• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic output feedback stabilization of deterministic f inite automata via the semi-tensor product of matrices approach

    2021-06-07 10:13:04RoozbehAbolpourMohsenRajiParisaMoradi
    Control Theory and Technology 2021年2期

    Roozbeh Abolpour · Mohsen Raji · Parisa Moradi

    Abstract This paper deals with the dynamic output feedback stabilization problem of deterministic f inite automata (DFA). The static form of this problem is def ined and solved in previous studies via a set of equivalent conditions. In this paper, the dynamic output feedback (DOF) stabilization of DFAs is def ined in which the controller is supposed to be another DFA. The DFA controller will be designed to stabilize the equilibrium point of the main DFA through a set of proposed equivalent conditions. It has been proven that the design problem of DOF stabilization is more feasible than the static output feedback (SOF)stabilization. Three simulation examples are provided to illustrate the results of this paper in more details. The f irst example considers an instance DFA and develops SOF and DOF controllers for it. The example explains the concepts of the DOF controller and how it will be implemented in the closed-loop DFA. In the second example, a special DFA is provided in which the DOF stabilization is feasible, whereas the SOF stabilization is not. The f inal example compares the feasibility performance of the SOF and DOF stabilizations through applying them to one hundred random-generated DFAs. The results reveal the superiority of the DOF stabilization.

    Keywords Discrete event dynamic system · Finite automata · Dynamic output feedback stabilization · Semi-tensor product

    1 Introduction

    Deterministic finite automaton (DFA) is a finite-state machine that smartly responses to a set of events or symbols.DFAs consist of states, events, and outputs that can be f inite logical or discrete sets [ 1]. DFA is the most popular kind of f inite automata (FA) that has known and deterministic behaviors [ 2]. This machine is frequently addressed in the literature due to its capability to model the discrete event systems [ 2]. Diff erent kinds of this machine are developed in various practical and theoretical applications [ 3, 4].

    A logical network is a discrete-time system in which the state, input, and output vector admits only f inite levels [ 5].DFAs can be conceptually included in logical networks because its state, input, and output vectors similarly admit f inite levels. A Boolean network f irstly developed by Kauff -man [ 6] is another kind of logical networks in which state,input, and output vectors only support two levels [ 5]. Furthermore, logical networks are widely exploited to model the other applications involving game theory [ 7], system biology[ 6] and digital circuits [ 8].

    The stability of DFAs is recently def ined and investigated in previous studies [ 2, 9]. Several def initions are provided for DFA stability involving Lyapunov stability and asymptotic stability based on Lyapunov functions [ 2]. DFA is modeled by a set of symbols (states, inputs, and outputs) and some transition functions in the theoretical computer topics [ 10].The ineffi ciency of this model for presenting the stability and stabilizability concepts is one of the most important issues arising in this topic [ 10]. To cope with this issue, the semitensor product (STP) is frequently and widely exploited to model DFAs, see, e.g., [ 10] and [ 11]. This mathematical tool results in a matrix-based model which is more attended in the control topics [ 11]. It should be noted that this tool is widely used to model various systems such as fuzzy control systems [ 12], Boolean control networks (BCNs) [ 13],networked evolutionary games [ 7], nondeterministic f inite automata [ 14] and discrete event systems [ 15].

    Output stabilization of DFAs along with partial observations is another important issue in this regard [ 16]. It means the controller cannot explicitly use the current DFA’s states due to their immeasurability assumption. There exists a set of output symbols which are attached to DFA’s states and used by the controller. In general, an output feedback controller can be considered as static or dynamic [ 16].

    In the static output feedback (SOF) controller, the control law is supposed to beu(t)=Ky(t) in whichKis a constant feedback gain matrix that should be precisely determined to stabilize the DFA [ 16]. Ozveren proposes a necessary and suffi cient condition to explore the existence of an appropriate constant feedback gain matrix for stabilizing the closedloop DFA [ 9]. It is worth mentioning that the other controllers are also developed to optimally control the behaviors of the closed-loop DFA. For instance, the time-invariant output feedback (TIOF) [ 10] and the time-varying output feedback(TVOF) [ 10] controllers are applied to BCNs which can be conceptually included in DFAs [ 10].

    The stability and stabilizability problems of logical networks such as Boolean networks have been widely investigated in previous studies [ 15- 21]. It has been reported that these problems are naturally NP-hard which means their feasibilities cannot be investigated by polynomial-time algorithms [ 5]. The STP method plays a key role to develop stability and stabilizability conditions for both logical and Boolean networks [ 17]. Through this method, the dynamical behaviors of logical networks can be expressed by a convenience state matrix structure. Therefore, classical approaches such as Lyapunov theory can be exploited to evaluate the stability of these networks.

    The Lyapunov theory was utilized by recent studies to develop stability conditions for logical or Boolean networks[ 18- 20]. Meng et al. used the concept of positive systems,l1gain analysis and Markovian jump parameters to investigate the stability of Boolean networks based on the Lyapunov theory [ 18]. Possieri and Teel focused on the asymptotic stability analysis of stochastic Boolean networks and proposed a Lyapunov-based method for this purpose [ 19]. Li and Ding extended the Lyapunov theory to the stabilizability problem of logical control networks and proposed novel theoretical results in this regard [ 20].

