• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive output consensus for heterogeneous nonlinear multi-agent systems with multi-type input constraints under switching-directed topologies

    2021-06-07 10:06:48WeiZhangZhaoxuYuShugangLi
    Control Theory and Technology 2021年2期

    Wei Zhang 1 · Zhaoxu Yu 1 · Shugang Li

    Abstract This study concentrates on solving the output consensus problem for a class of heterogeneous uncertain nonstrict-feedback nonlinear multi-agent systems under switching-directed communication topologies, in which all followers are subjected to multi-type input constraints such as unknown asymmetric saturation, unknown dead-zone and their integration. A unif ied representation is presented to overcome the diffi culties originating from multi-agent input constraints. Moreover, the uncertain system functions in a non-lower triangular form and the interaction terms among agents are dealt with by exploiting the fuzzy logic systems and their special property. Furthermore, by introducing a nonlinear f ilter to alleviate the problem of“explosion of complexity” during the backstepping design, a distributed common adaptive control protocol is proposed to ensure that the synchronization errors converge to a small neighborhood of the origin despite the existence of multiple input constraints and arbitrary switching communication topologies. Both stability analysis and simulation results are conducted to show the eff ectiveness and performance of the proposed control methodology.

    Keywords Nonlinear multi-agent system · Output consensus · Fuzzy logic system · Input constraint · Switching topology

    1 Introduction

    Multi-agent systems have received extensive attention in the past 2 decades due to their potential applications in various f ields, such as satellite formation, unmanned air vehicles, mobile robots, and so on [ 1- 4]. The leader-following consensus problems including state consensus and output consensus have been a fundamental issue for the research of multi-agent systems in [ 5- 19]. Especially, it is worth pointing out that the nonlinear dynamics in [ 5- 7] must be homogeneous. That is to say, all the agents must contain the identical dynamics. Actually, the agents often have diff erent dynamics, such that the multi-agent systems with heterogeneous dynamics are widely considered in [ 8- 16]. Fuzzy logic system (FLS) or neural networks have been used to deal with the heterogeneous dynamics in [ 10- 16]. Besides,all the subsystem functions of agent in a nonstrict-feedback form are related to the whole state variables; high-order nonstrict-feedback nonlinear multi-agent systems have a more representative form in comparison with the other nonlinear multi-agent systems, and there are many practical systems which can fall into this category. Thus, high-order nonstrict-feedback nonlinear multi-agent systems have been intensively studied in [ 17- 19]. However, the aforementioned results did not consider input constraints.

    Note that actuators cannot respond to the command signal promptly and saturation is inevitable to restrict the magnitude of the command signal; dead-zone and saturation are two typical nonsmooth input nonlinearities in practical systems. Both dead-zone and saturation can severely degrade the control performance. Therefore, the investigations of dead-zone and saturation have been drawn a sustainable interest in the control community for a long time, and many techniques were presented to overcome the eff ects of such nonlinearities [ 20- 27]. Nevertheless, the results obtained in [ 20- 27] were only concerned with a single-agent system. For multi-agent nonlinear systems with input nonlinearities, some interesting control strategies were proposed in [ 28- 33], but the results in [ 28- 31] did consider deadzone or saturation individually. Actually, both dead-zone and saturation often happen in the same actuator, and it is quite diffi cult for the backstepping design to build the proper model representing the integration of dead-zone and saturation. Hence, few results on the consensus problem for heterogeneous uncertain nonlinear systems with integrating dead-zone and saturation have been published. In [ 33], the output consensus problem was solved for nonlinear multiagent systems subject to both linear dead-zone and asymmetric saturation, but the results are obtained based on a f ixed directed graph rather than the switching topologies.

    In fact, the interaction topologies of practical multi-agent systems are often unreliable due to the constrained sensing region of sensors or the eff ect of obstacles [ 34]. In comparison with a plenty of research results on multi-agent systems with f ixed communication topology [ 5- 19, 28- 33], fewer works are paid attention to solving consensus problem under switching topologies. By constraining the time interval between the consecutive switching, i.e., dwell time, a number of multi-agent systems with switching topologies were studied in [ 35- 39] and some eff ective control protocols were presented for such systems. Besides, based on the fact that the graph is f ixed during some time intervals, several distributed adaptive consensus control schemes were proposed for nonlinear multi-agent systems under switching topologies in[ 40, 41]. However, the switching mechanism of communication topologies may be usually unknown or too complicated to be applied in the stability analysis and control design,such that it is necessary to investigate the case of arbitrary switching topologies. For a class of leader-following linear multi-agent systems under arbitrary switching topology, the output-feedback consensus tracking problem has been studied in [ 42] and suffi cient conditions are obtained to reach consensus in terms of linear matrix inequalities. In addition,a common Lyapunov function (CLF) is proposed to deal with the consensus problem of linear multi-agent system under switching-directed topologies in [ 43]. Unfortunately,still not enough attention has been paid to the problem of distributed adaptive control for uncertain nonlinear multiagent systems in the presence of multi-type input constraints and arbitrary switching topologies.

