十八禁人妻一区二区| 水蜜桃什么品种好| 天天躁夜夜躁狠狠久久av| 在线 av 中文字幕| 天天躁夜夜躁狠狠久久av| 97精品久久久久久久久久精品| 五月开心婷婷网| 亚洲欧洲日产国产| 巨乳人妻的诱惑在线观看| 一区二区av电影网| 超碰97精品在线观看| 街头女战士在线观看网站| 韩国高清视频一区二区三区| 亚洲精品自拍成人| av女优亚洲男人天堂| 国产女主播在线喷水免费视频网站| 国产精品熟女久久久久浪| 国产免费福利视频在线观看| 2021少妇久久久久久久久久久| 黄频高清免费视频| 精品久久久精品久久久| 国产高清不卡午夜福利| 一级毛片我不卡| 男女之事视频高清在线观看 | 色视频在线一区二区三区| 男女床上黄色一级片免费看| 欧美日韩视频高清一区二区三区二| 欧美黑人欧美精品刺激| 黄色怎么调成土黄色| 欧美人与善性xxx| 免费观看性生交大片5| 岛国毛片在线播放| 国产成人免费无遮挡视频| 国产一区二区激情短视频 | 美女大奶头黄色视频| 一边摸一边抽搐一进一出视频| 在线看a的网站| 男人爽女人下面视频在线观看| 最近最新中文字幕大全免费视频 | 亚洲精品日本国产第一区| 午夜福利网站1000一区二区三区| 五月天丁香电影| 国产精品偷伦视频观看了| av在线app专区| 成人影院久久| 午夜福利在线免费观看网站| 亚洲五月色婷婷综合| 亚洲国产av影院在线观看| 少妇被粗大的猛进出69影院| 色视频在线一区二区三区| 黄色视频不卡| 亚洲婷婷狠狠爱综合网| 精品国产露脸久久av麻豆| 国产成人a∨麻豆精品| 看免费成人av毛片| av在线播放精品| 成人亚洲精品一区在线观看| 日韩成人av中文字幕在线观看| 亚洲国产精品999| xxxhd国产人妻xxx| 久久女婷五月综合色啪小说| 国产精品人妻久久久影院| 中文字幕制服av| 国产一区二区在线观看av| 国产亚洲av片在线观看秒播厂| 国产97色在线日韩免费| 少妇精品久久久久久久| 久久久国产一区二区| 考比视频在线观看| 青春草亚洲视频在线观看| 亚洲在久久综合| 在线观看免费高清a一片| 亚洲av电影在线进入| 亚洲精品国产av成人精品| 在线看a的网站| 最近2019中文字幕mv第一页| 久久天躁狠狠躁夜夜2o2o | 欧美成人精品欧美一级黄| av福利片在线| 99久久人妻综合| 桃花免费在线播放| 在线观看一区二区三区激情| 国产成人啪精品午夜网站| 亚洲欧美成人精品一区二区| 青青草视频在线视频观看| 黄色一级大片看看| 丰满少妇做爰视频| 男女下面插进去视频免费观看| 亚洲欧美精品综合一区二区三区| 男人操女人黄网站| 精品视频人人做人人爽| 大片免费播放器 马上看| 十八禁人妻一区二区| 国产一区有黄有色的免费视频| 久久精品久久精品一区二区三区| 人成视频在线观看免费观看| 男人舔女人的私密视频| 国产亚洲最大av| av.在线天堂| 18禁动态无遮挡网站| 欧美另类一区| 欧美日韩综合久久久久久| 亚洲av综合色区一区| 免费久久久久久久精品成人欧美视频| 国产免费现黄频在线看| 国产乱来视频区| 一本色道久久久久久精品综合| 久久鲁丝午夜福利片| a 毛片基地| 桃花免费在线播放| 日韩,欧美,国产一区二区三区| 丝袜脚勾引网站| 日日撸夜夜添| 欧美人与善性xxx| 中文乱码字字幕精品一区二区三区| 最黄视频免费看| 赤兔流量卡办理| 亚洲自偷自拍图片 自拍| av在线观看视频网站免费| tube8黄色片| 在线观看免费高清a一片| 免费人妻精品一区二区三区视频| av在线老鸭窝| 久久99热这里只频精品6学生| a级毛片在线看网站| 在线观看人妻少妇| 亚洲精品av麻豆狂野| 亚洲一区二区三区欧美精品| 国产亚洲av片在线观看秒播厂| av在线播放精品| 十八禁人妻一区二区| 亚洲国产看品久久| 国产免费一区二区三区四区乱码| 久久久亚洲精品成人影院| 亚洲国产成人一精品久久久| 最近最新中文字幕免费大全7|