    Pinning control strategy is another approach that was proposed to solve the stabilization problem of Boolean networks[ 21]. In this strategy, some control inputs are added to the main system for controlling a group of its states [ 22]. In fact, some states are controlled and the rest freely propagate based on the existed coupling between the states. Li[ 23] forced the designed pinning controllers to have state feedback form to establish common controllers. Lu et al.focused on the number of required controllers in this strategy and developed a controller with minimum number of controllers [ 21].

    Previous approaches have several drawbacks such as the conservativeness and the simple structure of controllers.These drawbacks can signif icantly inf luence the controller performance such as its stability. To cope with these issues,a more complicated controller is required to enhance the conservativeness of this design problem.

    In this paper, dynamic output feedback (DOF) stabilization of DFAs is def ined to establish the stability of the equilibrium state. Def ining a DOF controller and developing a suffi cient and necessary condition to check its feasibility are the main aims of this paper. At f irst, STP modeling idea is exploited to model the behavior of DFAs. In the second step,the proposed DOF, which is brief ly another DFA, is def ined for stabilizing the original DFA. Finally, the design problem of a DOF will be equivalently solved by a set of proposed conditions. The proposed approach has some important advantages as follows:

    · The designed DOF controller may have f lexible and free structure; i.e., it can consist some known and unknown(free variable) parameters.

    · It is proved that the DOF design problem is more feasible than the SOF design problem.

    · A condition is developed to equivalently assess the existence of a feasible DOF controller.

    · An algorithm is designed to obtain the DOF controller based on the proposed condition.This paper is organized as follows. Section 2 presents some basic notations and preliminaries to propose the main contributions of this paper. Section 3 presents the main results of this paper involving the DOF def inition and its related theorem. In Sect. 4, three examples are provided to reveal the theorems, explain the implementation details of the DFA controller, and compare the feasibility performances of the SOF and DOF controllers. Finally, Sect. 5 concludes the paper.

    2 Preliminaries

    This section brief ly presents some preliminaries shown in Table 1, which are needed to propose the main contributions of this paper.

    2.1 DFA def initions

    Definition 1 A DFA is a six-tupleG=(X,E,Y,f,h,x0) ,in whichX=x1,…,xn,E=e1,…,em, andY=y1,…,ypare the sets of states, input symbols (events), and outputs,respectively;x0∈Xis the initial state;f∶X×E→Xandh∶X→Yare transitions and output functions.

    Table 1 Basic notations

    Fig. 1 DFA 1

    Def inition 2 AssumeA∈?c1×c2 andB∈?d1×d2 . Then, their STP is denoted byA?Band def ined with the following equation:

    where?is the Kronecker product.

    Remark 1[ 24] STP has the following properties:

    Def inition 3 [ 24] The statexe∈Xis said to be an equilibrium state if there existse∈Esuch thatf(xe,e)=xe.

    In fact, statexeis the equilibrium state if there exists a self-path for this state in the DFA. The stability of this equilibrium state is formerly def ined in paper [ 14]. This def inition depends on the DFA’s trajectories, transitions and control laws which is not conventional in control topics.Hence, Def initions 4 and 5 def ine the potential stability that is independent of the control law.

    Def inition 4 Statex∈Xis said to be potential stable with respect to the equilibrium statexe∈Xif there exists a f inite path fromxtoxein the DFA.

    Def inition 5 [ 24] An equilibrium state is potential stable if all states are potential stable with respect to that equilibrium state, in the DFA. Furthermore, a control law or controller is said to stabilize the equilibrium state if it forces all possible trajectories of the DFA to arrive at the equilibrium state and stay there forever.

    To completely understand the above def initions, Fig. 2 shows an instance DFA that is noted by DFA 2. Obviously,this DFA has two equilibrium statesx1andx2. Firstly, the potential stability ofx1is investigated as follows:

    wherexi→ekxjmeansxj=f(xi,ek).

    Using ( 4),x1is potential stable. Then, the potential stability ofx2is investigated as follows:

    Regarding ( 5),x2is potential stable, too.

    Fig. 2 DFA 2

    It must be emphasized that potential stability is a necessary condition for the DOF stabilizability of a DFA.

    2.2 State space expression of DFA’s dynamics

    whereu(t) is the mapped input vector of the DFA which will be insideΔm. MatrixF∈Mn×nmmaps the transition functionf[ 26].

    Similarly, the outputs functionhcan be mapped to the matrixH∈Np×nwhich implies the following equation [ 24]:

    wherey(t) is the mapped output vector of the DFA.

    Lemma 1Assume i∈1,…,n and k is an arbitrary positive integer number.Then,the k th possible state set can be obtained as follows:

    The possible state set is basically used to check the potential stability of an equilibrium state. Lemma 2 exploits this concept to investigate the stability of the equilibrium state.

