• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Consensus control of multi-manipulator systems based on disturbance observer under Markov switching topologies

    2021-06-07 10:07:10ChangRenQuanxinFu
    Control Theory and Technology 2021年2期

    Chang-E Ren · Quanxin Fu

    Abstract In this paper, to solve the consensus control problem of multi-manipulator systems under Markov switching topologies,we propose a distributed consensus control strategy based on disturbance observer. In multi-manipulator systems, external disturbance described by heterogeneous exogenous systems is considered, and all communication topologies are directed.First, a disturbance observer is presented to suppress the inf luence of unknown external disturbance, and the equivalent compensation is introduced into the control protocol in multi-manipulator systems. Then, a novel control protocol based on neighbor information is designed, which guarantees that multi-manipulator systems reach consensus under Markov switching topologies. Finally, two simulation examples verify the validity of the theoretical result.

    Keywords Multi-manipulator systems · Disturbance observer · Markov switching topologies · Consensus control

    1 Introduction

    The cooperative control of multi-agent systems (MASs)has become a hot issue in the f ield of control for the past few years. As a fundamental problem of cooperative control, the consensus problem has been studied from diff erent aspects, such as [ 1- 7]. The basic idea of the distributed consensus control problem is that the controller based on the information of the agent’s neighbors is designed so that the relevant states of all agents eventually tend to the same values. The work reported in [ 3, 5, 6] solved the consensus control problem of MASs by presenting the diff erent adaptive control algorithms. In [ 6], an adaptive control algorithm was presented to solve the consensus control problem of MASs, in which the internal model was constructed to solve the unknown disturbance. Two adaptive control algorithms based on fuzzy NNs were proposed for the consensus problem of MASs with constant and time-varying unknown control direction in [ 5]. In [ 3], an adaptive control algorithm was proposed for nonlinear MASs with unknown control direction, and then an iterative learning strategy was used to respond to the proposed control algorithm. The f initetime consensus control problem of MASs was addressed in [ 7] and [ 4]. Zuo and Tie [ 7] proposed two robust nonlinear control protocols to solve the f inite-time consensus control problem of MASs. Using the sliding mode control method, Ren and Chen [ 4] not only solved the asymptotic consensus problem of MASs but also solved the f inite-time consensus problem of MASs. In [ 1], a distributed controller was proposed by combining backstepping techniques and NNs-based state observer, which can ensure that MASs are uniformly ultimately bounded. Du et al. [ 2] proposed a control algorithm to reach consensus for the second-order MASs, in which each agent contained unknown nonlinear dynamic and unmeasurable velocity. Because of the rapid development of artif icial intelligence and robotics, robot manipulator has been applied in many f ields [ 8- 11], such as industrial manufacturing, medical treatment, which can simultaneously perform some tasks to improve effi ciency.Therefore, it is of practical signif icance to study the consensus control problem of multi-manipulator systems.

    In some existing literature on distributed consensus control problems, it often happens that the disturbance is not considered in the modeling process of the agent, such as [ 12] and [ 13]. However, the controller designed in the above situation would cause the performance of the system to decline or even malfunction. Traditional distributed control methods, such as robust control [ 14, 15], and backstepping method [ 16], are passively anti-disturbance and cannot quickly suppress the eff ects of the disturbance. As a result, anti-disturbance control methods get more and more attention [ 17- 20]. As one of the anti-disturbance control methods, the disturbance observer is designed in many papers to estimate unknown disturbance, and the equivalent compensation is introduced into the control protocol,such as [ 21] and [ 22]. In [ 21], a disturbance observer based on fuzzy logic systems was f irst adopted to estimate the diff erences between the nonlinear dynamic of diff erent agents, and an adaptive control algorithm was proposed for estimation errors and consensus problems. To compensate for the eff ects of mismatched disturbance, Wang et al.[ 22] designed a disturbance observer and proposed two distributed controllers based on the disturbance observer for homogeneous MASs. In this paper, the diff erence is that a disturbance observer is designed for the unknown external disturbance described by the heterogeneous exosystems, which can improve the control accuracy of multimanipulator systems.