    The preceding discussion motivates us to tackle the output consensus problem of heterogeneous uncertain nonlinear nonstrict-feedback multi-agent systems with multi-type input constraints under arbitrary switching communication topologies. In contrast to the existing literature, the main contributions of this paper are listed as follows:

    1. It is the f irst time to address the adaptive output consensus problem of heterogeneous nonstrict-feedback nonlinear multi-agent systems with multi-type input constraints under arbitrary switching-directed graphs.Especially, the nonlinear multi-agent system with switching communication topologies is seen as switched nonlinear system, then an eff ective distributed adaptive control protocol is developed to attain the output consensus for such systems using the CLF method.

    2. Unlike the results in [ 28- 31] and [ 33], where all the followers must be subject to the same input constraint, this paper considers the diff erent input constraints including not only asymmetric saturation or nonlinear dead-zone separately but also the integration of dead-zone and saturation for the followers. Furthermore, a unif ied model is proposed to cope with these input constraints.

    3. Both the nonstrict-feedback structure and the interaction terms among agents are handled using the FLS and its property, such that the algebraic loop problem in designing a controller for such systems can be avoided.Besides, by replacing the conventional f irst-order f ilters (e.g., see in [ 10, 29, 41]) with some novel nonlinear f ilters, an improved dynamic surface control (DSC)method is proposed to alleviate the problem of “explosion of complexity” during the backstepping design.

    2 Problem formulation and preliminaries

    2.1 Graph theory

    2.2 FLS and its approximation

    Lemma 1Let f(Z)be a continuous function def ined on a compact set ΩZ.Then for any given positive constant ε,there exists a FLS WTΦ(Z)to satisfy[44]

    2.3 Problem formulation

    Suppose that there exists a multi-agent system with one leader labeled as 0 andNfollowers labeled as 1,2,…,N.The dynamics of theith (i∈V) follower can be described by

    wheremi,l(ui) andmi,r(ui) are unknown smooth functions,andbi,l<0 andbi,r>0 are constants.

    To facilitate the control design, some following assumptions on dead-zone are necessary.

    Assumption 1 The output of dead-zone is unavailable [ 21].

    Assumption 2 For smooth functionsmi,l(ui) andmi,r(ui) ,there exist unknown positive constantski,l0,ki,l1,ki,r0, andki,r1such that

    whereui,Mandui,mrepresent the upper and lower bounds of the saturation nonlinearity, respectively. Similar to [ 27], both Gaussian error function and mean value theorem are used to represent the piecewise function ( 8). Then, fori∈I2,φi(ui)can be written as follows:

    where

    Remark 1As for the considered multi-agent nonlinear systems, some statements are given as follows:

    (1) Noticed that the functionsfi,jandgi,jdepend on the whole state variablesxi,1,…,xi.ni; thus, system ( 3) is called as nonstrict-feedback form and can be used to represent various practical engineering systems, such as biochemical process, f light systems, manipulators,and so on.

    (2) Though input nonlinearity integrating dead-zone and saturation has been addressed in [ 33], the dead-zone model is linear rather than nonlinear. Here, a new model ( 11) is proposed to describe the integration of nonlinear dead-zone and asymmetric saturation.

    (3) The f ixed network topology can be taken as a special case of switching topologies when the index setQcontains only one element.

    Def inition 1 For the nonlinear multi-agent systems ( 3) under the switching-directed topologies, the distributed consensus tracking errors between the followers and the leader are called to be cooperatively semiglobally uniformly ultimately bounded (CSGUUB) if for anyyi(t0)-yd(t0)∈Ωi,0withydbeing the output of leader agent andΩi,0being a given compact set, there exist constant∈>0 and timeT(yi(t0)-yd(t0),∈) , such that ‖y-yd‖≤∈holds for?t≥t0+T, wherey=[y1,…,yN]Tandyd=[yd,…,yd]T[ 45].

    The objective of this paper is to design the eff ective distributed adaptive consensus control protocolsui(i∈V)for the heterogeneous follower agents ( 3) under arbitrary switching-directed graphs, such that all the tracking errors are CSGUUB, i.e., there exist a constant∈>0 and a timeTto satisfy |yi(t)-yd(t)|≤∈for allt≥T.

    To attain the above control objective, some helpful assumptions and lemmas are introduced as follows.