    Lemma 2[27]Assume xe is an equilibrium state of the DFA.xe is potential stable if and only if the following conditions hold:

    3 Main results

    In this section, the main contribution of this paper is presented involving a method to design a dynamic output feedback controller for a DFA. At f irst, the static and dynamic controllers are def ined based on the notations mentioned in the previous section. Then, the proposed method is presented to the design DOF controller.

    Note that, the input vector should be lonely depend on the output vector in each step. Indeed, the controller depends on the output vectory(t) and it cannot explicitly utilized the state vectors. Thus, input vectoru(t) should satisfy the following condition:

    whereK∈Mm×pis the gain matrix that should be properly designed.

    Considerxeis an arbitrary equilibrium state in the DFA.Lemma 3 proposes a set of necessary and suffi cient conditions to check the stabilizability of the equilibrium state with respect to control law ( 13) and Def inition 5.

    Lemma 3[24]Assume xe is an equilibrium state of the DFA.Static gain matrix K∈Mm×p stabilizes xe if and only if the following conditions are satisf ied:

    Based on Lemma 3, the static gain matrixKcan be easily obtained via checking all possible matrices inMm×pto satisfy conditions ( 14) and ( 15). If there existsK∈Mm×pthat satisf ies the mentioned conditions, it will be considered as the static gain matrix of the controller.

    The structure of the proposed controller is presented as follows:

    wherexc(t)∈M(nc)is the internal state vector andncis its order.

    Indeed, the controller is another DFA withncinternal states such thaty(t) andu(t) are its output and input vectors,respectively. MatricesFc∈Mnc×pncandHc∈Mm×ncare free matrices that should be designed to stabilize the equilibrium sate in the closed-loop DFA.

    Remark 2The internal states of the DFA controller may or not have any practical or physical meaning. This fact is the same as the concept of dynamic output feedback stabilization problems of physical systems in which the internal states may be totally virtual signals.

    Theorem 1 proposes a set of suffi cient and necessary conditions to check the stabilizability of an equilibrium state in the closed-loop DFA.

    Theorem 1Assume xe is an equilibrium state of the DFA.Matrices Fc∈Mnc×pnc and Hc∈Mm×nc stabilize xe if and only if the following conditions hold for all i∈{1,…,n}and j∈{1,…,nc}:

    where l is the length of vector FC?H?δ1nnc.

    Using property 6 in Remark 1, the following equation will be obtained:

    Regarding item 5 in Remark 1, equation ( 23) can be rewritten as follows:

    Using ( 27), condition ( 19) will be satisf ied which terminates the proof.

    ?

    Theorem 2 proves that if a feasible SOF controller exists,then there should be a DOF controller that stabilize the equilibrium state, as well. Indeed, this theorem shows that the DOF stabilization is less conservative than the SOF one.

    Theorem 2Assume xe is an equilibrium point and there exists static gain K∈Mm×p that stabilizes xe in the closedloop DFA.Then,there exists an DOF controller with ordernc≥n that stabilizes xe in the closed-loop DFA.

    Using ( 29), the model’s dynamics ( 16) and ( 17) will lead to

    According to ( 33), the dynamic controller has the same input vector as the static controller. Hence, if the static controller is able to stabilizexe, the dynamics’ controller will be capable, as well.

    ?

    The steps of the design algorithm are listed below:

    Design algorithm 3 If there exists a pair (Fc,Hc) in the generated matrices that satisfy conditions ( 18), ( 19) and ( 20), return it as the solution of the design algorithm.

    4 Otherwise, return the DFA is not dynamically stabilizable and terminate.

    Remark 3The number of internal statesnccan aff ect the computation burden of the design algorithm that is presented in Theorem 1. In fact, it is necessary to f ind an appropriate DFA controller with minimum number of internal states.For this purpose, one can repeatedly implement Theorem 1 for a sorted set of state numbers to f ind the minimum one.

    Remark 4It is worth mentioning that the static and dynamic stabilizability def initions are equivalent. In both, the stability of a DFA means all trajectories (that are consistent with their corresponding control laws) of the DFA arrive at the equilibrium point and stay there forever.

    Remark 5The number of internal statesncis supposed to be greater than the number of the main DFAnin Theorem 2.This condition is considered to prove the better feasibility of the DOF stabilization problem in comparison to the static one. In fact, this condition is not a necessary condition for the feasibility of the DFA controller and it is possible to develop a DFA controller withnc<nfor some DFAs such as presented in the next section.

    4 Illustrative examples

    Figure 4 shows the whole possible runs of the DFA considering the above static gain matrix. Figure 4 demonstrates the static gain matrix ( 35) stabilizes the equilibrium statex1. In this f igure, the gray- f illed circles indicate the current state of the DFA at each time step.

    Fig. 3 DFA def ined in Example 1

    It should be noted that there is no feasible static gain matrix in this DFA. To prove this claim, Figs. 13 and 14 show runs of the DFA for diff erent initial states and all possible static gain matrices.