    In the actual application, packet loss and node connection failure are frequent and often random in the process of information transmission, which makes the consensus control under f ixed topology no longer suitable. Therefore, it is more practical to consider the consensus control problem of MASs under random switching topologies, such as [ 23- 27]. It was required in [ 25] and [ 26] that the communication topology switched between some directed graphs, and all graphs contained a directed spanning tree. The work in [ 23] required that the communication topology G(t) across the time interval[tk,tk+1) was jointly connected, i.e., the union of graphs in the interval [tk,tk+1) was an undirected connected graph. Whereas,the study [ 24] only required that the union of graphs had a directed spanning tree. It means that the restriction of [ 24] is weaker than that of [ 23, 25, 26]. Like [ 24], it was also required in [ 27] that the union of graphs in the interval [tk,tk+1) had a directed spanning tree. Besides, the Markov process was introduced in [ 27] to drive the communication topology.

    Motivated by the above analyses, the objective of this paper is to design a consensus algorithm for multi-manipulator systems with the unknown external disturbance under Markov switching topologies. A disturbance observer is constructed to suppress the eff ects of the unknown disturbance described by a heterogeneous exogenous system.Moreover, the actual value of the disturbance is replaced by the estimated value of the disturbance observer in the control algorithm. It shows that the proposed control algorithm can well control multi-manipulator systems. The main contributions are stated as follows:

    (1) In contrast to the literature that does not consider the disturbance, such as [ 12, 28], multi-manipulator systems considered in this paper contain the unknown external disturbance, which indicates multi-manipulator systems model is more general. Furthermore, the unknown external disturbance considered in this paper is generated by an exogenous system, rather than being assumed to be bounded as in literature [ 15]. Moreover, a disturbance observer is presented to suppress the inf luence of the unknown external disturbance, which improves the control accuracy and robustness of multi-manipulator systems.

    (2) Compared with the existing literature on the consensus problem of multi-manipulator systems in fixed topology [ 11] and [ 29], this paper studies the consensus control problem under Markov switching topologies. Furthermore, it is only required that the union of graphs contains a directed spanning tree.Hence, the restriction for communication topology in this paper is much weaker than [ 25] and [ 26] in which each communication topology has a directed spanning tree.

    The proposed control scheme consists of the following parts. First, a disturbance observer will be used to compensate for the eff ects of unknown disturbance. Then, to realize the consensus of multi-manipulator systems under Markov switching topologies, a disturbance observer-based control algorithm is designed and proved by the Lyapunov stability theory. Finally, two simulations are given to verify the validity of the control algorithm.

    2 Preliminaries and problem statement

    2.1 Graph theory

    where k>0,and P∈?n×n is a positive def inite matrix.

    2.2 Problem statement

    Theith manipulator can be modeled as follows:

    whereqi,˙qiand¨qi∈?2represent the link’s position, velocity, and acceleration of theith follower manipulator respectively.Ti∈?2is the input torque vector, andωi∈?2is the external disturbance torque of theith follower manipulator.Gi(qi,˙qi) is aff ected by Coriolis, gravitational, and centripetal torque.Ji(qi) is a positive def inite inertia matrix,then ( 2) is rewritten as the following equations:

    Diff erent from [ 29], the external disturbance of the multimanipulator systems in this paper is generated by the following heterogeneous linear exogenous systems:

    Remark 1Systems ( 4) can be used to describe many types of disturbances, such as harmonic disturbance with unknown frequency, amplitude and initial phase.

    Define a probability space (Ω,F,P) , whereΩis the sample space, F is the event f ield, and P is a probability function def ined on F . Let the transition rates matrix of the homogeneous continuous-time Markov process be denoted byQ=(qmn) , which is given by

    Assumption 2 [ 32] The transition rates matrixQis ergodic.

    Remark 3From Assumption 1, it can draw a conclusion that all eigenvalues ofunare positive. According to Assumption 2, we can obtain that the Markov process has a unique invariant distributionι=[ι1,ι2,…,ιs] withι=min{ιm|m=1,2,…,s} , and all states of the Markov process can be mutually reachable in the state space. Thus,ιm>0 , for allm.

    Def inition 1 For any initial stateξi(0) , under the designed control protocol, the following equation is satisf ied:

    where E[·] is the expectation, then, multi-manipulator systems ( 6) reach mean square consensus.

    3 Main results

    This section f irstly designs a disturbance observer and then proposes a control protocol for multi-manipulator systems( 6) under Markov switching topologies.