    Assumption 5 The leader’s outputydand its derivatives˙ydand¨ydare continuous and bounded. Moreover, they only can be available for theith agent satisfying 0∈Nki.

    Remark 2There are some further statements on the above assumptions as follows: (1) As mentioned in [ 18], Assumption 3 means that the outputyiofith follower may track the leader’s outputydby developing the distributed control protocol appropriately fork,?k∈Q. Moreover, Assumption 3 also shows thatis true for anyi∈V andk∈Q;(2) Assumption 4 means that the constantg*iis not required to be known. Thus, no extra strict restriction is imposed on the system ( 3); (3) Assumptions 3- 5 are common in the existing literature, e.g. [ 18, 39- 41].

    3 Main results

    3.1 Distributed adaptive control design

    In this section, FLS approximation and DSC approach are combined to develop a distributed adaptive control design procedure for the heterogeneous nonlinear multi-agent systems under the switching-directed topologies.

    For anyi∈V andk∈Q, based on the directed graph Gk,the neighboring synchronization errorzi,1is f irst def ined as follows:

    whereτi,j>0 are time constants of the f ilters,ei,j∶=si,j-αi,jare boundary layer errors with the virtual control functionsαi,jbeing given below,κi,j>0 are the constants to be determined, and^Mi,jare the estimations of the unknown constantsMi,jto be given later. Let~Mi,j=^Mi,j-Mi,jbe the estimation errors, and the updating laws of^Mi,jare constructed as

    whereγi,j>0 andχi,j>0 are the adjusted parameters.

    For anyk∈Qand theith (i∈V) follower agent, the common adaptive control protocols are designed as follows:

    wherepi,j>0 andσi,j>0 are the designed parameters forj=1,2,…,ni,^θi,j(j=1,2,…,ni) are the adaptive parameters to be specif ied during the backstepping design. Furthermore, forj=1,2,…,ni, the adaptive laws of^θi,jare given by

    It is inspiring that the dynamics ( 20) of synchronization errorzi,jcan be taken as the switched nonlinear systems with the switching signal produced by the change of communication topologies according to [ 47]. Furthermore, the switching mechanisms of topologies in many cases are unknown or too complicated to be used in the consensus analysis and control design of each follower agent. Therefore, the CLF approach can be extended to solve the consensus control problem of multi-agent systems under arbitrary switching topologies [ 48].

    First, to overcome the diffi culty from the system uncertainties of followers, the following unknown functioni,1,kis def ined and approximated by a FLS

    With the help of ( 1), ( 21) and Lemma 4, one has

    Some functions are lumped to be an unknown function,j,k,and a FLS is used to approximate it, i.e.,

    Substituting ( 17), ( 19), ( 28) and ( 32) into ( 31), one has

    StepniTo conduct the actual control design, the following unif ied description is exploited to represent the multitype input constraints

    Accordingly, for anyi∈V , the dynamical system ofzi,nican be given by

    Similar to ( 23) and ( 32), and substituting ( 19), ( 33)-( 36) and( 38) into ( 37) yields

    3.2 Stability analysis

    In this section, stability analysis for the whole closed-loop multi-agent systems is presented. First, according to the def inition ofei,jand ( 15), we have

    Next, some continuous functionsBi,j,kare def ined as

    For anyk∈Q,i∈V andj=1,2,…,ni-1 , there must exist positive constantsMi,jto satisfy |Bi,j,k|≤Mi,jon the compact setΩwhich will be given later. Therefore, it is easy to derive that

    Theorem 1Consider the uncertain nonstrict-feedback nonlinear multi-agent systems(3)satisfying Assumptions1-5under switching-directed communication topologies,if the distributed adaptive control protocols(18)together with virtual control functions(17),nonlinear f ilters(15),and adaptive laws(16)and(19)are utilized. Then, for any initial condition satisfying V(0)≤R0and θ ^i,j(0)>0(i∈V,j=1,2,…,ni),the consensus tracking errors areCSGUUB and can remain in an enough small neighborhood of the origin by adjusting the parameters appropriately.

    ProofApplying the def inition ofVand ( 46) gives

    Fig. 1 Three communication topologies1-3

    Fig. 2 The switching mechanism among 1-3

    Remark 4Note that the repeated diff erentiations of virtual control functions must result in the problem of “explosion of complexity” during the traditional backstepping design;the conventional DSC (CDSC) method often introduce the f irst-order f ilter to solve the problem (e.g., see in [ 10, 21,29, 41]). However, the eff ects ofBi,j(·) in the dynamics of boundary layer errors are not compensated for the CDSC technique, which usually causes the degradation of synchronization performance. Motivated by the design of f ilter in [ 49], a novel nonlinear f ilter ( 15) and parameter adjusting laws ( 16) are included to compensate for the unknown boundsMi,jofBi,j(·).