    Fig. 5 Designed controller for DFA def ined in Example 1

    Fig. 4 DFA’s runs of DFA Example 1 for diff erent initial states and evaluating SOF ( 35)

    Fig. 7 DFA’s run for DFA in Example 1 considering x(0)=δ31 and xc(0)=δ22 and applying DFA controller ( 36)

    Fig. 8 DFA’s run for DFA in Example 1 considering x(0)=δ32 and xc(0)=δ21 and applying DFA controller ( 36)

    Figures 13 and 14 ensure there is no static gain matrix that is capable to stabilize the DFA. Hence, the proposed design algorithm is applied to this DFA to obtain the DFA controller.Equation ( 38) presents the matrices of the DFA controller:The controller is the same as obtained in Example 1 given in Fig. 5. In the sequel, Figs. 15, 16, 17, 18, 19, 20 show all possible runs of the closed-loop DFA. Figures 15, 16, 17,18, 19, 20 exhibit that the proposed controller stabilizes the DFA, whereas there is no feasible static controller. Therefore,this example shows the less conservativeness of the dynamic stabilizability problem in comparison to the static one.

    Fig. 9 DFA’s run for DFA in Example 1 considering x(0)=δ32 and xc(0)=δ22 and applying DFA controller ( 36)

    Fig. 10 DFA’s run for DFA in Example 1 considering x(0)=δ33 and xc(0)=δ12 and applying DFA controller ( 36)

    Fig. 11DFA’s run forDFAinExample 1considering x(0)=δ33 and xc(0)=δ22and applying DFA controller ( 36)

    Fig. 12 DFA in Example 2

    Example 3This example compares the feasibility of the static and dynamic stabilization problems of DFAs. One hundred DFAs with diff erent dimensions are randomly generated for this purpose. Two groups of random DFAs are generated which consist of DFAs with three and f ive internal states. In fact, f ifty DFAs have three and thither f ifty DFAs have f ive states.

    The static and dynamic stabilization problems are independently applied to each generated DFA. Then, the number of feasible DFAs is obtained which are presented in Table 2.

    Table 2 demonstrates two critical points. First, the number of DFAs which are static stabilizable is less than the dynamic stabilizable ones. It clearly exposes that the dynamic stabilization problems is less restricted than the static one. Second, the number of feasible numbers will reduce by the increment of the DFA’s states. Indeed, the feasibility of the static stabilization problem critically depends on the number of DFA’s states in comparison to the dynamic stabilization problem.

    Fig. 13 DFA’s runs for the DFA in Example 2 for initial states by applying SOF controller in which K=

    Fig. 14 DFA’s runs for the DFA in Example 2 for initial states by applying SOF controller in which K

    Fig. 15 DFA’s run for DFA in Example 2 considering x(0)=δ31 and xc(0)=δ21 and applying DFA controller ( 38)

    Fig. 16 DFA’s run for DFA in Example 2 considering x(0)=δ31 and xc(0)=δ22 and applying DFA controller ( 38)

    Fig. 17 DFA’s run for DFA in Example 2 considering x(0)=δ32 and xc(0)=δ21 and applying DFA controller ( 38)

    Fig. 18 DFA’s run for DFA in Example 2 considering x(0)=δ32 and xc(0)=δ22 and applying DFA controller ( 38)

    Fig. 19 DFA’s run for DFA in Example 2 considering x(0)=δ33 and xc(0)=δ12 and applying DFA controller ( 38)

    Fig. 20 DFA’s run for DFA in Example 2 considering x(0)=δ33 and xc(0)=δ22 and applying DFA controller ( 38)

    Table 2 Number of feasible problems

    5 Conclusions

    This paper mainly focuses on the DOF stabilization of DFAs.For the f irst time, this paper suggests the DOF stabilization concept for DFA via considering another DFA controller. A design algorithm is proposed to design the DFA controller through generating all possible DFAs and investigating their ability to stabilize the equilibrium state. It has been shown that the DOF stabilization problem is less conservative than the SOF one. Furthermore, three simulation examples are provided to explain the aspects of the proposed controller.The examples show the superiority of the DOF controllers to stabilize the DFA in comparison to the SOF controllers.Finally, it is worth mentioning that the proposed idea can be easily extended to the nondeterministic f inite automata and logical networks (Boolean networks), as well. It is mainly because the dynamics of these systems can be rewritten as those considered in this paper. These facts can be investigated by future works in more details.