    On the basis of [ 34], the following disturbance observer is proposed:

    where^ζiand^ωidenote the estimations ofζiandωirespectively.ziis the disturbance observer’s state.pi(vi) andLi(vi)are the nonlinear function and the nonlinear observer gain to be designed, respectively, and satisfy

    By substituting ( 11) and ( 12) into ( 13), it follows that

    The nonlinear observer gainLi(vi) is chosen as

    whereΘiis a matrix to be designed. Then, the estimation error dynamic of the disturbance observer can be rewritten as follows:

    Since (Ei,Fi) is observable, we can f ind a matrixΘisuch that˙ei=(Ei-ΘiFi)eiis asymptotic stable. Thereby, the estimated value of the disturbance observer ( 11) can asymptotically track the actual value of disturbance ( 4).

    whereJi(qi) is the inertia matrix,Gi(qi,vi) is torque def ined in ( 2),Kis a feedback matrix to be designed, and^ωiis the disturbance estimation.

    To analyze the consensus of multi-manipulator systems,the global error of theith follower manipulator is def ined as~ξi=ξi-ξ0. Therefore, in accordance with Eq. ( 6), we obtain

    ProofConsider the following Lyapunov function:

    Remark 4The control protocol designed in this paper can solve the consensus problem studied in many literature,such as [ 35, 36, 29]. This is to say, the control algorithms designed in [ 35, 36, 29] are extended in this paper. The communication topology of [ 29] and [ 36] are, respectively,f ixed and jointly connected, which is a special case of the switching topologies considered in this paper. In [ 35], it was assumed that communication topology switches among a set of graphs and all graphs are connected. It is worth mentioning that there is no disturbance in [ 35, 36]. Moreover, the simulation experiment that the control protocol in which the disturbance estimation is set to zero in ( 18) applies to [ 35]is given in Sect. 4.2.

    4 Simulation

    4.1 Simulation I

    This section verif ies the correctness of the above theoretical results through a simulation. In this simulation, multi-manipulator systems consist of 6 agents, one of which is the leader with label 0 and the rest are the followers. Communication topologies are switched between graph1and2shown in Fig. 1. It is obvious that1and2are balanced,uncontains a directed spanning tree in which root node is leader. Then,Assumptions 1 and 2 are satisf ied.

    The dynamics of follower manipulator ( 2) are as follows and the parameters are chosen as the same as [ 37]

    Fig. 1 Communication topologies. a 1 . b 2 . cun=1∪2

    The disturbance ( 4) generated by exogenous systems is as follows:

    Fig. 2 The estimation errors of the disturbance observer. a The disturbance estimation error ωi1-^ωi1 . b The disturbance estimation error ωi2-^ωi2

    In Fig. 2, curves F1, F2, F3, F4 and F5 denote the trajectories of disturbance estimation errors of 5 follower manipulators, respectively. It is observed from Fig. 2 that the estimation error of the disturbance observer asymptotically converges to zero.

    Fig. 3 The global errors of velocity. a The global error vi1-v01 . b The global error vi2-v02

    In Figs. 3 and 4, curves F1, F2, F3, F4 and F5 denote the trajectories of velocity and position tacking errors of 5 follower manipulators, respectively. From Figs. 3 and 4,it can get that the errors of velocity and position of theith follower manipulator tend to zero, i.e.,vi1→v01,vi2→v02andqi1→q01,qi2→q02, ast→∞ . Therefore, under consensus control protocol ( 18), multiple robotic manipulators can reach consensus.

    4.2 Simulation II

    In this section, a simulation is given to show that the controller designed in this paper is also feasible in [ 35]. Similar to [ 35], multi-agent systems consist of f ive agents, one of which is the leader with label 0 and the rest are the followers.All possible communication topologies are shown in Fig. 5,which can satisfy Assumption 1. Figure 6 shows the value of switching signal of the communication topology.

    The dynamic of theith agent is as follows:wherexiandviare states of theith agent.uiis the control input to designed. Moreover, the leader is described by

    Fig. 4 The global errors of position. a The global error qi1-q01 . b The global error qi2-q02

    Fig. 5 All possible communication topologies. a 1 . b 2 . c3 . d 4.

    Fig. 6 The switching signal

    Fig. 7 The global errors of states. a The global error vi- v0 . b The global error xi- x0.

    According to Fig. 7, it can be seen that the errors of velocity and position eventually tend to zero. In other words, the consensus problem of [ 35] can also be well solved under the control protocol designed in this paper.

