穆艷順
【摘要】 新生兒缺氧缺血性腦病是造成新生兒致殘及死亡的主要原因之一。隨著新生兒急救水平的發(fā)展,新生兒缺氧性腦病患兒存活率顯著提高。然而,新生兒缺氧缺血性腦病易導(dǎo)致神經(jīng)系統(tǒng)發(fā)育障礙如腦癱、癲癇及發(fā)育遲緩等,給患兒及其家庭、社會(huì)造成沉重負(fù)擔(dān)。目前新生兒缺氧性腦病的各類檢測(cè)方法都有優(yōu)缺點(diǎn),有部分患兒神經(jīng)影像學(xué)檢查無異常,卻發(fā)展為腦癱。因此,需要有更為敏感及特異度高的神經(jīng)標(biāo)志物來指導(dǎo)臨床。為了更好地運(yùn)用這些神經(jīng)標(biāo)志物對(duì)臨床做指導(dǎo),本研究將把神經(jīng)標(biāo)志物在新生兒缺氧缺血性腦病診斷的應(yīng)用進(jìn)行綜述。
【關(guān)鍵詞】 新生兒 缺氧缺血性腦病 神經(jīng)標(biāo)志物
[Abstract] Neonatal hypoxic ischemic encephalopathy is still one of the main causes of neonatal disability and death. With the development of the level of first aid for newborns, the survival rate of newborns with brain injury has been significantly improved. At the same time, neonatal hypoxic ischemic encephalopathy can easily lead to nervous system development disorders such as cerebral palsy, epilepsy and growth retardation, which cause serious burden to the children, their families and society. At present, all kinds of detection methods of neonatal hypoxic ischemic encephalopathy have their advantages and disadvantages, some children have no abnormal neuroimaging examination, but develop into children with cerebral palsy. Therefore, more sensitive and specific nerve markers are needed to guide clinical practice. In order to better use these nerve markers for clinical guidance, this study will elaborate the application of nerve markers in the diagnosis of neonatal hypoxic ischemic encephalopathy.
[Key words] Neonatal Hypoxic ischemic encephalopathy Neuro markers
First-authors address: The General Hospital of the North China Petroleum Administration, Renqiu 062552, China
doi:10.3969/j.issn.1674-4985.2021.11.046