    4 Simulation example

    To verify the eff ectiveness and applicability of the proposed control strategy, a set of one-link manipulators borrowed from [ 16] is considered. In the simulation, the communication topologies among one leader labeled as 0 and three followers labeled as 1-3 are shown in Fig. 1,and Fig. 2 exhibits the switching mechanism among three topologies1-3. The output of leader is chosen asyd=sin0.5t+sint, and the models of theith (i=1,2,3)follower agent are described by

    whereqi,˙qi,¨qi, andμirepresent the link position, velocity,acceleration and the torque, respectively.videnotes the control input of theith follower. Moreover,μd,iandτd,idenote system uncertainties and model errors. Letxi,1=qi,xi,2=˙qi,andxi,3=μi, and take the multitype input constraints into consideration, then system ( 51) can be written as

    Fig. 3 The output trajectories of three followers and one leader

    Fig. 4 The input signals φ1(u1) and u1

    The simulation results are shown in Figs. 3, 4, 5 and 6.Figure 3 depicts the output trajectories of three followers and one leader, which demonstrates the satisfactory consensus performance of the proposed distributed control protocol.Figures 4, 5 and 6 reveal the input signals of three followers satisfying diff erent constraints, respectively.

    Fig. 5 The input signals φ2(u2) and u2

    Fig. 6 The input signals φ3(u3) and u3

    Remark 5In light of the preceding simulation results, it is worth pointing out that some small perturbations may occur with the switching of communication topologies, but the satisfactory tracking performance can recover quickly from the small perturbations using the common distributed adaptive control protocol presented in this paper.

    5 Conclusions

    This paper has studied the output consensus problem for a class of heterogeneous nonstrict-feedback multi-agent systems with multi-type input constraints under arbitrary switching-directed topologies. A distributed adaptive control strategy is developed to acquire the output consensus of such multi-agent systems. Meanwhile, the nonlinear f ilter is constructed to improve the CDSC method. Besides, the multitype input constraints including nonlinear dead-zone and asymmetric saturation are dealt with by proposing an unif ied method. Both stability analysis and simulation studies are provided to show the eff ectiveness of the proposed control protocol. In the future work, it is necessary to explore the distributed output-feedback control problem for heterogeneous multi-agent systems under the switching-directed communication topologies.

    AcknowledgementsThis work was partially supported by the Chinese National Natural Science Foundation (No. 71871135), and the Fundamental Research Funds for the Central Universities (Nos.222201714055, 222201717006).

