• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive output consensus for heterogeneous nonlinear multi-agent systems with multi-type input constraints under switching-directed topologies

    2021-06-07 10:06:48WeiZhangZhaoxuYuShugangLi
    Control Theory and Technology 2021年2期

    Wei Zhang 1 · Zhaoxu Yu 1 · Shugang Li

    Abstract This study concentrates on solving the output consensus problem for a class of heterogeneous uncertain nonstrict-feedback nonlinear multi-agent systems under switching-directed communication topologies, in which all followers are subjected to multi-type input constraints such as unknown asymmetric saturation, unknown dead-zone and their integration. A unif ied representation is presented to overcome the diffi culties originating from multi-agent input constraints. Moreover, the uncertain system functions in a non-lower triangular form and the interaction terms among agents are dealt with by exploiting the fuzzy logic systems and their special property. Furthermore, by introducing a nonlinear f ilter to alleviate the problem of“explosion of complexity” during the backstepping design, a distributed common adaptive control protocol is proposed to ensure that the synchronization errors converge to a small neighborhood of the origin despite the existence of multiple input constraints and arbitrary switching communication topologies. Both stability analysis and simulation results are conducted to show the eff ectiveness and performance of the proposed control methodology.

    Keywords Nonlinear multi-agent system · Output consensus · Fuzzy logic system · Input constraint · Switching topology

    1 Introduction

    Multi-agent systems have received extensive attention in the past 2 decades due to their potential applications in various f ields, such as satellite formation, unmanned air vehicles, mobile robots, and so on [ 1- 4]. The leader-following consensus problems including state consensus and output consensus have been a fundamental issue for the research of multi-agent systems in [ 5- 19]. Especially, it is worth pointing out that the nonlinear dynamics in [ 5- 7] must be homogeneous. That is to say, all the agents must contain the identical dynamics. Actually, the agents often have diff erent dynamics, such that the multi-agent systems with heterogeneous dynamics are widely considered in [ 8- 16]. Fuzzy logic system (FLS) or neural networks have been used to deal with the heterogeneous dynamics in [ 10- 16]. Besides,all the subsystem functions of agent in a nonstrict-feedback form are related to the whole state variables; high-order nonstrict-feedback nonlinear multi-agent systems have a more representative form in comparison with the other nonlinear multi-agent systems, and there are many practical systems which can fall into this category. Thus, high-order nonstrict-feedback nonlinear multi-agent systems have been intensively studied in [ 17- 19]. However, the aforementioned results did not consider input constraints.

    Note that actuators cannot respond to the command signal promptly and saturation is inevitable to restrict the magnitude of the command signal; dead-zone and saturation are two typical nonsmooth input nonlinearities in practical systems. Both dead-zone and saturation can severely degrade the control performance. Therefore, the investigations of dead-zone and saturation have been drawn a sustainable interest in the control community for a long time, and many techniques were presented to overcome the eff ects of such nonlinearities [ 20- 27]. Nevertheless, the results obtained in [ 20- 27] were only concerned with a single-agent system. For multi-agent nonlinear systems with input nonlinearities, some interesting control strategies were proposed in [ 28- 33], but the results in [ 28- 31] did consider deadzone or saturation individually. Actually, both dead-zone and saturation often happen in the same actuator, and it is quite diffi cult for the backstepping design to build the proper model representing the integration of dead-zone and saturation. Hence, few results on the consensus problem for heterogeneous uncertain nonlinear systems with integrating dead-zone and saturation have been published. In [ 33], the output consensus problem was solved for nonlinear multiagent systems subject to both linear dead-zone and asymmetric saturation, but the results are obtained based on a f ixed directed graph rather than the switching topologies.

    In fact, the interaction topologies of practical multi-agent systems are often unreliable due to the constrained sensing region of sensors or the eff ect of obstacles [ 34]. In comparison with a plenty of research results on multi-agent systems with f ixed communication topology [ 5- 19, 28- 33], fewer works are paid attention to solving consensus problem under switching topologies. By constraining the time interval between the consecutive switching, i.e., dwell time, a number of multi-agent systems with switching topologies were studied in [ 35- 39] and some eff ective control protocols were presented for such systems. Besides, based on the fact that the graph is f ixed during some time intervals, several distributed adaptive consensus control schemes were proposed for nonlinear multi-agent systems under switching topologies in[ 40, 41]. However, the switching mechanism of communication topologies may be usually unknown or too complicated to be applied in the stability analysis and control design,such that it is necessary to investigate the case of arbitrary switching topologies. For a class of leader-following linear multi-agent systems under arbitrary switching topology, the output-feedback consensus tracking problem has been studied in [ 42] and suffi cient conditions are obtained to reach consensus in terms of linear matrix inequalities. In addition,a common Lyapunov function (CLF) is proposed to deal with the consensus problem of linear multi-agent system under switching-directed topologies in [ 43]. Unfortunately,still not enough attention has been paid to the problem of distributed adaptive control for uncertain nonlinear multiagent systems in the presence of multi-type input constraints and arbitrary switching topologies.