    av女优亚洲男人天堂| 色哟哟·www| 亚洲精品乱久久久久久| 色视频在线一区二区三区| 水蜜桃什么品种好| 久久久a久久爽久久v久久| 国产又色又爽无遮挡免| 国产成人精品无人区| 看非洲黑人一级黄片| 免费av中文字幕在线| videossex国产| 晚上一个人看的免费电影| 最近的中文字幕免费完整| 成人美女网站在线观看视频| 亚洲精品国产av蜜桃| 亚洲av男天堂| 亚洲欧美精品专区久久| 久久ye,这里只有精品| 久久综合国产亚洲精品| 777米奇影视久久| 亚洲av成人精品一区久久| 色哟哟·www| 国产淫语在线视频| 日韩视频在线欧美| 欧美日韩av久久| 亚洲高清免费不卡视频| 水蜜桃什么品种好| 亚洲国产色片| 久久久久久久久久久久大奶| 亚洲精品成人av观看孕妇| 日本免费在线观看一区| 大香蕉97超碰在线| 精品人妻一区二区三区麻豆| 国产成人a∨麻豆精品| 国产永久视频网站| 亚洲精品,欧美精品| 国产亚洲欧美精品永久| 女性被躁到高潮视频| 久久久久久人妻| 国产探花极品一区二区| 成人黄色视频免费在线看| 亚洲av电影在线观看一区二区三区| 久久人人爽人人片av| 亚洲av成人精品一区久久| 成年人免费黄色播放视频 | 精品一区二区三卡| 欧美xxⅹ黑人| 日本猛色少妇xxxxx猛交久久| 在线观看免费高清a一片| 美女视频免费永久观看网站| 亚洲,欧美,日韩| 久久99精品国语久久久| 黄色怎么调成土黄色| 免费在线观看成人毛片| 高清视频免费观看一区二区| 国产精品福利在线免费观看| 最近中文字幕高清免费大全6| 国产精品久久久久成人av| 高清在线视频一区二区三区| 亚洲欧美精品自产自拍| 欧美国产精品一级二级三级 | 全区人妻精品视频| 日日撸夜夜添| 国产精品久久久久成人av| 国产成人精品一,二区| av.在线天堂| 99久久中文字幕三级久久日本| 综合色丁香网| 极品教师在线视频| 熟女av电影| 天天操日日干夜夜撸| 久久精品国产自在天天线| √禁漫天堂资源中文www| 美女福利国产在线| 欧美 日韩 精品 国产| 国产探花极品一区二区| 日日啪夜夜撸| 有码 亚洲区| 91精品伊人久久大香线蕉| 欧美丝袜亚洲另类| 国产在线视频一区二区| a级一级毛片免费在线观看| 在线看a的网站| 亚洲精品第二区| 成人午夜精彩视频在线观看| 日本猛色少妇xxxxx猛交久久| 久久精品久久久久久噜噜老黄| 日日啪夜夜爽| 亚洲精品一二三| 黄色一级大片看看| 日本91视频免费播放| 亚洲欧美成人精品一区二区| 午夜福利在线观看免费完整高清在| 精品人妻一区二区三区麻豆| 成人亚洲欧美一区二区av| 亚洲激情五月婷婷啪啪| 久久精品久久久久久噜噜老黄| 亚洲国产欧美在线一区| 男人爽女人下面视频在线观看| 亚洲欧美一区二区三区国产| 亚洲精品456在线播放app| 免费人成在线观看视频色| 国产精品一区二区在线观看99| 我的老师免费观看完整版| 成人国产麻豆网| 亚洲国产精品一区三区| 18禁在线播放成人免费| 亚洲精品成人av观看孕妇| 久热这里只有精品99| 午夜福利网站1000一区二区三区| 久久精品久久久久久噜噜老黄| 日韩成人av中文字幕在线观看| 亚洲欧美日韩卡通动漫| 国产91av在线免费观看| 内射极品少妇av片p| 国产黄频视频在线观看| 久久99热这里只频精品6学生| 少妇 在线观看| 又黄又爽又刺激的免费视频.| 精品亚洲成a人片在线观看| 成人免费观看视频高清| 丰满人妻一区二区三区视频av| 91精品伊人久久大香线蕉| 国产乱人偷精品视频| .国产精品久久| 插逼视频在线观看| 亚洲精品第二区| 久久热精品热| 欧美精品高潮呻吟av久久| 国产黄色视频一区二区在线观看| 丰满迷人的少妇在线观看| 免费大片18禁| 新久久久久国产一级毛片| 国产女主播在线喷水免费视频网站| 制服丝袜香蕉在线| 久久热精品热| 亚洲av不卡在线观看| 欧美精品国产亚洲| 国产在线视频一区二区| 久久av网站| 不卡视频在线观看欧美| 男女免费视频国产| 一级毛片久久久久久久久女| 涩涩av久久男人的天堂| 亚洲第一区二区三区不卡| 免费久久久久久久精品成人欧美视频 | 精品久久久久久久久av| 热re99久久精品国产66热6| 黄色一级大片看看| 久久久精品94久久精品| 欧美3d第一页| 内地一区二区视频在线| 国产日韩一区二区三区精品不卡 | 毛片一级片免费看久久久久| 