新生兒缺氧缺血性腦?。℉IE)是新生兒期常見疾病,是導(dǎo)致新生兒死亡和兒童神經(jīng)系統(tǒng)功能障礙的主要原因。每年有0.1%~0.4%足月新生兒會(huì)受窒息及其HIE的影響[1]。新生兒窒息后神經(jīng)能量在6~100 h內(nèi)會(huì)減少。這種能量的消耗可誘導(dǎo)神經(jīng)細(xì)胞凋亡,從而導(dǎo)致腦神經(jīng)損傷。在腦損傷期間,不同的細(xì)胞內(nèi)機(jī)制被激活,導(dǎo)致神經(jīng)膠質(zhì)增生、持續(xù)性炎癥受體激活和表觀遺傳變化。上述病理生理階段的綜合作用,最終導(dǎo)致腦細(xì)胞死亡[2]。腦損傷的嚴(yán)重程度和時(shí)間,以及大腦成熟度是決定腦損傷嚴(yán)重程度的重要因素。34周以下早產(chǎn)兒是發(fā)生腦損傷的高危年齡,容易遺留神經(jīng)系統(tǒng)后遺癥。原因是在這個(gè)階段腦組織體積、結(jié)構(gòu)和功能的生長(zhǎng)處于最高峰[3]。在新生兒腦損傷患者中,記憶和視覺感知功能障礙,容易導(dǎo)致患兒發(fā)育遲緩和入學(xué)時(shí)間延遲。部分腦損傷患兒遺留肢體殘疾、腦癱(CP)和智力障礙[4-5]。當(dāng)前臨床上常用神經(jīng)標(biāo)志物來預(yù)測(cè)新生兒腦損傷,本文現(xiàn)將新生兒缺氧缺血性腦病相關(guān)神經(jīng)標(biāo)志物做一綜述,現(xiàn)報(bào)道如下。
1 神經(jīng)元特異性烯醇化酶
神經(jīng)元特異性烯醇化酶(neuron specific enolase,NSE)是葡萄糖酵解途徑的關(guān)鍵酶,特異性分布在神經(jīng)元和神經(jīng)內(nèi)分泌細(xì)胞的胞漿內(nèi)。當(dāng)新生兒發(fā)生缺氧缺血性腦損傷時(shí),血腦屏障的通透性增高,NSE從受損的神經(jīng)細(xì)胞內(nèi)溢出,使腦脊液和血清中該酶含量增加,對(duì)早期判斷缺氧缺血性腦損傷程度具有重要意義[6-7]。新生兒窒息腦損傷后NSE持續(xù)從受損的細(xì)胞內(nèi)釋放出來,加之缺氧缺血后,細(xì)胞能量代謝障礙,誘導(dǎo)了NSE過度的表達(dá),窒息程度越嚴(yán)重,升高幅度越大,其與腦損傷程度呈正相關(guān)[8-9]。NSE與糖酵解密切相關(guān),葡萄糖是維持腦代謝的最基本物質(zhì),腦的能量代謝幾乎全部來自葡萄糖的有氧代謝,因此,缺氧缺血后引起的低血糖會(huì)造成患兒產(chǎn)生不同程度的腦損傷。NSE在發(fā)生腦損傷后可從損傷神經(jīng)元中外漏,通過血腦屏障進(jìn)入體液和血液,神經(jīng)元損傷后NSE特異性升高,NSE是一種反映急性顱腦損傷炎性反應(yīng)的指標(biāo)[10]。足月新生兒HIE患兒,血清NSE水平在腦損傷后48 h內(nèi)明顯升高,并且在嚴(yán)重的HIE中更明顯的升高,表明缺氧缺血再灌注損傷是HIE的重要機(jī)制[11]。NSE水平與腦損傷程度呈正相關(guān),血清NSE的臨界值>40.4 mg/L時(shí),預(yù)測(cè)HIE的特異性和敏感性分別為70%和79%,故該指標(biāo)聯(lián)合MRI及腦電圖預(yù)測(cè)HIE預(yù)后的精確性明顯提高[12]。
2 S100B蛋白
S100B蛋白是一種酸性鈣結(jié)合蛋白,其主要生物學(xué)功能是在細(xì)胞內(nèi)、外起調(diào)節(jié)作用,誘導(dǎo)神經(jīng)元和神經(jīng)膠質(zhì)細(xì)胞凋亡,在哺乳動(dòng)物中主要集中于中樞神經(jīng)系統(tǒng)的星形膠質(zhì)細(xì)胞、垂體前葉細(xì)胞,具有腦組織特異性[13]。S100B蛋白的半衰期為2 h左右,對(duì)神經(jīng)系統(tǒng)損傷具有較高的敏感度和特異度,在中樞神經(jīng)系統(tǒng)損傷后明顯增高,主要由腎臟清除[14]。當(dāng)腦組織損傷后,腦脊液中升高的S100B蛋白可透過受損的血腦屏障進(jìn)入血液循環(huán),使血液中的S100B蛋白水平升高。S100B蛋白可反映中樞神經(jīng)系統(tǒng)損傷的嚴(yán)重程度。因此S100B蛋白用于監(jiān)測(cè)新生兒HIE的狀況[15-16]。S100B與腦損傷程度、神經(jīng)功能損害、長(zhǎng)期預(yù)后相關(guān)。新生兒窒息后出現(xiàn)腦損傷的臨床癥狀、實(shí)驗(yàn)室相關(guān)檢查或超聲相應(yīng)體征前48~72 h即可檢測(cè)到S100B濃度升高[17]。Nagdyman等[18]報(bào)道,臍帶血中的S100B在新生兒窒息后腦損傷患兒中已經(jīng)顯著升高。新生兒窒息后S100B蛋白血清中含量與神經(jīng)損傷程度有關(guān),輕度窒息新生兒腦損傷輕,只要病情不再發(fā)展,S100B蛋白很快恢復(fù)正常。重度窒息患兒腦損傷嚴(yán)重,S100B蛋白可透過受損的血腦屏障進(jìn)入血液循環(huán),使血中S100B蛋白濃度增高[19]。