    The preceding discussion motivates us to tackle the output consensus problem of heterogeneous uncertain nonlinear nonstrict-feedback multi-agent systems with multi-type input constraints under arbitrary switching communication topologies. In contrast to the existing literature, the main contributions of this paper are listed as follows:

    1. It is the f irst time to address the adaptive output consensus problem of heterogeneous nonstrict-feedback nonlinear multi-agent systems with multi-type input constraints under arbitrary switching-directed graphs.Especially, the nonlinear multi-agent system with switching communication topologies is seen as switched nonlinear system, then an eff ective distributed adaptive control protocol is developed to attain the output consensus for such systems using the CLF method.

    2. Unlike the results in [ 28- 31] and [ 33], where all the followers must be subject to the same input constraint, this paper considers the diff erent input constraints including not only asymmetric saturation or nonlinear dead-zone separately but also the integration of dead-zone and saturation for the followers. Furthermore, a unif ied model is proposed to cope with these input constraints.

    3. Both the nonstrict-feedback structure and the interaction terms among agents are handled using the FLS and its property, such that the algebraic loop problem in designing a controller for such systems can be avoided.Besides, by replacing the conventional f irst-order f ilters (e.g., see in [ 10, 29, 41]) with some novel nonlinear f ilters, an improved dynamic surface control (DSC)method is proposed to alleviate the problem of “explosion of complexity” during the backstepping design.

    2 Problem formulation and preliminaries

    2.1 Graph theory

    2.2 FLS and its approximation

    Lemma 1Let f(Z)be a continuous function def ined on a compact set ΩZ.Then for any given positive constant ε,there exists a FLS WTΦ(Z)to satisfy[44]

    2.3 Problem formulation

    Suppose that there exists a multi-agent system with one leader labeled as 0 andNfollowers labeled as 1,2,…,N.The dynamics of theith (i∈V) follower can be described by

    wheremi,l(ui) andmi,r(ui) are unknown smooth functions,andbi,l<0 andbi,r>0 are constants.

    To facilitate the control design, some following assumptions on dead-zone are necessary.

    Assumption 1 The output of dead-zone is unavailable [ 21].

    Assumption 2 For smooth functionsmi,l(ui) andmi,r(ui) ,there exist unknown positive constantski,l0,ki,l1,ki,r0, andki,r1such that

    whereui,Mandui,mrepresent the upper and lower bounds of the saturation nonlinearity, respectively. Similar to [ 27], both Gaussian error function and mean value theorem are used to represent the piecewise function ( 8). Then, fori∈I2,φi(ui)can be written as follows:

    where

    Remark 1As for the considered multi-agent nonlinear systems, some statements are given as follows:

    (1) Noticed that the functionsfi,jandgi,jdepend on the whole state variablesxi,1,…,xi.ni; thus, system ( 3) is called as nonstrict-feedback form and can be used to represent various practical engineering systems, such as biochemical process, f light systems, manipulators,and so on.

    (2) Though input nonlinearity integrating dead-zone and saturation has been addressed in [ 33], the dead-zone model is linear rather than nonlinear. Here, a new model ( 11) is proposed to describe the integration of nonlinear dead-zone and asymmetric saturation.

    (3) The f ixed network topology can be taken as a special case of switching topologies when the index setQcontains only one element.

    Def inition 1 For the nonlinear multi-agent systems ( 3) under the switching-directed topologies, the distributed consensus tracking errors between the followers and the leader are called to be cooperatively semiglobally uniformly ultimately bounded (CSGUUB) if for anyyi(t0)-yd(t0)∈Ωi,0withydbeing the output of leader agent andΩi,0being a given compact set, there exist constant∈>0 and timeT(yi(t0)-yd(t0),∈) , such that ‖y-yd‖≤∈holds for?t≥t0+T, wherey=[y1,…,yN]Tandyd=[yd,…,yd]T[ 45].

    The objective of this paper is to design the eff ective distributed adaptive consensus control protocolsui(i∈V)for the heterogeneous follower agents ( 3) under arbitrary switching-directed graphs, such that all the tracking errors are CSGUUB, i.e., there exist a constant∈>0 and a timeTto satisfy |yi(t)-yd(t)|≤∈for allt≥T.

    To attain the above control objective, some helpful assumptions and lemmas are introduced as follows.