    5 Conclusions

    This paper solves the consensus control problem of multimanipulator systems under Markov switching topologies,and all communication topologies are directed. A disturbance observer is introduced for the external disturbance described by the heterogeneous exosystem. Based on the designed disturbance observer, a distributed controller of multi-manipulator systems is proposed under Markov switching topologies, which can ensure that every follower manipulator’s velocity and position reach consensus with leader’s respectively. Two simulation examples verify the validity of the theoretical result.

    AcknowledgementsThis work was supported in part by the National Natural Science Foundation of China (No. 61803276), the Beijing Municipal Education Commission Science Plan (General Research Project, No. KM201910028004), the Beijing Natural Science Foundation (No. 4202011), and Key Research Grant of Academy for Multidisciplinary Studies of CNU (No. JCKXYJY2019018).

    亚洲国产色片| 寂寞人妻少妇视频99o| 日韩 亚洲 欧美在线| 乱人视频在线观看| 午夜精品在线福利| 成人无遮挡网站| 一夜夜www| 午夜福利视频精品| 麻豆成人午夜福利视频| 国产精品国产三级国产专区5o| 国产精品久久久久久久久免| 亚洲精品国产av蜜桃| 国产成人精品一,二区| 国产在视频线在精品| 免费黄频网站在线观看国产| 免费观看精品视频网站| 午夜免费男女啪啪视频观看| 国产午夜精品论理片| 亚洲色图av天堂| 在线天堂最新版资源| 亚洲精品乱码久久久久久按摩| 少妇人妻一区二区三区视频| 国产伦精品一区二区三区视频9| 亚洲av免费在线观看| 欧美另类一区| 亚洲婷婷狠狠爱综合网| videossex国产| 欧美成人精品欧美一级黄| 亚洲欧美成人精品一区二区| 国产爱豆传媒在线观看| 日韩av免费高清视频| 国产精品嫩草影院av在线观看| 久久精品国产鲁丝片午夜精品| h日本视频在线播放| 欧美日韩精品成人综合77777| 深爱激情五月婷婷| 天堂俺去俺来也www色官网 | 寂寞人妻少妇视频99o| 97超视频在线观看视频| 国产淫片久久久久久久久| 九九爱精品视频在线观看| 国产伦在线观看视频一区| 亚洲激情五月婷婷啪啪| 天美传媒精品一区二区| 欧美 日韩 精品 国产| 内射极品少妇av片p| 自拍偷自拍亚洲精品老妇| 国产高清国产精品国产三级 | 一区二区三区四区激情视频| 熟妇人妻不卡中文字幕| av天堂中文字幕网| 免费av毛片视频| 色播亚洲综合网| 亚洲av电影不卡..在线观看| www.av在线官网国产| av免费观看日本| 国产黄色小视频在线观看| 国产69精品久久久久777片| 91精品一卡2卡3卡4卡| 亚洲精品亚洲一区二区| 18禁在线播放成人免费| 亚洲av电影不卡..