午夜影院在线不卡| 成人美女网站在线观看视频| 免费观看在线日韩| 欧美亚洲 丝袜 人妻 在线| 青青草视频在线视频观看| 蜜桃久久精品国产亚洲av| 日本免费在线观看一区| 我要看日韩黄色一级片| 精品99又大又爽又粗少妇毛片| 99久国产av精品国产电影| 观看免费一级毛片| 蜜臀久久99精品久久宅男| 国产高清有码在线观看视频| 乱人伦中国视频| 国产熟女欧美一区二区| 桃花免费在线播放| 免费在线观看成人毛片| 免费观看av网站的网址| 观看美女的网站| av线在线观看网站| 纵有疾风起免费观看全集完整版| 99九九线精品视频在线观看视频| 免费黄网站久久成人精品| 国产免费一级a男人的天堂| 噜噜噜噜噜久久久久久91| 欧美成人精品欧美一级黄| 久久久久久久久久久免费av| 夫妻午夜视频| 欧美日韩视频高清一区二区三区二| 美女福利国产在线| 91久久精品电影网| 久久久欧美国产精品| h日本视频在线播放| 久久久a久久爽久久v久久| 久久久久视频综合| 久久久久视频综合| 韩国av在线不卡| 精品酒店卫生间| 久久久午夜欧美精品| 国产午夜精品久久久久久一区二区三区| 亚洲欧美精品专区久久| 校园人妻丝袜中文字幕| 晚上一个人看的免费电影| 亚洲精品中文字幕在线视频 | 日韩不卡一区二区三区视频在线| 香蕉精品网在线| 国产亚洲一区二区精品| 久久久精品免费免费高清| 精品少妇黑人巨大在线播放| 天天躁夜夜躁狠狠久久av| 国产成人精品久久久久久| h视频一区二区三区| 丰满迷人的少妇在线观看| 日韩av在线免费看完整版不卡| 18+在线观看网站| 妹子高潮喷水视频| 日韩精品免费视频一区二区三区 | 欧美97在线视频| 久久精品夜色国产| 一级毛片久久久久久久久女| 日本午夜av视频| 中文欧美无线码| 亚洲,一卡二卡三卡| 日日啪夜夜爽| 国产一区二区在线观看日韩| 女性被躁到高潮视频| 亚洲欧美日韩东京热| 日日撸夜夜添| 91精品国产九色| 日韩欧美 国产精品| 免费观看无遮挡的男女| 国产成人一区二区在线| 国产一区亚洲一区在线观看| 久久久久久人妻| 男人舔奶头视频| 人人妻人人添人人爽欧美一区卜| 亚洲av成人精品一区久久| 少妇人妻一区二区三区视频| 下体分泌物呈黄色| 午夜福利在线观看免费完整高清在| 成人漫画全彩无遮挡| 中文字幕人妻熟人妻熟丝袜美| 美女大奶头黄色视频| 日本爱情动作片www.在线观看| av在线app专区| 亚洲欧美精品专区久久| 女性被躁到高潮视频| 国产在线视频一区二区| 丰满迷人的少妇在线观看| 在线观看人妻少妇| 日韩精品有码人妻一区| 一本一本综合久久| 日本91视频免费播放| 国产精品一区二区在线观看99| 日韩熟女老妇一区二区性免费视频| 免费看光身美女| 最近的中文字幕免费完整| 黄色毛片三级朝国网站 | 中文字幕制服av| 九九爱精品视频在线观看| 日韩一区二区视频免费看| 日韩精品免费视频一区二区三区 | 久久精品国产亚洲网站| 日本黄色片子视频| 亚洲精品一二三| 纯流量卡能插随身wifi吗| 亚洲人成网站在线观看播放| 久久免费观看电影| 日韩精品有码人妻一区| 我要看黄色一级片免费的| 乱码一卡2卡4卡精品| 国产午夜精品一二区理论片| 久久婷婷青草| 亚洲精品,欧美精品| av播播在线观看一区| 3wmmmm亚洲av在线观看| 国产av码专区亚洲av| 国产精品福利在线免费观看| 成人国产av品久久久| 肉色欧美久久久久久久蜜桃| 国产熟女午夜一区二区三区 | 欧美精品人与动牲交sv欧美| 亚洲真实伦在线观看| 日韩一本色道免费dvd| 有码 亚洲区| 国产中年淑女户外野战色| 男人添女人高潮全过程视频| 国产精品一区二区在线观看99| 高清黄色对白视频在线免费看 | 国产精品女同一区二区软件| 国产亚洲欧美精品永久| 9色porny在线观看| 国产亚洲91精品色在线| 成人影院久久| 欧美日韩av久久| 欧美老熟妇乱子伦牲交| av.在线天堂| 国产精品免费大片| 少妇猛男粗大的猛烈进出视频| 日韩成人av中文字幕在线观看| 人人妻人人添人人爽欧美一区卜| 最近中文字幕高清免费大全6| 一本大道久久a久久精品| 国产日韩欧美在线精品| 人妻少妇偷人精品九色| 日韩视频在线欧美| 啦啦啦在线观看免费高清www| 熟女人妻精品中文字幕| 岛国毛片在线播放| 亚洲国产精品一区三区| 中国美白少妇内射xxxbb| 久久人人爽人人爽人人片va| 成人综合一区亚洲| 欧美bdsm另类| 熟妇人妻不卡中文字幕| 日韩中字成人| 免费看av在线观看网站| 深夜a级毛片| 五月天丁香电影| .