    Assumption 5 The leader’s outputydand its derivatives˙ydand¨ydare continuous and bounded. Moreover, they only can be available for theith agent satisfying 0∈Nki.

    Remark 2There are some further statements on the above assumptions as follows: (1) As mentioned in [ 18], Assumption 3 means that the outputyiofith follower may track the leader’s outputydby developing the distributed control protocol appropriately fork,?k∈Q. Moreover, Assumption 3 also shows thatis true for anyi∈V andk∈Q;(2) Assumption 4 means that the constantg*iis not required to be known. Thus, no extra strict restriction is imposed on the system ( 3); (3) Assumptions 3- 5 are common in the existing literature, e.g. [ 18, 39- 41].

    3 Main results

    3.1 Distributed adaptive control design

    In this section, FLS approximation and DSC approach are combined to develop a distributed adaptive control design procedure for the heterogeneous nonlinear multi-agent systems under the switching-directed topologies.

    For anyi∈V andk∈Q, based on the directed graph Gk,the neighboring synchronization errorzi,1is f irst def ined as follows:

    whereτi,j>0 are time constants of the f ilters,ei,j∶=si,j-αi,jare boundary layer errors with the virtual control functionsαi,jbeing given below,κi,j>0 are the constants to be determined, and^Mi,jare the estimations of the unknown constantsMi,jto be given later. Let~Mi,j=^Mi,j-Mi,jbe the estimation errors, and the updating laws of^Mi,jare constructed as

    whereγi,j>0 andχi,j>0 are the adjusted parameters.

    For anyk∈Qand theith (i∈V) follower agent, the common adaptive control protocols are designed as follows:

    wherepi,j>0 andσi,j>0 are the designed parameters forj=1,2,…,ni,^θi,j(j=1,2,…,ni) are the adaptive parameters to be specif ied during the backstepping design. Furthermore, forj=1,2,…,ni, the adaptive laws of^θi,jare given by

    It is inspiring that the dynamics ( 20) of synchronization errorzi,jcan be taken as the switched nonlinear systems with the switching signal produced by the change of communication topologies according to [ 47]. Furthermore, the switching mechanisms of topologies in many cases are unknown or too complicated to be used in the consensus analysis and control design of each follower agent. Therefore, the CLF approach can be extended to solve the consensus control problem of multi-agent systems under arbitrary switching topologies [ 48].

    First, to overcome the diffi culty from the system uncertainties of followers, the following unknown functioni,1,kis def ined and approximated by a FLS

    With the help of ( 1), ( 21) and Lemma 4, one has

    Some functions are lumped to be an unknown function,j,k,and a FLS is used to approximate it, i.e.,

    Substituting ( 17), ( 19), ( 28) and ( 32) into ( 31), one has

    StepniTo conduct the actual control design, the following unif ied description is exploited to represent the multitype input constraints

    Accordingly, for anyi∈V , the dynamical system ofzi,nican be given by

    Similar to ( 23) and ( 32), and substituting ( 19), ( 33)-( 36) and( 38) into ( 37) yields

    3.2 Stability analysis

    In this section, stability analysis for the whole closed-loop multi-agent systems is presented. First, according to the def inition ofei,jand ( 15), we have

    Next, some continuous functionsBi,j,kare def ined as

    For anyk∈Q,i∈V andj=1,2,…,ni-1 , there must exist positive constantsMi,jto satisfy |Bi,j,k|≤Mi,jon the compact setΩwhich will be given later. Therefore, it is easy to derive that

    Theorem 1Consider the uncertain nonstrict-feedback nonlinear multi-agent systems(3)satisfying Assumptions1-5under switching-directed communication topologies,if the distributed adaptive control protocols(18)together with virtual control functions(17),nonlinear f ilters(15),and adaptive laws(16)and(19)are utilized. Then, for any initial condition satisfying V(0)≤R0and θ ^i,j(0)>0(i∈V,j=1,2,…,ni),the consensus tracking errors areCSGUUB and can remain in an enough small neighborhood of the origin by adjusting the parameters appropriately.

    ProofApplying the def inition ofVand ( 46) gives

    Fig. 1 Three communication topologies1-3

    Fig. 2 The switching mechanism among 1-3

    Remark 4Note that the repeated diff erentiations of virtual control functions must result in the problem of “explosion of complexity” during the traditional backstepping design;the conventional DSC (CDSC) method often introduce the f irst-order f ilter to solve the problem (e.g., see in [ 10, 21,29, 41]). However, the eff ects ofBi,j(·) in the dynamics of boundary layer errors are not compensated for the CDSC technique, which usually causes the degradation of synchronization performance. Motivated by the design of f ilter in [ 49], a novel nonlinear f ilter ( 15) and parameter adjusting laws ( 16) are included to compensate for the unknown boundsMi,jofBi,j(·).