在线观看| 久久久久久久久久人人人人人人| 亚洲av免费在线观看| 一本一本综合久久| 亚洲在线观看片| 日本免费在线观看一区| 国产成人福利小说| 熟女人妻精品中文字幕| 亚洲无线观看免费| 自拍偷自拍亚洲精品老妇| 亚洲av一区综合| 国产69精品久久久久777片| 波多野结衣巨乳人妻| 91午夜精品亚洲一区二区三区| 床上黄色一级片| 国产人妻一区二区三区在| 久久久精品免费免费高清| ponron亚洲| 日本一二三区视频观看| 观看免费一级毛片| 久久久久久九九精品二区国产| 一级a做视频免费观看| 成年人午夜在线观看视频 | 日韩不卡一区二区三区视频在线| 一区二区三区乱码不卡18| 日本一本二区三区精品| 午夜日本视频在线| 舔av片在线| 男插女下体视频免费在线播放| 日本欧美国产在线视频| 又爽又黄无遮挡网站| 亚洲在线自拍视频| 国产成人freesex在线| 国产免费一级a男人的天堂| 五月伊人婷婷丁香| 色哟哟·www| 欧美xxxx黑人xx丫x性爽| 午夜激情福利司机影院| 精品人妻一区二区三区麻豆| 亚洲无线观看免费| 纵有疾风起免费观看全集完整版 | 亚洲综合精品二区| 中文字幕制服av| 日韩成人伦理影院| 纵有疾风起免费观看全集完整版 | 国产麻豆成人av免费视频| av专区在线播放| 国产成人精品久久久久久| eeuss影院久久| 国产高清国产精品国产三级 | 日本午夜av视频| 国产精品爽爽va在线观看网站| a级毛片免费高清观看在线播放| 欧美成人一区二区免费高清观看| 亚洲人成网站在线播| 一个人看视频在线观看www免费| 亚洲av国产av综合av卡| 亚洲18禁久久av| 亚洲国产最新在线播放| 亚洲精品国产av蜜桃| 亚洲人成网站在线观看播放| 色综合色国产| 亚洲av日韩在线播放| 美女主播在线视频| 欧美另类一区| 婷婷色综合www| 男人狂女人下面高潮的视频| 亚洲av中文字字幕乱码综合| 天堂中文最新版在线下载 | 边亲边吃奶的免费视频| 婷婷六月久久综合丁香| 美女xxoo啪啪120秒动态图| 成人av在线播放网站| 又黄又爽又刺激的免费视频.| 身体一侧抽搐| 亚洲最大成人av| 国产亚洲av嫩草精品影院| 女人被狂操c到高潮| 色尼玛亚洲综合影院| 国产精品麻豆人妻色哟哟久久 | 97在线视频观看| 精品久久久久久久末码| 国产视频内射| 成年女人在线观看亚洲视频 | 中文字幕av成人在线电影| 精品一区二区免费观看| 两个人视频免费观看高清| 少妇人妻精品综合一区二区| 亚洲av成人精品一区久久| 亚洲经典国产精华液单| 欧美bdsm另类| av一本久久久久| 中文乱码字字幕精品一区二区三区 | 18禁动态无遮挡网站| 久久久久国产网址| 免费观看a级毛片全部| 欧美激情在线99| 又爽又黄a免费视频| 国产女主播在线喷水免费视频网站 | 狂野欧美白嫩少妇大欣赏| 欧美人与善性xxx| www.色视频.com| 2021少妇久久久久久久久久久| 欧美变态另类bdsm刘玥| 日韩伦理黄色片| 国产在视频线精品| 亚洲欧美成人精品一区二区| 亚州av有码| 少妇人妻精品综合一区二区| 欧美最新免费一区二区三区| 国产亚洲午夜精品一区二区久久 | 搞女人的毛片| 99久久中文字幕三级久久日本| 少妇人妻精品综合一区二区| 国产有黄有色有爽视频| 中国国产av一级| 精品99又大又爽又粗少妇毛片| 亚洲国产高清在线一区二区三| or卡值多少钱| 真实男女啪啪啪动态图| 日韩av不卡免费在线播放| 一区二区三区四区激情视频| 伊人久久国产一区二区| 岛国毛片在线播放| 看黄色毛片网站| 久久久久久久国产电影| 欧美一级a爱片免费观看看| 精品不卡国产一区二区三区| 国产真实伦视频高清在线观看| 亚洲国产欧美在线一区| 高清日韩中文字幕在线| 欧美zozozo另类| 国产单亲对白刺激| 日韩成人av中文字幕在线观看| 亚洲高清免费不卡视频| 