国产精品久久| 一区二区三区四区激情视频| 99re6热这里在线精品视频| 国产亚洲最大av| 亚洲国产毛片av蜜桃av| 成人黄色视频免费在线看| 三级国产精品片| 国产成人精品无人区| 中文字幕精品免费在线观看视频 | 久久这里有精品视频免费| av免费在线看不卡| 在线观看人妻少妇| 黑人高潮一二区| 亚洲不卡免费看| 欧美日韩精品成人综合77777| 国产成人a∨麻豆精品| 日本黄色日本黄色录像| 久久综合国产亚洲精品| 99re6热这里在线精品视频| 成人18禁高潮啪啪吃奶动态图 | 国产伦理片在线播放av一区| 亚洲精品色激情综合| 精品亚洲成a人片在线观看| 亚洲怡红院男人天堂| 亚洲成人一二三区av| 亚洲精品,欧美精品| 少妇熟女欧美另类| 亚洲精品视频女| 中文字幕精品免费在线观看视频 | 国产伦在线观看视频一区| 国产亚洲最大av| 成人午夜精彩视频在线观看| 日韩强制内射视频| 99久久精品一区二区三区| 桃花免费在线播放| 欧美精品高潮呻吟av久久| 最近最新中文字幕免费大全7| 国产爽快片一区二区三区| 欧美日韩在线观看h| 国产亚洲一区二区精品| 亚洲精品日韩av片在线观看| 欧美日韩亚洲高清精品| 成人黄色视频免费在线看| 热re99久久精品国产66热6| 亚洲精品,欧美精品| 麻豆精品久久久久久蜜桃| 日日啪夜夜撸| 成人二区视频| 五月伊人婷婷丁香| 国产91av在线免费观看| 视频区图区小说| 少妇人妻精品综合一区二区| 亚洲激情五月婷婷啪啪| 麻豆精品久久久久久蜜桃| 国产极品天堂在线| 国产美女午夜福利| 国产成人精品无人区| 女性被躁到高潮视频| 两个人的视频大全免费| 性色avwww在线观看| av福利片在线观看| 能在线免费看毛片的网站| 最近中文字幕2019免费版| 视频中文字幕在线观看| 精品酒店卫生间| 国产成人a∨麻豆精品| 看十八女毛片水多多多| 国语对白做爰xxxⅹ性视频网站| 久久鲁丝午夜福利片| 欧美另类一区| 国产日韩欧美亚洲二区| 精品久久久久久久久亚洲| 久久影院123| 性色av一级| 蜜桃在线观看..| 亚洲精品视频女| 六月丁香七月| 在线观看国产h片| 亚洲国产精品一区三区| 老女人水多毛片| 亚洲激情五月婷婷啪啪| 久久97久久精品| 久久久久久久大尺度免费视频| 国产成人精品福利久久| 王馨瑶露胸无遮挡在线观看| 人人妻人人澡人人爽人人夜夜| 啦啦啦视频在线资源免费观看| 十八禁高潮呻吟视频 | 免费看av在线观看网站| 免费播放大片免费观看视频在线观看| 如何舔出高潮| 精品一区二区免费观看| 欧美一级a爱片免费观看看| 亚洲内射少妇av| 国产又色又爽无遮挡免| 少妇被粗大猛烈的视频| 久久精品国产a三级三级三级| 日韩不卡一区二区三区视频在线| 乱人伦中国视频| 成人国产av品久久久| h日本视频在线播放| 99九九在线精品视频 | 精品久久久精品久久久| 两个人的视频大全免费| 高清av免费在线| av专区在线播放| 欧美少妇被猛烈插入视频| 亚洲欧美成人精品一区二区| 高清不卡的av网站| 欧美日韩综合久久久久久| 日本欧美国产在线视频| 制服丝袜香蕉在线| 秋霞在线观看毛片| 看非洲黑人一级黄片| 亚洲精品一区蜜桃| 日韩中文字幕视频在线看片| 人人妻人人看人人澡| 日韩成人av中文字幕在线观看| 久久精品国产亚洲av涩爱| 综合色丁香网| 黑丝袜美女国产一区| 男人和女人高潮做爰伦理| 精品人妻偷拍中文字幕| 青春草国产在线视频| 午夜av观看不卡| 丝瓜视频免费看黄片| 亚洲精品乱久久久久久| 少妇的逼水好多| 日本av手机在线免费观看| 久久女婷五月综合色啪小说| 色婷婷久久久亚洲欧美| 久久99精品国语久久久| 亚洲不卡免费看| 日韩三级伦理在线观看| 亚洲精品一二三| 亚洲色图综合在线观看| 国产黄片美女视频| 中文字幕精品免费在线观看视频 | 免费av不卡在线播放| 国语对白做爰xxxⅹ性视频网站| 熟女电影av网| 熟女人妻精品中文字幕| 日本色播在线视频| 欧美日韩亚洲高清精品| 久久久久视频综合| 18+在线观看网站| 亚洲,一卡二卡三卡| 国产有黄有色有爽视频| 亚洲av免费高清在线观看| 亚洲av中文av极速乱| 春色校园在线视频观看| 高清黄色对白视频在线免费看 | 老司机亚洲免费影院| av有码第一页| 成人影院久久| 女性生殖器流出的白浆| 中文乱码字字幕精品一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 蜜桃在线观看..