在尿液中S100B蛋白水平可以預(yù)測(cè)新生兒HIE不良神經(jīng)系統(tǒng)后遺癥[20]。新生兒第一次排尿時(shí),尿中S100B蛋白臨界值>0.28 μg/L,預(yù)測(cè)HIE的預(yù)后的敏感度為100%,特異度為87.3%。出生后12~72 h測(cè)量尿S100B蛋白預(yù)測(cè)HIE的預(yù)后靈敏度和特異性分別達(dá)到100%和98.2%[21-22]。最近,在唾液中也檢測(cè)到了S100B蛋白,S100B蛋白唾液水平在HIE患兒中升高。在唾液中S100B蛋白臨界值>3.25 μg/L時(shí),預(yù)測(cè)HIE達(dá)到了100%的靈敏度和特異度,可作為預(yù)測(cè)神經(jīng)系統(tǒng)損傷的重要指標(biāo)[23]。新生兒檢查尿液、血清及腦脊液中S100B蛋白水平,成本低廉,能夠隨機(jī)進(jìn)行動(dòng)態(tài)觀察,為一種早期診斷腦損傷的神經(jīng)標(biāo)志物。
3 Tau蛋白
Tau蛋白是一種屬于微管相關(guān)蛋白家族的神經(jīng)細(xì)胞支架蛋白,是腦內(nèi)神經(jīng)細(xì)胞骨架結(jié)構(gòu)和軸突轉(zhuǎn)運(yùn)所必需的,主要分布于神經(jīng)元細(xì)胞體和軸突的中樞神經(jīng)系統(tǒng)內(nèi)。維持神經(jīng)元微管的穩(wěn)定性和活性,調(diào)節(jié)神經(jīng)元的生長(zhǎng)發(fā)育,參與軸突生長(zhǎng),維持神經(jīng)元極性形成和軸突傳遞具有重要作用。Tau蛋白水平在腦脊液(CSF)或血清升高可見于腦神經(jīng)損傷如創(chuàng)傷性腦損傷、新生兒缺氧缺血性腦病、顱內(nèi)出血、腦梗死等,可作為神經(jīng)元和軸索損傷的標(biāo)志物[24]。在腦損傷時(shí),Tau蛋白從微管中滴下,游離Tau蛋白從中樞神經(jīng)細(xì)胞釋放到細(xì)胞外空間,腦脊液中升高的Tau蛋白可透過受損的血腦屏障進(jìn)入血液循環(huán),使血清中Tau蛋白濃度升高,檢測(cè)血液和腦脊液中的Tau蛋白含量與腦損傷的嚴(yán)重程度呈正相關(guān),Tau蛋白可作為腦損傷的敏感標(biāo)志物[25]。Tau蛋白參與了新生兒缺氧缺血性腦損傷的發(fā)病過程,重度HIE組血清Tau蛋白水平高于中度HIE組,血清Tau蛋白水平與發(fā)育商呈明顯負(fù)相關(guān)。HIE狀態(tài)越嚴(yán)重,血清Tau蛋白水平越高,發(fā)育商越低,神經(jīng)發(fā)育結(jié)局越差[26]。
4 腎上腺髓質(zhì)素(adrenomedulin,ADM)
ADM是近年來發(fā)現(xiàn)的一種由52個(gè)氨基酸組成的新型血管活性肽,參與對(duì)缺氧和炎癥的反應(yīng),這與新生血管形成有關(guān)。腦血管內(nèi)皮細(xì)胞、神經(jīng)元和膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)合成和分泌腎上腺髓質(zhì)素的重要場(chǎng)所。是人體降鈣素基因相關(guān)肽超家族成員之一。在中樞神經(jīng)系統(tǒng)中,ADM主要在神經(jīng)元和內(nèi)皮細(xì)胞中表達(dá),在血管擴(kuò)張中有作用,具有神經(jīng)調(diào)節(jié)和抑制細(xì)胞凋亡[27]。在大鼠模型中,ADM可在下丘腦和尾殼核區(qū)域的神經(jīng)元核中檢測(cè)到,尾殼核區(qū)域是大腦中對(duì)損傷最敏感的區(qū)域之一,表明其參與了缺氧性腦損傷的過程[28]。動(dòng)物模型的發(fā)現(xiàn)支持了ADM作為神經(jīng)保護(hù)和血管神經(jīng)再生因子的觀點(diǎn)[29]。血氧濃度調(diào)控ADM的合成和釋放,缺氧缺血造成腦細(xì)胞損傷,誘導(dǎo)腦血管內(nèi)皮細(xì)胞、神經(jīng)元和膠質(zhì)細(xì)胞合成和分泌ADM增多,可反映中樞神經(jīng)系統(tǒng)損傷的嚴(yán)重程度[30]。早期升高的ADM血濃度可預(yù)測(cè)發(fā)生HIE發(fā)生的風(fēng)險(xiǎn)[31]。ADM作為一種早期HIE診斷標(biāo)志物,在血液中濃度達(dá)17.4 ng/L的臨界值時(shí),其預(yù)測(cè)HIE敏感度為100%,特異度為73.0%[32]。