    4 Simulation example

    To verify the eff ectiveness and applicability of the proposed control strategy, a set of one-link manipulators borrowed from [ 16] is considered. In the simulation, the communication topologies among one leader labeled as 0 and three followers labeled as 1-3 are shown in Fig. 1,and Fig. 2 exhibits the switching mechanism among three topologies1-3. The output of leader is chosen asyd=sin0.5t+sint, and the models of theith (i=1,2,3)follower agent are described by

    whereqi,˙qi,¨qi, andμirepresent the link position, velocity,acceleration and the torque, respectively.videnotes the control input of theith follower. Moreover,μd,iandτd,idenote system uncertainties and model errors. Letxi,1=qi,xi,2=˙qi,andxi,3=μi, and take the multitype input constraints into consideration, then system ( 51) can be written as

    Fig. 3 The output trajectories of three followers and one leader

    Fig. 4 The input signals φ1(u1) and u1

    The simulation results are shown in Figs. 3, 4, 5 and 6.Figure 3 depicts the output trajectories of three followers and one leader, which demonstrates the satisfactory consensus performance of the proposed distributed control protocol.Figures 4, 5 and 6 reveal the input signals of three followers satisfying diff erent constraints, respectively.

    Fig. 5 The input signals φ2(u2) and u2

    Fig. 6 The input signals φ3(u3) and u3

    Remark 5In light of the preceding simulation results, it is worth pointing out that some small perturbations may occur with the switching of communication topologies, but the satisfactory tracking performance can recover quickly from the small perturbations using the common distributed adaptive control protocol presented in this paper.

    5 Conclusions

    This paper has studied the output consensus problem for a class of heterogeneous nonstrict-feedback multi-agent systems with multi-type input constraints under arbitrary switching-directed topologies. A distributed adaptive control strategy is developed to acquire the output consensus of such multi-agent systems. Meanwhile, the nonlinear f ilter is constructed to improve the CDSC method. Besides, the multitype input constraints including nonlinear dead-zone and asymmetric saturation are dealt with by proposing an unif ied method. Both stability analysis and simulation studies are provided to show the eff ectiveness of the proposed control protocol. In the future work, it is necessary to explore the distributed output-feedback control problem for heterogeneous multi-agent systems under the switching-directed communication topologies.

    AcknowledgementsThis work was partially supported by the Chinese National Natural Science Foundation (No. 71871135), and the Fundamental Research Funds for the Central Universities (Nos.222201714055, 222201717006).