中文字幕制服av| 高清视频免费观看一区二区 | 欧美zozozo另类| 青春草国产在线视频| 亚洲精品国产av蜜桃| 午夜福利视频精品| 极品少妇高潮喷水抽搐| 岛国毛片在线播放| 亚洲精品aⅴ在线观看| 91久久精品国产一区二区三区| 久久精品国产亚洲网站| 高清视频免费观看一区二区 | 成人漫画全彩无遮挡| 免费看av在线观看网站| 国产伦理片在线播放av一区| 男的添女的下面高潮视频| 精品久久久久久久久av| 亚洲欧美一区二区三区国产| 看黄色毛片网站| 欧美日韩在线观看h| 成人午夜高清在线视频| 国产乱人偷精品视频| 欧美日韩一区二区视频在线观看视频在线 | 欧美极品一区二区三区四区| 亚洲最大成人中文| 看非洲黑人一级黄片| 在线观看免费高清a一片| 亚洲久久久久久中文字幕| .国产精品久久| 五月玫瑰六月丁香| 51国产日韩欧美| 国产精品人妻久久久久久| 久久久午夜欧美精品| 国产精品精品国产色婷婷| 晚上一个人看的免费电影| 国产白丝娇喘喷水9色精品| 亚洲欧美成人综合另类久久久| 性色avwww在线观看| 青春草视频在线免费观看| 国产爱豆传媒在线观看| 欧美日韩视频高清一区二区三区二| 午夜福利成人在线免费观看| 网址你懂的国产日韩在线| 国产精品av视频在线免费观看| 午夜老司机福利剧场| 最近最新中文字幕大全电影3| 身体一侧抽搐| 乱人视频在线观看| 欧美极品一区二区三区四区| 黄色日韩在线| 国产精品一及| 好男人在线观看高清免费视频| 成人综合一区亚洲| 身体一侧抽搐| 青春草亚洲视频在线观看| 亚洲人与动物交配视频| 国产午夜精品论理片| av播播在线观看一区| 日本免费a在线| 亚洲图色成人| av在线蜜桃| av一本久久久久| 特大巨黑吊av在线直播| 三级经典国产精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av免费在线看不卡| 日本欧美国产在线视频| 欧美变态另类bdsm刘玥| 亚洲自拍偷在线| 日日干狠狠操夜夜爽| 成人美女网站在线观看视频| 精品一区二区三区人妻视频| 亚洲熟妇中文字幕五十中出| 国产精品一区www在线观看| 亚洲,欧美,日韩| 热99在线观看视频| 在线 av 中文字幕| 99热这里只有是精品50| 永久网站在线| 久久精品综合一区二区三区| 午夜激情欧美在线| 国产伦在线观看视频一区| 日日撸夜夜添| 午夜精品在线福利| 在线播放无遮挡| 深夜a级毛片| 男女视频在线观看网站免费| 又爽又黄无遮挡网站| 看十八女毛片水多多多| 免费电影在线观看免费观看| 午夜精品在线福利| 久久久欧美国产精品| 国产黄色免费在线视频| 啦啦啦中文免费视频观看日本| 国产久久久一区二区三区| 人体艺术视频欧美日本| 日韩av免费高清视频| 成人性生交大片免费视频hd| 午夜精品一区二区三区免费看| 午夜福利高清视频| 日本免费a在线| 亚洲图色成人| 国产永久视频网站| 激情 狠狠 欧美| 亚洲精品乱码久久久v下载方式| av在线蜜桃| 啦啦啦中文免费视频观看日本| 国产色婷婷99| 蜜臀久久99精品久久宅男| 色播亚洲综合网| 国产伦精品一区二区三区四那| 91av网一区二区| 在现免费观看毛片| 亚洲丝袜综合中文字幕| 久久久成人免费电影| 免费观看无遮挡的男女| 极品少妇高潮喷水抽搐| 亚洲精品自拍成人| 国产精品女同一区二区软件| 伊人久久国产一区二区| 亚洲欧美精品自产自拍| 夫妻午夜视频| 男人狂女人下面高潮的视频| 精品国产露脸久久av麻豆 | 2021少妇久久久久久久久久久| kizo精华| 亚洲欧洲国产日韩| 三级毛片av免费| 免费观看性生交大片5| 在线观看一区二区三区| 一区二区三区免费毛片| 欧美变态另类bdsm刘玥| 亚洲国产av新网站| 春色校园在线视频观看| 久久精品国产亚洲av涩爱| 男人舔奶头视频| 男女视频在线观看网站免费| 免费人成在线观看视频色| 最新中文字幕久久久久| 卡戴珊不雅视频在线播放| 一区二区三区四区激情视频| 