5 膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP)
GFAP是星形膠質(zhì)細(xì)胞的骨架蛋白,對(duì)于維持星形膠質(zhì)細(xì)胞形態(tài)結(jié)構(gòu)的穩(wěn)定至關(guān)重要,當(dāng)出現(xiàn)缺氧性腦損傷時(shí),星形膠質(zhì)細(xì)胞死亡和活化增生,星形細(xì)胞胞體肥大、突起增長(zhǎng),血腦屏障通透性增加,腦脊液中GFAP的含量增加,可以透過血腦屏障進(jìn)入血循環(huán)中,從而使血液中GFAP含量明顯增加。研究表明,GFAP在判斷腦損傷程度及預(yù)后上具有重要價(jià)值[33]。新生兒HIE患兒生后1周內(nèi)血清GFAP含量明顯高于健康新生兒,新生兒HIE患兒伴影像學(xué)異常的血清GFAP含量水平高于單純影像學(xué)正常HIE的患兒,因而GFAP可以作為評(píng)估HIE的標(biāo)志物[34]。Chalak等[35]報(bào)道GFAP閾值水平達(dá)0.08 pg/mL,預(yù)測(cè)發(fā)生新生兒缺氧缺血性腦病有100%的特異度。HIE的嚴(yán)重程度、MRI改變與GFAP陽性細(xì)胞數(shù)成正相關(guān)[36]。血清GFAP水平越高,HIE病情越嚴(yán)重,新生兒神經(jīng)行為評(píng)分(NBNA)得分越低,因此檢測(cè)血清GFAP可用于判斷HIE患兒的病情程度和預(yù)后[37]。
6 激活素A(Activin A)
Activin A是一種糖蛋白激素,屬于轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor,TGF-β)超家族成員,其受體在腦組織中廣泛存在。缺氧缺血腦損傷后,激活素A具有促進(jìn)中樞神經(jīng)系統(tǒng)神經(jīng)保護(hù)作用和抗炎活性,增強(qiáng)巨噬細(xì)胞吞噬活性,提高機(jī)體免疫,抑制缺氧缺血腦細(xì)胞的凋亡及損傷性細(xì)胞因子的產(chǎn)生,緩解神經(jīng)元損傷,從而減輕缺氧缺血性腦損傷。HIE患兒血清的激活素A表達(dá)水平增高,且腦損傷越重,表達(dá)水平越高,用于臨床判定HIE嚴(yán)重程度,新生兒窒息后血液中激活素A含量顯著高于非窒息組[38]。激活素A水平的增加與HIE的發(fā)生呈正相關(guān),大腦缺氧窒息程度越重,血中激活素A水平越高,腦損傷越嚴(yán)重,對(duì)新生兒缺氧缺血性腦病的嚴(yán)重程度和預(yù)后評(píng)估具有重要作用[39]。對(duì)足月新生兒的腦脊液進(jìn)行激活素A檢測(cè)發(fā)現(xiàn),出生有窒息史的新生兒腦脊液中激活素A水平明顯高于無窒息史的新生兒。在有窒息史的新生兒中,出生后7 d內(nèi)出現(xiàn)嚴(yán)重HIE患兒腦脊液激活素A水平明顯高于無HIE患兒,提示缺氧可觸發(fā)激活素A的釋放,有助于HIE的判斷及早期干預(yù)[40]。在新生兒窒息后中、重度HIE患兒尿液中激活素A含量,明顯高于輕度HIE患兒及無HIE患兒,以尿激活素A含量達(dá)0.08 ng/L為臨界值預(yù)測(cè)中、重度HIE的發(fā)生,其敏感性及特異性為83.3%和100%[41]。
綜上所述,神經(jīng)標(biāo)志物的檢測(cè)在臨床應(yīng)用越來越廣泛,這些神經(jīng)標(biāo)志物的檢測(cè)結(jié)果結(jié)合影像學(xué)檢查,不僅可以更準(zhǔn)確地了解HIE的程度,而且可評(píng)價(jià)臨床治療方案的效果,且神經(jīng)標(biāo)志物的檢測(cè)方便,價(jià)格便宜,值得臨床推廣。
參考文獻(xiàn)
[1] Angela S,F(xiàn)rancesca P,F(xiàn)rancesca G,et al.The potentials and limitations of neuro-biomarkers as predictors of outcome in neonates with birth asphyxia[J].Early Hum Dev,2017,105:63-67.