| 亚洲色图综合在线观看| 日本-黄色视频高清免费观看| 在线 av 中文字幕| 只有这里有精品99| 自线自在国产av| 免费不卡的大黄色大毛片视频在线观看| 一个人免费看片子| 在线观看国产h片| 看十八女毛片水多多多| 最后的刺客免费高清国语| 国产免费一级a男人的天堂| 国产精品一二三区在线看| 一区二区av电影网| 青春草视频在线免费观看| 久久人人爽av亚洲精品天堂| 美女脱内裤让男人舔精品视频| 国产老妇伦熟女老妇高清| 亚洲精品,欧美精品| 久久精品国产鲁丝片午夜精品| 桃花免费在线播放| 蜜桃在线观看..| 国产成人a∨麻豆精品| 三级国产精品欧美在线观看| 妹子高潮喷水视频| 亚洲一级一片aⅴ在线观看| a级一级毛片免费在线观看| 国产高清有码在线观看视频| 寂寞人妻少妇视频99o| 亚洲欧美日韩另类电影网站| 亚洲国产av新网站| 欧美变态另类bdsm刘玥| 久久97久久精品| 制服丝袜香蕉在线| 性色av一级| 色吧在线观看| 免费看不卡的av| 免费观看无遮挡的男女| 纵有疾风起免费观看全集完整版| 啦啦啦啦在线视频资源| 一本色道久久久久久精品综合| 久久久久久人妻| 一本色道久久久久久精品综合| 国产成人精品一,二区| a级毛片免费高清观看在线播放| 午夜视频国产福利| 在线观看美女被高潮喷水网站| .国产精品久久| 一区二区三区乱码不卡18| 久久久午夜欧美精品| 国产在线一区二区三区精| 欧美另类一区| 国产男女内射视频| 国产精品一区二区三区四区免费观看| 美女cb高潮喷水在线观看| 免费高清在线观看视频在线观看| av不卡在线播放| 成人毛片60女人毛片免费| 亚洲av综合色区一区| 久久久久久伊人网av| 蜜桃在线观看..| 成人无遮挡网站| 我的老师免费观看完整版| 极品教师在线视频| 国产亚洲欧美精品永久| 久久久久久久久久成人| 夜夜骑夜夜射夜夜干| 免费高清在线观看视频在线观看| 亚洲精品乱码久久久v下载方式| 亚州av有码| 欧美老熟妇乱子伦牲交| 午夜福利影视在线免费观看| 亚洲欧美精品专区久久| 国产成人精品一,二区| 精品少妇久久久久久888优播| 插逼视频在线观看| 免费看av在线观看网站| 国产成人精品婷婷| 看免费成人av毛片| 美女xxoo啪啪120秒动态图| 人妻一区二区av| 欧美 亚洲 国产 日韩一| 日本免费在线观看一区| 下体分泌物呈黄色| 在线观看免费日韩欧美大片 | 亚洲av综合色区一区| 亚洲欧美一区二区三区黑人 | 欧美精品高潮呻吟av久久| 一边亲一边摸免费视频| 97超碰精品成人国产| 我要看日韩黄色一级片| 嘟嘟电影网在线观看| a级毛片在线看网站| 国产69精品久久久久777片| 最新中文字幕久久久久| 精品亚洲成a人片在线观看| 午夜激情久久久久久久| 午夜影院在线不卡| 多毛熟女@视频| 日日摸夜夜添夜夜添av毛片| 欧美日韩视频高清一区二区三区二| 久久毛片免费看一区二区三区| 搡女人真爽免费视频火全软件| 乱人伦中国视频| 国产男人的电影天堂91| 午夜免费观看性视频| a级毛片免费高清观看在线播放| 国产淫语在线视频| 日韩强制内射视频| 性高湖久久久久久久久免费观看| 高清不卡的av网站| 中文字幕人妻丝袜制服| 狂野欧美白嫩少妇大欣赏| 欧美日韩视频精品一区| 中文字幕亚洲精品专区| 搡女人真爽免费视频火全软件| av线在线观看网站| 日本午夜av视频| 日本91视频免费播放| 夫妻午夜视频| 午夜福利,免费看| 国产免费一区二区三区四区乱码| 免费观看在线日韩| 午夜精品国产一区二区电影| 伦理电影免费视频| 亚洲第一区二区三区不卡| 在线亚洲精品国产二区图片欧美 | 少妇 在线观看| 亚洲一级一片aⅴ在线观看| 免费大片黄手机在线观看| 亚洲欧美日韩另类电影网站| 日韩中文字幕视频在线看片| 伦理电影大哥的女人| 日韩 亚洲 欧美在线| 一本—道久久a久久精品蜜桃钙片| 久久毛片免费看一区二区三区| 好男人视频免费观看在线| 午夜av观看不卡| 国产在线男女| 最后的刺客免费高清国语| 婷婷色综合大香蕉| 在线观看免费视频网站a站| 最后的刺客免费高清国语| 日韩中字成人|