    日本爱情动作片www.在线观看| 亚洲精品国产成人久久av| 免费人妻精品一区二区三区视频| 亚洲国产高清在线一区二区三| 五月开心婷婷网| 国产欧美日韩精品一区二区| av视频免费观看在线观看| 美女脱内裤让男人舔精品视频| 五月伊人婷婷丁香| 女人十人毛片免费观看3o分钟| 男人狂女人下面高潮的视频| 人妻制服诱惑在线中文字幕| av国产免费在线观看| 丰满迷人的少妇在线观看| 欧美精品亚洲一区二区| 黄色欧美视频在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲av.av天堂| 少妇猛男粗大的猛烈进出视频| 成人二区视频| 在线精品无人区一区二区三 | 在线观看免费高清a一片| 热re99久久精品国产66热6| 小蜜桃在线观看免费完整版高清| 日韩人妻高清精品专区| 多毛熟女@视频| 久久久久网色| 亚洲三级黄色毛片| 久久精品人妻少妇| 国产精品三级大全| 免费在线观看成人毛片| 日韩在线高清观看一区二区三区| 国产一区二区三区av在线| 在线观看国产h片| 国产美女午夜福利| 91精品一卡2卡3卡4卡| 亚洲精品乱码久久久久久按摩| 精品久久久久久久久av| 国产成人aa在线观看| 中文字幕久久专区| 男女边摸边吃奶| 国产精品三级大全| 妹子高潮喷水视频| 十八禁网站网址无遮挡 | 综合色丁香网| 精品99又大又爽又粗少妇毛片| 免费看光身美女| 欧美日韩在线观看h| 丰满迷人的少妇在线观看| 国产精品一二三区在线看| kizo精华| 日本av免费视频播放| 一级二级三级毛片免费看| 在线免费观看不下载黄p国产| 久久这里有精品视频免费| 中文天堂在线官网| 国产亚洲欧美精品永久| 韩国av在线不卡| 97超碰精品成人国产| 久久精品人妻少妇| 最近中文字幕高清免费大全6| 国产视频内射| 国产在线免费精品| av免费在线看不卡| 国产人妻一区二区三区在| 国产淫语在线视频| 亚洲精品日韩在线中文字幕| 亚洲精品久久午夜乱码| 国产精品伦人一区二区| 精品少妇黑人巨大在线播放| 日韩制服骚丝袜av| 国产人妻一区二区三区在| 久久久精品免费免费高清| 日韩av在线免费看完整版不卡| 欧美国产精品一级二级三级 | 少妇的逼水好多| 国产黄色免费在线视频| 久久人人爽av亚洲精品天堂 | 亚洲av男天堂| 下体分泌物呈黄色| 欧美激情国产日韩精品一区| 少妇被粗大猛烈的视频| 嫩草影院入口| 男人添女人高潮全过程视频| 亚洲av国产av综合av卡| 日韩不卡一区二区三区视频在线| 国内揄拍国产精品人妻在线| 中国三级夫妇交换| 夜夜看夜夜爽夜夜摸| 色网站视频免费| 日韩成人伦理影院| 老女人水多毛片| 欧美极品一区二区三区四区| 精品99又大又爽又粗少妇毛片| 纯流量卡能插随身wifi吗| 观看免费一级毛片| 国产一区有黄有色的免费视频| 97超碰精品成人国产| 欧美激情国产日韩精品一区| 欧美三级亚洲精品| 哪个播放器可以免费观看大片| 丰满人妻一区二区三区视频av| 美女内射精品一级片tv| 国产色婷婷99| 91aial.com中文字幕在线观看| 免费观看性生交大片5| 亚洲国产成人一精品久久久| 大陆偷拍与自拍| 黑人高潮一二区| 亚洲国产精品成人久久小说| 日本黄色日本黄色录像| 自拍欧美九色日韩亚洲蝌蚪91 | 国产男女内射视频| 2018国产大陆天天弄谢| 欧美国产精品一级二级三级 | 啦啦啦中文免费视频观看日本| 国产综合精华液| 免费大片18禁| 亚洲,一卡二卡三卡| av卡一久久| 亚洲四区av| 国产精品熟女久久久久浪| 熟女人妻精品中文字幕| 嘟嘟电影网在线观看| 成年女人在线观看亚洲视频| 伦理电影大哥的女人| 亚洲国产精品专区欧美| 亚洲欧美日韩另类电影网站 | 伦理电影免费视频| 国产爽快片一区二区三区| 插逼视频在线观看| 青春草亚洲视频在线观看| 亚洲国产成人一精品久久久| 身体一侧抽搐| 免费大片18禁| 亚洲美女搞黄在线观看| 制服丝袜香蕉在线| 久久久精品94久久精品| 熟妇人妻不卡中文字幕| 纵有疾风起免费观看全集完整版| 天美传媒精品一区二区| 成人美女网站在线观看视频| 午夜福利在线在线| 欧美zozozo另类| 中文在线观看免费www的网站| 寂寞人妻少妇视频99o| 欧美另类一区| 99久久人妻综合| 成年美女黄网站色视频大全免费 | 自拍欧美九色日韩亚洲蝌蚪91 | 内射极品少妇av片p| 亚洲欧美成人综合另类久久久| 国产在视频线精品| 观看免费一级毛片| 精品国产露脸久久av麻豆| 亚洲一区二区三区欧美精品| 