[2] Ferriero D M.Neonatal brain injury[J].N Engl J Med,2004,351(19):1985-1995.
[3] Fleiss B,Gressens P.Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy?[J].Lancet Neurol,2012,(11):556-566.
[4] Derganc M,Osredkar D.Hypoxic-ischemic brain injury in the neonatal period[J].Zdrav Vestn,2008,77(Suppl 2):51-54.
[5] Miller S P,Ramaswamy V,Michelson D,et al.Patterns of brain injury in term neonatal encephalopathy[J].J Pediatr,2005,146(4):453-460.
[6] Lv H,Wang Q,Wu S,et al.Neonatal hypoxic ischemic an-Eephalopathy related biomarkers in serum and cerebrospinal fluid[J].Clinica Chimica Acta,2015,450:282-297.
[7] Gazzolo D,Abella R,Marinoni E,et al.Circulating biochemical markers of brain damage in infants complicated by ischemia reperfusion injury[J].Cardiovasc Hematol Agents Med Chem,2009,7(2):108-126.
[8] Johnsson P,Blomquist S,Lührs C,et al.Neuron specific enolase increases in plasma during and immediately after extmeorporeal circuhtion[J].Ann Tnorac Surg,2000,69(3):750-754.
[9] Selakovic V.Neuron specific enolase in cerebrospinal fluid and plasma of patients with acute ischemic brain disease[J].Med Pregl,2003,56(7-8):326-332.
[10] Ondruschka Benjamin,Pohlers D,Sommer G,et al.S100B and NSE as useful postmortem biochemical markers of traumatic brain injury in autopsy cases[J].J Neurotrauma,2013,30(22):1862-1871.
[11] Sun J,Li J,Cheng G,et al.Effects of hypothermia on NSE and S-100 protein levels in CSF in neonates following hypoxic/ischaemic brain damage[J].Acta Paediatr,2012,101(8):316-320.
[12] Celtik C,Acunas B,Oner N,et al.Neuron-speci?c enolase as a marker of the severity and outcome of hypoxic ischemic encephalopathy[J].Brain Dev,2004,26(6):398-402.
[13] Florio P,Abella R,Marinoni E,et al.Biochemical markers of perinatal brain damage[J].Front Biosci,2010,2:47-72.
[14] Jonsso H,Johnsson P,Hoglund P,et al.Elimination of S100B and renal function after cardiac surgery[J].J Cardiothorac Vasc Anesth,2000,14(6):698-701.
[15] Blennow M K,Savman P,Ilves M,et al.Brain-speci?c proteins in the cerebrospinal ?uid of severely asphyxiated newborn infants[J].Acta Paediatr,2001,90:1171-1175.
[16] Chalak L F,Sánchez P J,Adams-Huet B,et al.Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy[J].J Pediatr,2014,164(3):468-474.
[17] Gazzolo D,Di Iorio R,Marinoni E,et al.S100B protein is increased in asphyxiated term infants developing intraventricular hemorrhage[J].Crit Care Med,2002,30(6):1356-1360.
[18] Nagdyman N,K?men W,Ko H K,et al.Early biochemical indicators of hypoxic ischemic encephalopathy after birth asphyxia[J].Pediatr Res,2001,49(4):502-506.
[19] Murabayashi M,Minato M,Okuhata Y,et al.Kinetics of serum S100B in newborns with intracranial lesions[J].Pediatr Int,2008,50(1):17-22.
[20] Gazzolo D,Marinoni E,Iorio R D,et al.Measurement of urinary S100B protein concentrations for the early identi?cation of brain damage in asphyxiated fullterm infants[J].Arch Pediatr Adolesc Med,2003,157(12):1163-1168.
[21] Gazzolo D,Marinoni E,Iorio R D,et al.Urinary S100B protein measurements: a tool for the early identi?cation of hypoxic-ischemic encephalopathy in asphyxiated full-term infants[J].Crit Care Med,2004(32):131-136.