    七月丁香在线播放| 精品一品国产午夜福利视频| 老熟女久久久| 国产成人午夜福利电影在线观看| 精品一区二区三卡| 精品国产露脸久久av麻豆| 69精品国产乱码久久久| 国产精品欧美亚洲77777| 人妻人人澡人人爽人人| 精品人妻一区二区三区麻豆| 免费高清在线观看日韩| 成人黄色视频免费在线看| 欧美精品国产亚洲| 热99国产精品久久久久久7| 午夜激情av网站| 黄片播放在线免费| 国产在线视频一区二区| 蜜桃国产av成人99| 精品福利永久在线观看| 成人二区视频| 最新的欧美精品一区二区| 久久女婷五月综合色啪小说| 97人妻天天添夜夜摸| 亚洲精品第二区| 午夜影院在线不卡| 亚洲精华国产精华液的使用体验| 十八禁高潮呻吟视频| 少妇精品久久久久久久| 午夜福利视频在线观看免费| 国产成人午夜福利电影在线观看| 国产又爽黄色视频| 久久狼人影院| 18禁动态无遮挡网站| 亚洲五月色婷婷综合| 校园人妻丝袜中文字幕| 亚洲国产av影院在线观看| 两性夫妻黄色片 | 亚洲人成网站在线观看播放| 在线观看人妻少妇| 9热在线视频观看99| 国产精品久久久久成人av| 美女福利国产在线| 最后的刺客免费高清国语| 欧美xxxx性猛交bbbb| 亚洲国产色片| 熟女人妻精品中文字幕| 午夜福利视频在线观看免费| 黄色一级大片看看| videosex国产| 纵有疾风起免费观看全集完整版| 亚洲精品日韩在线中文字幕| 久久精品国产自在天天线| 国产精品人妻久久久影院| 色哟哟·www| 亚洲av免费高清在线观看| 蜜桃国产av成人99| 一边摸一边做爽爽视频免费| a级毛色黄片| 亚洲国产精品国产精品| 韩国精品一区二区三区 | 中文欧美无线码| 亚洲欧美成人综合另类久久久| 国产成人精品婷婷| 黄色毛片三级朝国网站| 最近2019中文字幕mv第一页| 如何舔出高潮| 人人妻人人澡人人爽人人夜夜| 18禁动态无遮挡网站| 欧美 日韩 精品 国产| 日韩电影二区| 国产探花极品一区二区| 狠狠婷婷综合久久久久久88av| 中文天堂在线官网| 国产欧美日韩综合在线一区二区| av片东京热男人的天堂| 亚洲精品乱久久久久久| 女人精品久久久久毛片| 9色porny在线观看| 一级毛片电影观看| 777米奇影视久久| 精品国产一区二区久久| 哪个播放器可以免费观看大片| 搡女人真爽免费视频火全软件| 欧美日韩精品成人综合77777| 男人操女人黄网站| 亚洲精品,欧美精品| 亚洲国产av影院在线观看| 久久久精品94久久精品| 丝袜美足系列| 久久久久人妻精品一区果冻| 人人澡人人妻人| 午夜91福利影院| 国产综合精华液| 黄色毛片三级朝国网站| 两个人看的免费小视频| 成人影院久久| 久久久国产一区二区| 国产一区亚洲一区在线观看| 色哟哟·www| 久久久国产一区二区| 国产免费一区二区三区四区乱码| 精品国产一区二区三区四区第35| 丝袜人妻中文字幕| 日韩成人av中文字幕在线观看| 少妇熟女欧美另类| 精品酒店卫生间| 成人国产麻豆网| 美国免费a级毛片| 精品国产一区二区三区四区第35| 男的添女的下面高潮视频| 成人国产麻豆网| 啦啦啦在线观看免费高清www| 国产成人免费无遮挡视频| 肉色欧美久久久久久久蜜桃| 亚洲丝袜综合中文字幕| 亚洲三级黄色毛片| 考比视频在线观看| 精品人妻在线不人妻| 亚洲欧美一区二区三区黑人 | 18禁裸乳无遮挡动漫免费视频| 卡戴珊不雅视频在线播放| 十八禁高潮呻吟视频| 男女免费视频国产| 天堂8中文在线网| 飞空精品影院首页| 免费观看av网站的网址| 婷婷色麻豆天堂久久| 亚洲欧洲国产日韩| 男人操女人黄网站| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧洲日产国产| 国产精品免费大片| 欧美另类一区| 久久久久久久精品精品| 最后的刺客免费高清国语| 新久久久久国产一级毛片| 全区人妻精品视频| 国产成人av激情在线播放| 女的被弄到高潮叫床怎么办| 亚洲欧美一区二区三区黑人 | 七月丁香在线播放| 少妇人妻 视频| 大香蕉久久成人网| 看非洲黑人一级黄片| 男女边摸边吃奶| 免费观看a级毛片全部| 免费观看a级毛片全部| 夫妻午夜视频| 亚洲 欧美一区二区三区| 国产亚洲精品久久久com| 亚洲第一av免费看| 国产黄色免费在线视频| 黄色怎么调成土黄色| 丰满饥渴人妻一区二区三| 久久久久久久久久久免费av| 亚洲欧洲日产国产| 99久久人妻综合| 亚洲av日韩在线播放| 