秋霞伦理黄片| 婷婷色麻豆天堂久久| 99九九线精品视频在线观看视频| 欧美丝袜亚洲另类| 精品久久久噜噜| 少妇高潮的动态图| 哪个播放器可以免费观看大片| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av天美| 插逼视频在线观看| 亚洲自偷自拍三级| 人妻少妇偷人精品九色| 少妇精品久久久久久久| 亚洲成色77777| 日本午夜av视频| 精品一区在线观看国产| 欧美另类一区| av国产久精品久网站免费入址| 高清欧美精品videossex| 亚洲av综合色区一区| 99热这里只有精品一区| 中文字幕久久专区| 亚洲久久久国产精品| 三级国产精品欧美在线观看| 在线观看av片永久免费下载| 九九久久精品国产亚洲av麻豆| 18禁裸乳无遮挡动漫免费视频| av在线播放精品| 一级av片app| 欧美日韩综合久久久久久| 欧美国产精品一级二级三级 | 精品久久久噜噜| 国产午夜精品久久久久久一区二区三区| 国产免费一区二区三区四区乱码| 国产精品99久久久久久久久| 午夜激情久久久久久久| 亚洲美女搞黄在线观看| 久久久午夜欧美精品| 美女福利国产在线 | 国产精品一及| 欧美 日韩 精品 国产| 免费观看在线日韩| 黄色怎么调成土黄色| 99热这里只有是精品50| 国产真实伦视频高清在线观看| 18禁裸乳无遮挡免费网站照片| 人妻 亚洲 视频| 日韩精品有码人妻一区| 超碰97精品在线观看| 亚洲国产精品国产精品| 午夜免费观看性视频| 久久久久久久久久人人人人人人| 国产爱豆传媒在线观看| 精品久久久久久电影网| 一边亲一边摸免费视频| 久久6这里有精品| 狂野欧美白嫩少妇大欣赏| 妹子高潮喷水视频| 国产淫语在线视频| 国产成人精品福利久久| 日韩伦理黄色片| 久久久久久久精品精品| 国产人妻一区二区三区在| 国产精品国产av在线观看| 欧美bdsm另类| 欧美zozozo另类| 中国国产av一级| a 毛片基地| 午夜免费男女啪啪视频观看| 国产一区二区三区av在线| 日韩成人av中文字幕在线观看| 久久99热6这里只有精品| 欧美高清成人免费视频www| 国产真实伦视频高清在线观看| 国模一区二区三区四区视频| 一级爰片在线观看| 国产女主播在线喷水免费视频网站| 欧美国产精品一级二级三级 | 亚洲欧美清纯卡通| 亚洲人成网站在线播| 亚洲成色77777| 免费播放大片免费观看视频在线观看| 伦理电影免费视频| 亚洲欧美清纯卡通| 国产精品蜜桃在线观看| 人人妻人人看人人澡| 一个人看的www免费观看视频| 亚洲欧美精品专区久久| 成人特级av手机在线观看| 国模一区二区三区四区视频| 极品教师在线视频| 国产在线男女| 女性生殖器流出的白浆| 99热国产这里只有精品6| 国产精品免费大片| 我要看黄色一级片免费的| 伦精品一区二区三区| 高清av免费在线| 亚洲精品乱码久久久v下载方式| 男人舔奶头视频| 最近手机中文字幕大全| 黄色一级大片看看| 在线观看美女被高潮喷水网站| 国产精品99久久久久久久久| 黄片wwwwww| 91午夜精品亚洲一区二区三区| 国产精品国产三级国产av玫瑰| 亚洲欧美中文字幕日韩二区| 尾随美女入室| 视频区图区小说| 日韩亚洲欧美综合| 国产成人午夜福利电影在线观看| 国产真实伦视频高清在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲第一av免费看| 中文字幕av成人在线电影| 久久99热这里只频精品6学生| 一级爰片在线观看| av国产免费在线观看| 王馨瑶露胸无遮挡在线观看| 国产日韩欧美在线精品| 汤姆久久久久久久影院中文字幕| 美女内射精品一级片tv| 国产免费又黄又爽又色| 亚洲精品乱码久久久久久按摩| 男女国产视频网站| 最近2019中文字幕mv第一页| 蜜桃在线观看..| 制服丝袜香蕉在线| 成人国产麻豆网| 在线观看国产h片| 简卡轻食公司| 联通29元200g的流量卡| 免费av不卡在线播放| 免费播放大片免费观看视频在线观看| 舔av片在线| 秋霞在线观看毛片| h视频一区二区三区| 国产乱人视频| 国产黄片视频在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 国产精品国产三级国产av玫瑰| 纯流量卡能插随身wifi吗| 免费人妻精品一区二区三区视频| 国产乱来视频区| 天天躁夜夜躁狠狠久久av| 亚洲四区av| 最近中文字幕2019免费版| 91在线精品国自产拍蜜月| 蜜桃在线观看..