99久久人妻综合| 国产三级在线视频| 99久久精品国产国产毛片| 欧美不卡视频在线免费观看| 久久久精品94久久精品| 亚洲国产精品国产精品| 亚洲精品亚洲一区二区| 国内精品宾馆在线| 国产成人一区二区在线| 亚洲一级一片aⅴ在线观看| 日韩一区二区三区影片| 黄色一级大片看看| 一边亲一边摸免费视频| 欧美日韩亚洲高清精品| 日韩欧美 国产精品| 国产av国产精品国产| 日韩在线高清观看一区二区三区| 精品午夜福利在线看| 日本三级黄在线观看| 22中文网久久字幕| 丰满少妇做爰视频| 白带黄色成豆腐渣| 中国国产av一级| 精品一区二区三卡| 男女下面进入的视频免费午夜| 97热精品久久久久久| 91狼人影院| 日韩欧美三级三区| 欧美日韩亚洲高清精品| 精品一区二区三区人妻视频| 亚洲国产欧美人成| 欧美3d第一页| 国产女主播在线喷水免费视频网站 | 一个人免费在线观看电影| 国产成人aa在线观看| 国产一区二区三区综合在线观看 | 建设人人有责人人尽责人人享有的 | 久久精品人妻少妇| 噜噜噜噜噜久久久久久91| 午夜久久久久精精品| 亚洲成人中文字幕在线播放| 午夜爱爱视频在线播放| .国产精品久久| 偷拍熟女少妇极品色| 丝袜喷水一区| 日本午夜av视频| 51国产日韩欧美| 全区人妻精品视频| 亚洲精品久久午夜乱码| 午夜精品一区二区三区免费看| 日韩中字成人| 久久精品夜色国产| 最近中文字幕2019免费版| 国产高清国产精品国产三级 | 男女视频在线观看网站免费| kizo精华| xxx大片免费视频| 久久久久久久国产电影| av网站免费在线观看视频 | 久久这里有精品视频免费| 国产成人免费观看mmmm| 如何舔出高潮| 街头女战士在线观看网站| 麻豆成人午夜福利视频| 欧美最新免费一区二区三区| 中国国产av一级| 成人综合一区亚洲| 日韩制服骚丝袜av| 日韩一区二区三区影片| 纵有疾风起免费观看全集完整版 | 在线观看人妻少妇| 国产一区二区在线观看日韩| 一级黄片播放器| 你懂的网址亚洲精品在线观看| 久久99热这里只频精品6学生| 亚洲人成网站在线观看播放| 国产成人免费观看mmmm| 99久国产av精品| 国内少妇人妻偷人精品xxx网站| 色播亚洲综合网| 亚洲最大成人中文| 99九九线精品视频在线观看视频| 啦啦啦韩国在线观看视频| av免费在线看不卡| 欧美极品一区二区三区四区| 国产av在哪里看| 麻豆成人午夜福利视频| 美女脱内裤让男人舔精品视频| 两个人视频免费观看高清| 中文资源天堂在线| 国产精品日韩av在线免费观看| 观看免费一级毛片| 搡女人真爽免费视频火全软件| 亚洲精品中文字幕在线视频 | 亚洲精品成人久久久久久| 在线 av 中文字幕| 精品国产露脸久久av麻豆 | 成人美女网站在线观看视频| 婷婷六月久久综合丁香| 国产精品久久久久久久久免| 汤姆久久久久久久影院中文字幕 | 中文资源天堂在线| 色哟哟·www| 日韩视频在线欧美| 美女黄网站色视频| 成年av动漫网址| 国产精品国产三级专区第一集| 免费观看的影片在线观看| 亚洲欧美日韩东京热| or卡值多少钱| 久久精品熟女亚洲av麻豆精品 | 简卡轻食公司| 欧美日韩一区二区视频在线观看视频在线 | 欧美日本视频| 中文精品一卡2卡3卡4更新| 直男gayav资源| 成人国产麻豆网| 男人狂女人下面高潮的视频| 日韩av在线免费看完整版不卡| 日日啪夜夜爽| 日本wwww免费看| 久久久久久久大尺度免费视频| 日本三级黄在线观看| 中文天堂在线官网| 久久国内精品自在自线图片| 三级男女做爰猛烈吃奶摸视频| 亚洲精品久久午夜乱码| 久久亚洲国产成人精品v| 久久久久久国产a免费观看| 国产成人精品一,二区| 亚洲综合色惰| 国产精品蜜桃在线观看| 国产午夜精品久久久久久一区二区三区| 国产美女午夜福利| 亚洲精品aⅴ在线观看| 日本欧美国产在线视频| 一级毛片黄色毛片免费观看视频| 好男人视频免费观看在线| 精品酒店卫生间| 国产高清有码在线观看视频| 