激情五月婷婷亚洲| 亚洲国产精品国产精品| 美女大奶头黄色视频| 国产视频首页在线观看| 国产亚洲精品第一综合不卡 | 一级黄片播放器| 18禁国产床啪视频网站| 搡女人真爽免费视频火全软件| 国产老妇伦熟女老妇高清| 亚洲欧美成人精品一区二区| 极品人妻少妇av视频| a 毛片基地| 欧美激情国产日韩精品一区| 黑人高潮一二区| 人妻少妇偷人精品九色| 伦理电影大哥的女人| 最近最新中文字幕免费大全7| 午夜激情av网站| 欧美日本中文国产一区发布| 啦啦啦在线观看免费高清www| 久久精品久久久久久久性| 亚洲经典国产精华液单| 男女国产视频网站| 十八禁高潮呻吟视频| 亚洲av成人精品一二三区| 国产成人av激情在线播放| 新久久久久国产一级毛片| 久久免费观看电影| 精品卡一卡二卡四卡免费| 日韩欧美一区视频在线观看| 国产精品秋霞免费鲁丝片| 老司机亚洲免费影院| 亚洲精品456在线播放app| 日韩,欧美,国产一区二区三区| 久久精品国产鲁丝片午夜精品| 亚洲,欧美,日韩| 亚洲成色77777| 男女边摸边吃奶| 国产精品无大码| 色视频在线一区二区三区| 国产欧美日韩一区二区三区在线| 人妻一区二区av| 美女国产视频在线观看| 男人爽女人下面视频在线观看| 国产伦理片在线播放av一区| 亚洲av男天堂| 亚洲精品456在线播放app| 免费观看av网站的网址| 午夜福利视频精品| 亚洲精品久久成人aⅴ小说| 看非洲黑人一级黄片| 下体分泌物呈黄色| 女人久久www免费人成看片| 自拍欧美九色日韩亚洲蝌蚪91| 久久久精品区二区三区| 欧美精品人与动牲交sv欧美| 男女高潮啪啪啪动态图| 曰老女人黄片| av在线老鸭窝| 久久韩国三级中文字幕| 如何舔出高潮| www.av在线官网国产| av.在线天堂| 亚洲av福利一区| 国产精品一区www在线观看| 蜜桃在线观看..| 成人毛片60女人毛片免费| 搡女人真爽免费视频火全软件| 国产精品久久久久久av不卡| 成人二区视频| 少妇精品久久久久久久| 90打野战视频偷拍视频| 国产精品成人在线| 免费大片18禁| 久久99热6这里只有精品| 精品亚洲成国产av| 免费在线观看完整版高清| 国产精品国产av在线观看| 欧美最新免费一区二区三区| 免费播放大片免费观看视频在线观看| 一二三四中文在线观看免费高清| 在线免费观看不下载黄p国产| 久久狼人影院| 国产成人精品久久久久久| 看非洲黑人一级黄片| 在线观看美女被高潮喷水网站| 妹子高潮喷水视频| 秋霞伦理黄片| 成人黄色视频免费在线看| 热re99久久国产66热| 午夜精品国产一区二区电影| 亚洲精品视频女| 久久精品国产综合久久久 | 我的女老师完整版在线观看| 久久久久久人妻| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久av不卡| 欧美人与善性xxx| 久久精品久久久久久噜噜老黄| 97人妻天天添夜夜摸| 99精国产麻豆久久婷婷| 91精品伊人久久大香线蕉| 精品人妻在线不人妻| 国产成人免费观看mmmm| 亚洲av综合色区一区| 成年美女黄网站色视频大全免费| av国产精品久久久久影院| 久久久精品免费免费高清| 国产一区二区在线观看av| 国产69精品久久久久777片| 亚洲欧美精品自产自拍| videossex国产| 热99久久久久精品小说推荐| 国产亚洲午夜精品一区二区久久| 亚洲欧美色中文字幕在线| 五月伊人婷婷丁香| 亚洲五月色婷婷综合| 永久网站在线| 夜夜骑夜夜射夜夜干| 国产欧美亚洲国产| 久久影院123| 亚洲国产看品久久| 亚洲一级一片aⅴ在线观看| 国产欧美日韩一区二区三区在线| 亚洲激情五月婷婷啪啪| 97人妻天天添夜夜摸| 国产成人精品在线电影| 最黄视频免费看| 国产精品女同一区二区软件| av国产精品久久久久影院| 热re99久久国产66热| 国产成人aa在线观看| 国产毛片在线视频| 久久99精品国语久久久| 97在线视频观看| 亚洲综合精品二区| 国产免费又黄又爽又色| 国产精品成人在线| 亚洲婷婷狠狠爱综合网| 另类精品久久| 亚洲人成77777在线视频| 国产黄色免费在线视频| 成人漫画全彩无遮挡| 9热在线视频观看99| 日韩一区二区视频免费看| 天天躁夜夜躁狠狠久久av| 91久久精品国产一区二区三区| 国产亚洲精品第一综合不卡 | 国产乱人偷精品视频| 婷婷色综合大香蕉| 亚洲精品456在线播放app| 18在线观看网站| 日本欧美国产在线视频| 