| 色哟哟·www| 亚洲国产毛片av蜜桃av| 爱豆传媒免费全集在线观看| 少妇精品久久久久久久| 黑人高潮一二区| 国产日韩欧美亚洲二区| 少妇人妻久久综合中文| 又爽又黄a免费视频| 欧美bdsm另类| 香蕉精品网在线| 国产精品国产三级专区第一集| 国产片特级美女逼逼视频| 亚洲电影在线观看av| 国模一区二区三区四区视频| 成人亚洲欧美一区二区av| 久久国产亚洲av麻豆专区| 99re6热这里在线精品视频| 2018国产大陆天天弄谢| 在线亚洲精品国产二区图片欧美 | 免费看光身美女| 久久国产乱子免费精品| 国语对白做爰xxxⅹ性视频网站| 秋霞伦理黄片| 男女下面进入的视频免费午夜| 一区二区三区免费毛片| 欧美成人a在线观看| 亚洲精品色激情综合| 水蜜桃什么品种好| 人妻系列 视频| 午夜免费男女啪啪视频观看| 精品人妻偷拍中文字幕| 久久ye,这里只有精品| a级毛色黄片| 伦精品一区二区三区| 这个男人来自地球电影免费观看 | 国产色爽女视频免费观看| 这个男人来自地球电影免费观看 | 国产亚洲午夜精品一区二区久久| 免费少妇av软件| 亚洲自偷自拍三级| 成年女人在线观看亚洲视频| 多毛熟女@视频| av专区在线播放| 午夜免费观看性视频| 在线观看av片永久免费下载| 少妇人妻精品综合一区二区| 久久久久久九九精品二区国产| 国产淫片久久久久久久久| 大话2 男鬼变身卡| 精品人妻熟女av久视频| 日韩一本色道免费dvd| 熟女人妻精品中文字幕| av天堂中文字幕网| 精品久久国产蜜桃| 97精品久久久久久久久久精品| 国产精品99久久99久久久不卡 | 自拍偷自拍亚洲精品老妇| 久久 成人 亚洲| 一级爰片在线观看| 欧美精品一区二区免费开放| 九色成人免费人妻av| 在线 av 中文字幕| 老熟女久久久| 亚洲av二区三区四区| 有码 亚洲区| 男人爽女人下面视频在线观看| 久久久a久久爽久久v久久| 一级毛片黄色毛片免费观看视频| 一本色道久久久久久精品综合| 插阴视频在线观看视频| 国产精品伦人一区二区| 国产男女超爽视频在线观看| 国产精品国产三级国产av玫瑰| av国产久精品久网站免费入址| 日韩一区二区视频免费看| 街头女战士在线观看网站| 大香蕉97超碰在线| 国产在线视频一区二区| 一二三四中文在线观看免费高清| 成人亚洲精品一区在线观看 | 高清视频免费观看一区二区| 欧美日韩视频高清一区二区三区二| 亚洲国产精品999| 国产精品爽爽va在线观看网站| 熟女av电影| 18禁在线播放成人免费| 久久鲁丝午夜福利片| 91久久精品国产一区二区成人| 网址你懂的国产日韩在线| 欧美成人a在线观看| 99视频精品全部免费 在线| 春色校园在线视频观看| 永久免费av网站大全| 丝袜脚勾引网站| 日韩一本色道免费dvd| 久久精品国产亚洲网站| 亚洲av免费高清在线观看| 不卡视频在线观看欧美| 国产成人免费观看mmmm| 爱豆传媒免费全集在线观看| 狂野欧美激情性xxxx在线观看| 丝袜喷水一区| 少妇人妻久久综合中文| 在线亚洲精品国产二区图片欧美 | 又爽又黄a免费视频| 免费人妻精品一区二区三区视频| 日韩亚洲欧美综合| 精品国产一区二区三区久久久樱花 | 国产成人免费观看mmmm| 美女视频免费永久观看网站| 久久久久久九九精品二区国产| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久久免费av| 黄色怎么调成土黄色| 色5月婷婷丁香| 免费久久久久久久精品成人欧美视频 | 美女主播在线视频| 最后的刺客免费高清国语| 中国美白少妇内射xxxbb| 成人国产麻豆网| 少妇熟女欧美另类| 熟女电影av网| 久久ye,这里只有精品| 高清毛片免费看| 交换朋友夫妻互换小说| 日本av手机在线免费观看| 又爽又黄a免费视频| 久久99蜜桃精品久久| 久久国产亚洲av麻豆专区| 熟女av电影| 我的女老师完整版在线观看| 日本黄色片子视频| 亚洲精品乱码久久久久久按摩| 久久99热6这里只有精品| 国产一区二区在线观看日韩| 国产色爽女视频免费观看| 国产精品免费大片| 内射极品少妇av片p| 国产精品久久久久久av不卡| 国产免费福利视频在线观看| 久久久久性生活片| 少妇人妻 视频| 观看免费一级毛片| 国产亚洲午夜精品一区二区久久| 精品少妇黑人巨大在线播放| 精品久久久精品久久久| 男女啪啪激烈高潮av片| 美女视频免费永久观看网站| 七月丁香在线播放| 午夜免费观看性视频| 国产精品女同一区二区软件| 