[22] Gazzolo D,F(xiàn)rigiola A,Bashir M,et al.Diagnostic accuracy of S100B urinary testing at birth in full-term asphyxiated newborns to predict neonatal death[J].PLoS One,2009,4(2):e4298.
[23] Gazzolo D,Pluchinotta F,Bashir M,et al.Neurological abnormalities in full-term asphyxiated newborns and salivary S100B testing: the “Cooperative Multitask against Brain Injury of Neonates”(CoMBINe) international study[J].PLoS One,2015,10(1):e0115194.
[24] Bitsch A,Horn C,Kemmling Y,et al.Serum Tau Protein Level as a marker of axonal damage in acute ischemic stroke[J].Eur Neurol,2002,47(1):45-51.
[25] Franz G,Beer R,Kampfl A,et al.Amyloid betaI-42 and tau in cerebrospinal fluid after severe traumatic brain injury[J].Neurology,2003,60(9):1457-1461.
[26] Lv H Y,Wu S J,Gu X L,et al.Predictive Value of Neurodevelopmental Outcome and Serum Tau Protein Level in Neonates with Hypoxic Ischemic Encephalopathy[J].Clin Lab,2017,63(7):1153-1162.
[27] Gazzolo D,Abella R,F(xiàn)rigiola A,et al.Neuromarkers and unconventional biological ?uids[J].J Matern Fetal Neonatal Med,2010,23(Suppl):66-69.
[28] Serrano J,Alonso D,Encinas J M,et al.Adrenomedullin expression is up-regulated by ischemia-reperfusion in the cerebral cortex of the adult rat[J].Neuroscience,2002,109(4):717-731.
[29] Miyashita K,Itoh H,Arai H,et al.The neuroprotective and vasculo neuroregenerative roles of adrenomedullin in ischemic brain and its therapeutic potential[J].Endocrinology,2006,147(4):1642-1653.
[30] Xu L,Sun J,Lu R,et al.Effect of glutamate on inflammatory responses of intestine and brain after focalcerebral ischemia[J].World J Gastroenterol,2005,11(5):733-736.
[31] Iorio R D,Marinoni E,Lituania M,et al.Adrenomedullin increases in term asphyxiated newborns developing intraventricular hemorrhage[J].Clin Biochem,2004,37(12):1112-1116.
[32] Florio P,Abella R,Marinoni E,et al.Adrenomedullin blood concentrations in infants subjected to cardiopulmonary bypass: correlation with monitoring parameters and prediction of poor neurological outcome[J].Clin Chem,2008,54(1):202-206.
[33] Bembea M M,Savage W J,Strouse J J,et al.Glial brillary acidic protein as a brain injury biomarker in children undergoing extra-corporeal membrane oxygenation[J].Pediatr Crit Care Med,2011,12(5):572-579.
[34] Ennen C S,Huisman T A G M,Savage W J,et al.Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole-body cooling[J].Am J Obstet Gynecol,2011,205(3):1-7.
[35] Chalak L F,Sanchez P J,Adams-Huet B,et al.Biomarkers for severity of neonatal hypoxicischemic encephalopathy and outcomes in newborns receiving hypothermia therapy[J].J Pediatr,2014,164(3):468-474.
[36] Luisi S,F(xiàn)lorio P,Reis F M,et al.Expression and secretion of activin A:possible physiologicaland clinical implications[J].Eur J Endocrinol,2001,145(3):225-236.
[37] Douglas-Escobar M,Weiss M D.Biomarkers of brain injury in the premature infant[J].Front Neurol,2013,3:185.
[38] Florio P,Perrone S,Luisi S,et al.Activin A plasma levels at birth:an index of fetal hypoxia in preterm newborn[J].Pediatr Res,2003,54(5):696-700.
[39] Jenkin G,Ward J,Hooper S,et al.Feto-placental hypoxemia regulates the release of fetal activin A and prostaglandin E[J].Endocrinology,2001,142(5):963-966.
[40] Florio P,Luisi S,Bruschettini M,et al.Cerebrospinal ?uid activin a measurement inasphyxiated full-term newborns predicts hypoxic ischemic encephalopathy[J].Clin Chem,2004,50(12):2386-2389.
[41] Florio P,Luisi S,Moataza B,et al.High urinary levels of activin A in asphyxiated full-term newborns with moderate or severe hypoxic ischemic encephalopathy[J].Clin Chem,2007,53(3):520-522.
(收稿日期:2020-07-15) (本文編輯:劉蓉艷)