国产成人精品久久久久久| 精品卡一卡二卡四卡免费| 久久久久国产网址| 观看美女的网站| 两个人免费观看高清视频| 日韩三级伦理在线观看| 丝袜喷水一区| av片东京热男人的天堂| 丁香六月天网| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| 国产熟女午夜一区二区三区| 美女国产高潮福利片在线看| 人成视频在线观看免费观看| 99久国产av精品国产电影| 亚洲经典国产精华液单| 9191精品国产免费久久| 最近中文字幕2019免费版| 美女福利国产在线| 亚洲av电影在线进入| 久久久久人妻精品一区果冻| 999精品在线视频| 精品一品国产午夜福利视频| 国产精品久久久久久精品电影小说| 三上悠亚av全集在线观看| 久久久久精品人妻al黑| 两性夫妻黄色片 | 国产亚洲精品久久久com| 免费人成在线观看视频色| 亚洲激情五月婷婷啪啪| 亚洲国产精品一区三区| 啦啦啦啦在线视频资源| 亚洲精品,欧美精品| 99热6这里只有精品| 一级,二级,三级黄色视频| 国产精品一区www在线观看| 最近最新中文字幕大全免费视频 | 久久精品国产亚洲av天美| 最近手机中文字幕大全| 视频中文字幕在线观看| 999精品在线视频| 插逼视频在线观看| xxx大片免费视频| 国产片特级美女逼逼视频| 久久久久精品人妻al黑| 亚洲国产av新网站| 狂野欧美激情性bbbbbb| 在线天堂中文资源库| 日韩中字成人| 女性被躁到高潮视频| 女性生殖器流出的白浆| 青春草亚洲视频在线观看| 亚洲国产成人一精品久久久| 大陆偷拍与自拍| 成人影院久久| 午夜福利视频在线观看免费| 91aial.com中文字幕在线观看| 日日摸夜夜添夜夜爱| 97在线人人人人妻| 天天操日日干夜夜撸| 青青草视频在线视频观看| 免费黄频网站在线观看国产| 全区人妻精品视频| 免费av中文字幕在线| 老熟女久久久| 1024视频免费在线观看| 18禁在线无遮挡免费观看视频| 国产又色又爽无遮挡免| 十分钟在线观看高清视频www| 久久久久国产精品人妻一区二区| 亚洲国产日韩一区二区| 国产精品国产三级国产av玫瑰| 亚洲欧美清纯卡通| 另类亚洲欧美激情| 婷婷色综合大香蕉| 欧美 亚洲 国产 日韩一| 国产成人午夜福利电影在线观看| 国产极品粉嫩免费观看在线| 亚洲av免费高清在线观看| 亚洲,欧美精品.| av片东京热男人的天堂| 如何舔出高潮| 日韩一本色道免费dvd| 2021少妇久久久久久久久久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 宅男免费午夜| 69精品国产乱码久久久| 97精品久久久久久久久久精品| 精品少妇黑人巨大在线播放| 黑人高潮一二区| 香蕉精品网在线| 中文字幕另类日韩欧美亚洲嫩草| 一区二区三区四区激情视频| 国产午夜精品一二区理论片| 日本vs欧美在线观看视频| 国产欧美日韩一区二区三区在线| 日韩av不卡免费在线播放| 亚洲欧美清纯卡通| 18+在线观看网站| 少妇的逼好多水| 晚上一个人看的免费电影| 你懂的网址亚洲精品在线观看| 男女国产视频网站| 免费黄网站久久成人精品| 国产精品久久久久久久电影| 日韩成人av中文字幕在线观看| 久久婷婷青草| 街头女战士在线观看网站| 热99国产精品久久久久久7| 日韩在线高清观看一区二区三区| 成人国产麻豆网| 国内精品宾馆在线| 97超碰精品成人国产| av片东京热男人的天堂| 欧美 日韩 精品 国产| 精品福利永久在线观看| 91精品伊人久久大香线蕉| 久久婷婷青草| 国产成人91sexporn| 99久久精品国产国产毛片| 国产精品国产av在线观看| 日本wwww免费看| 九色亚洲精品在线播放| 色5月婷婷丁香| av片东京热男人的天堂| 亚洲国产欧美日韩在线播放| 最近最新中文字幕大全免费视频 | 视频中文字幕在线观看| 成年动漫av网址| 69精品国产乱码久久久| 97精品久久久久久久久久精品| 全区人妻精品视频| 日本av手机在线免费观看| 国产一区有黄有色的免费视频| 国产精品无大码| 婷婷色综合www| 欧美日本中文国产一区发布| 久久人人爽人人爽人人片va| 久久人人97超碰香蕉20202| 91国产中文字幕| 欧美人与性动交α欧美软件 | 精品一区在线观看国产| 精品人妻一区二区三区麻豆| 国产黄频视频在线观看| 欧美人与性动交α欧美软件 | 视频中文字幕在线观看| 成年动漫av网址| 成人国语在线视频| 国产精品久久久久久久久免| 