女的被弄到高潮叫床怎么办| 日韩制服骚丝袜av| 在线观看免费视频网站a站| 丰满迷人的少妇在线观看| 五月开心婷婷网| 日韩免费高清中文字幕av| 日韩欧美 国产精品| 久久99热6这里只有精品| 日韩不卡一区二区三区视频在线| 国产色婷婷99| 视频中文字幕在线观看| av天堂中文字幕网| 亚洲人与动物交配视频| 久久精品国产自在天天线| 国产精品麻豆人妻色哟哟久久| 欧美另类一区| 性高湖久久久久久久久免费观看| 五月天丁香电影| 免费人妻精品一区二区三区视频| 免费观看性生交大片5| 亚洲性久久影院| 国产亚洲最大av| 成人综合一区亚洲| 777米奇影视久久| 99热这里只有是精品50| 十分钟在线观看高清视频www | 亚洲欧美一区二区三区国产| 纵有疾风起免费观看全集完整版| 热99国产精品久久久久久7| 精品国产露脸久久av麻豆| 亚洲婷婷狠狠爱综合网| 国产精品一区二区三区四区免费观看| 女人十人毛片免费观看3o分钟| 人妻制服诱惑在线中文字幕| 最近中文字幕高清免费大全6| 免费看不卡的av| 狂野欧美激情性xxxx在线观看| 国产精品不卡视频一区二区| 欧美性感艳星| 麻豆成人av视频| 久久人人爽av亚洲精品天堂 | 天天躁日日操中文字幕| 黄色日韩在线| 亚洲婷婷狠狠爱综合网| 国产有黄有色有爽视频| 国产亚洲精品久久久com| 寂寞人妻少妇视频99o| 中文乱码字字幕精品一区二区三区| a级一级毛片免费在线观看| 亚洲激情五月婷婷啪啪| 国产黄色视频一区二区在线观看| 久久热精品热| 午夜激情福利司机影院| 国产黄频视频在线观看| 在线亚洲精品国产二区图片欧美 | 亚洲av成人精品一区久久| 中国三级夫妇交换| 一个人免费看片子| 久久久国产一区二区| 人人妻人人看人人澡| 舔av片在线| 国产在线视频一区二区| 欧美成人a在线观看| 一级毛片黄色毛片免费观看视频| 亚洲av免费高清在线观看| 国产精品一区二区性色av| 99热6这里只有精品| 亚洲欧美精品专区久久| 精品99又大又爽又粗少妇毛片| 日韩精品有码人妻一区| 国产 一区 欧美 日韩| 大码成人一级视频| 一个人免费看片子| 九九久久精品国产亚洲av麻豆| 在线观看人妻少妇| 日韩中文字幕视频在线看片 | 夫妻午夜视频| 91精品一卡2卡3卡4卡| 日本爱情动作片www.在线观看| 尾随美女入室| 少妇裸体淫交视频免费看高清| 色5月婷婷丁香| 久久影院123| 色5月婷婷丁香| 久久精品久久精品一区二区三区| 国产一区二区三区综合在线观看 | 蜜桃亚洲精品一区二区三区| 精品国产乱码久久久久久小说| 亚洲人成网站在线播| 99热网站在线观看| 国产精品麻豆人妻色哟哟久久| 2018国产大陆天天弄谢| 亚洲人成网站在线观看播放| 成人漫画全彩无遮挡| 亚洲最大成人中文| 美女内射精品一级片tv| 亚洲第一区二区三区不卡| 女性被躁到高潮视频| 黄片wwwwww| 久久久精品免费免费高清| 一区二区三区免费毛片| 国产精品偷伦视频观看了| 观看免费一级毛片| 日本爱情动作片www.在线观看| 国产女主播在线喷水免费视频网站| 亚洲精品国产av蜜桃| 成人特级av手机在线观看| 欧美区成人在线视频| 国产无遮挡羞羞视频在线观看| 国产精品一及| 日韩国内少妇激情av| 国产淫片久久久久久久久| 亚洲av成人精品一二三区| 在线播放无遮挡| 亚洲四区av| 最新中文字幕久久久久| 久久精品熟女亚洲av麻豆精品| 毛片一级片免费看久久久久| 日产精品乱码卡一卡2卡三| 精品亚洲成a人片在线观看 | 欧美日韩综合久久久久久| 性色av一级| 大片电影免费在线观看免费| h日本视频在线播放| 青春草国产在线视频| xxx大片免费视频| 成人免费观看视频高清| 麻豆乱淫一区二区| 亚洲精品色激情综合| 少妇高潮的动态图| 国产中年淑女户外野战色| 国产精品国产三级国产av玫瑰| 亚洲最大成人中文| 97精品久久久久久久久久精品| 丰满人妻一区二区三区视频av| 亚洲最大成人中文| 99热6这里只有精品| 亚洲自偷自拍三级| 国产黄片美女视频| 啦啦啦啦在线视频资源| 久久人人爽人人爽人人片va| 波野结衣二区三区在线| 亚洲成人一二三区av| 男女边吃奶边做爰视频| 插逼视频在线观看| 18禁动态无遮挡网站| 激情五月婷婷亚洲| 日本-黄色视频高清免费观看| 亚洲人成网站在线播| 欧美性感艳星| 国产爱豆传媒在线观看| 老女人水多毛片| 久久 成人 亚洲| 一区二区三区精品91| 国产淫语在线视频| 一级毛片我不卡| 欧美bdsm另类| 久久av网站|