国产伦在线观看视频一区| 欧美性猛交╳xxx乱大交人| 国产精品人妻久久久久久| 亚洲最大成人av| 午夜免费男女啪啪视频观看| 男女边吃奶边做爰视频| 成人美女网站在线观看视频| 久久这里只有精品中国| 成人鲁丝片一二三区免费| 亚洲激情五月婷婷啪啪| 男人爽女人下面视频在线观看| 最近中文字幕2019免费版| 丰满少妇做爰视频| 国产男女超爽视频在线观看| 91久久精品国产一区二区成人| 99re6热这里在线精品视频| 成人漫画全彩无遮挡| 国产成人午夜福利电影在线观看| 一级毛片电影观看| 赤兔流量卡办理| 亚洲国产欧美在线一区| 久久久a久久爽久久v久久| 国产成人免费观看mmmm| 蜜桃久久精品国产亚洲av| 欧美bdsm另类| 久久精品久久久久久久性| 亚洲精品自拍成人| 免费黄色在线免费观看| 日韩av不卡免费在线播放| 乱系列少妇在线播放| 国内少妇人妻偷人精品xxx网站| 亚洲综合精品二区| 大陆偷拍与自拍| 一个人免费在线观看电影| 国产精品99久久久久久久久| 校园人妻丝袜中文字幕| 国产成人一区二区在线| 搡老乐熟女国产| 精品久久久噜噜| 亚洲精品乱久久久久久| av在线老鸭窝| 久久这里只有精品中国| 99久久人妻综合| 美女黄网站色视频| 在线观看人妻少妇| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费av毛片视频| 国产精品久久久久久久久免| 街头女战士在线观看网站| 亚洲精品中文字幕在线视频 | 国产精品无大码| 超碰97精品在线观看| 只有这里有精品99| 免费在线观看成人毛片| 国产爱豆传媒在线观看| 国产成人aa在线观看| 亚洲激情五月婷婷啪啪| 久久精品夜色国产| 22中文网久久字幕| 午夜激情福利司机影院| 久久99精品国语久久久| 午夜激情欧美在线| 午夜日本视频在线| 建设人人有责人人尽责人人享有的 | 日本与韩国留学比较| 日韩 亚洲 欧美在线| 91午夜精品亚洲一区二区三区| 99热6这里只有精品| 在线a可以看的网站| 午夜免费激情av| 色综合色国产| 国产精品久久视频播放| 国产精品久久久久久久电影| 国产片特级美女逼逼视频| 久久久久久九九精品二区国产| 国产中年淑女户外野战色| 亚洲成人精品中文字幕电影| 久久草成人影院| eeuss影院久久| 天堂影院成人在线观看| 国产精品一区二区三区四区久久| 午夜精品一区二区三区免费看| 一级a做视频免费观看| 波多野结衣巨乳人妻| 淫秽高清视频在线观看| 成人午夜精彩视频在线观看| 欧美性猛交╳xxx乱大交人| 免费大片黄手机在线观看| 毛片一级片免费看久久久久| 最近中文字幕2019免费版| 伦精品一区二区三区| xxx大片免费视频| 成人欧美大片| 亚洲国产精品sss在线观看| 韩国av在线不卡| 精华霜和精华液先用哪个| 99久久人妻综合| 免费电影在线观看免费观看| 成人欧美大片| 美女xxoo啪啪120秒动态图| 尾随美女入室| 91在线精品国自产拍蜜月| 99久久九九国产精品国产免费| 欧美日韩国产mv在线观看视频 | 51国产日韩欧美| 亚洲欧美日韩无卡精品| 欧美日韩亚洲高清精品| 婷婷六月久久综合丁香| 国产一区有黄有色的免费视频 | 韩国av在线不卡| av国产免费在线观看| 久久久久久久久久久丰满| 精品久久久久久电影网| 国产成人精品一,二区| 淫秽高清视频在线观看| 十八禁网站网址无遮挡 | 国产成人aa在线观看| 日韩欧美精品v在线| videos熟女内射| 亚洲av成人av| 午夜精品一区二区三区免费看| 丰满乱子伦码专区| 中国美白少妇内射xxxbb| 久久韩国三级中文字幕| 亚洲成人av在线免费| 亚洲四区av| 午夜日本视频在线| 国产单亲对白刺激| 久久久久久久久大av| videos熟女内射| 国国产精品蜜臀av免费| 国产精品人妻久久久久久| 久久6这里有精品| 国产成人精品久久久久久| a级毛色黄片| 日韩不卡一区二区三区视频在线| 午夜精品一区二区三区免费看| 中国国产av一级|