欧美日韩国产mv在线观看视频| 午夜福利视频精品| 日韩欧美一区视频在线观看| 777米奇影视久久| 精品人妻一区二区三区麻豆| 最新中文字幕久久久久| 久久精品久久久久久久性| 亚洲精品视频女| 欧美日韩av久久| 最近中文字幕2019免费版| 亚洲精品av麻豆狂野| 18+在线观看网站| 国产一区亚洲一区在线观看| 丝瓜视频免费看黄片| 香蕉国产在线看| 狂野欧美激情性bbbbbb| 男女免费视频国产| 9191精品国产免费久久| www.av在线官网国产| av一本久久久久| 亚洲丝袜综合中文字幕| 国产男女内射视频| 成人综合一区亚洲| 国产精品国产三级国产av玫瑰| 伊人久久国产一区二区| 国产欧美日韩综合在线一区二区| 久久精品久久久久久久性| 18在线观看网站| 侵犯人妻中文字幕一二三四区| 人成视频在线观看免费观看| 色婷婷久久久亚洲欧美| 中文字幕人妻丝袜制服| 精品卡一卡二卡四卡免费| 国产一区二区激情短视频 | 麻豆精品久久久久久蜜桃| 国产成人精品久久久久久| 人妻人人澡人人爽人人| 免费av不卡在线播放| 综合色丁香网| 日韩在线高清观看一区二区三区| 九色成人免费人妻av| 日韩精品免费视频一区二区三区 | 综合色丁香网| 精品人妻一区二区三区麻豆| 人人妻人人澡人人看| 激情视频va一区二区三区| 母亲3免费完整高清在线观看 | 美女主播在线视频| 美女国产高潮福利片在线看| 熟女电影av网| 少妇猛男粗大的猛烈进出视频| 久久婷婷青草| 大码成人一级视频| 久久久久久人妻| 美女主播在线视频| 侵犯人妻中文字幕一二三四区| 欧美精品一区二区大全| 最近手机中文字幕大全| 夫妻性生交免费视频一级片| 视频中文字幕在线观看| 18禁国产床啪视频网站| 男女边吃奶边做爰视频| 男女无遮挡免费网站观看| 一边亲一边摸免费视频| 丁香六月天网| 亚洲国产av影院在线观看| 国产一级毛片在线| 国产黄色免费在线视频| 建设人人有责人人尽责人人享有的| 91国产中文字幕| 热re99久久精品国产66热6| 视频在线观看一区二区三区| 亚洲五月色婷婷综合| 男女啪啪激烈高潮av片| 国产 精品1| 亚洲精品乱码久久久久久按摩| 少妇人妻精品综合一区二区| 亚洲精品日韩在线中文字幕| 99热这里只有是精品在线观看| 亚洲精品久久久久久婷婷小说| 亚洲五月色婷婷综合| 亚洲精品日韩在线中文字幕| 51国产日韩欧美| 亚洲激情五月婷婷啪啪| 狂野欧美激情性bbbbbb| 亚洲欧美精品自产自拍| 美女国产高潮福利片在线看| 天天躁夜夜躁狠狠久久av| 亚洲人与动物交配视频| 母亲3免费完整高清在线观看 | 色94色欧美一区二区| 免费观看无遮挡的男女| 性高湖久久久久久久久免费观看| 黑人欧美特级aaaaaa片| 日韩欧美一区视频在线观看| 黑人猛操日本美女一级片| 国产又色又爽无遮挡免| 一级a做视频免费观看| 天天影视国产精品| 高清av免费在线| 成年动漫av网址| 亚洲欧洲日产国产| 18+在线观看网站| 久久久久人妻精品一区果冻| 亚洲精品久久成人aⅴ小说| 伦理电影免费视频| 欧美变态另类bdsm刘玥| 精品一区在线观看国产| 午夜福利乱码中文字幕| √禁漫天堂资源中文www| 精品人妻在线不人妻| 欧美国产精品一级二级三级| 久久毛片免费看一区二区三区| 亚洲内射少妇av| 免费少妇av软件| 久久久国产一区二区| 一区二区日韩欧美中文字幕 | 老女人水多毛片| 美女xxoo啪啪120秒动态图| 99国产综合亚洲精品| 一级黄片播放器| 99热网站在线观看| 国产午夜精品一二区理论片| 王馨瑶露胸无遮挡在线观看| 婷婷色麻豆天堂久久| 丁香六月天网| 国产综合精华液| 欧美日韩一区二区视频在线观看视频在线| 丰满饥渴人妻一区二区三| 十分钟在线观看高清视频www| 国产精品不卡视频一区二区| 日韩欧美精品免费久久| 亚洲av国产av综合av卡| 老熟女久久久| 国产精品一区二区在线不卡| 色94色欧美一区二区| 秋霞在线观看毛片| 我的女老师完整版在线观看| 人人妻人人爽人人添夜夜欢视频| 又黄又粗又硬又大视频| 男人操女人黄网站| 男女无遮挡免费网站观看| 99久久综合免费| 汤姆久久久久久久影院中文字幕| 亚洲欧美色中文字幕在线| 国产免费视频播放在线视频| 日产精品乱码卡一卡2卡三| 国产又爽黄色视频| 嫩草影院入口| 国产精品无大码| 久热这里只有精品99| 一本久久精品| 成人黄色视频免费在线看| 午夜视频国产福利| 欧美人与性动交α欧美软件 |