賀紅梅,張文斌,張小榮,賀凱,張麗
抗生素抗性基因在大氣環(huán)境中的研究進(jìn)展
賀紅梅1,張文斌2,張小榮2,賀凱3,張麗1
(1. 萍鄉(xiāng)學(xué)院 材料與化學(xué)工程學(xué)院,江西 萍鄉(xiāng) 337000;2. 隆回六中,湖南 邵陽 422208;3. 隆回縣煙草專賣局,湖南 邵陽 422210)
抗生素抗性基因(ARGs)作為一種新的環(huán)境污染物,受到了廣泛的關(guān)注,目前關(guān)于大氣中ARGs的研究很少。大氣環(huán)境是ARGs的潛在儲(chǔ)存庫(kù),空氣傳播是抗生素抗性細(xì)菌引起重要疾病的主要途徑。文章在查閱大量國(guó)內(nèi)外文獻(xiàn)的基礎(chǔ)上,系統(tǒng)綜述了大氣環(huán)境中ARGs的污染現(xiàn)狀、潛在傳播途徑及其機(jī)制和相關(guān)的檢測(cè)方法,并指出了當(dāng)前形勢(shì)下我國(guó)開展對(duì)大氣中ARGs研究的必要性和重要性,為相關(guān)機(jī)構(gòu)開展氣溶膠中ARGs研究提出幾點(diǎn)建議。
抗生素抗性基因;耐藥菌;大氣環(huán)境
抗生素是由微生物、化學(xué)合成和半合成的類似化合物產(chǎn)生的次級(jí)代謝產(chǎn)物,能抑制微生物生長(zhǎng)[1]。作為治療人類感染性疾病的治療劑,如今它也被廣泛用于畜牧業(yè)和水產(chǎn)養(yǎng)殖業(yè)[2]。獸用抗生素最初用于動(dòng)物疾病預(yù)防和治療、飼料添加劑、生長(zhǎng)促進(jìn)劑,目前遠(yuǎn)遠(yuǎn)超過了其作為動(dòng)物治療劑的用途[3]。大量使用抗生素可能會(huì)對(duì)人類和微生物系統(tǒng)產(chǎn)生強(qiáng)大的選擇壓力[4–6]。抗生素耐藥性對(duì)人類健康威脅主要有:(1)殘留的抗生素可能會(huì)改變微生物組,并促進(jìn)耐藥菌(ARB)的出現(xiàn)和選擇[7];(2)對(duì)環(huán)境微生物產(chǎn)生選擇壓力并導(dǎo)致抗生素抗性基因(ARGs)和ARB蓄積的潛在危害[5]。由于治療性抗生素使用效率的降低,導(dǎo)致臨床上抗生素抗性病原體引起患者感染住院增加,甚至出現(xiàn)治療失敗和死亡現(xiàn)象[8]。目前關(guān)于ARGs研究主要集中在其來源、環(huán)境行為與傳播機(jī)制、細(xì)菌耐藥對(duì)人體健康的影響以及ARGs污染控制等方面[9–12],且大多數(shù)研究圍繞水和土壤中的ARGs。相比其他環(huán)境介質(zhì),國(guó)內(nèi)外對(duì)大氣中ARGs的研究相對(duì)較少。根據(jù)近幾年國(guó)內(nèi)外文獻(xiàn)資料,本文對(duì)大氣中ARGs的污染現(xiàn)狀、潛在傳播途徑及其機(jī)制和相關(guān)的檢測(cè)方法進(jìn)行了系統(tǒng)綜述,并指出了當(dāng)前形勢(shì)下我國(guó)開展大氣中ARGs研究的必要性和重要性,為相關(guān)機(jī)構(gòu)開展氣溶膠中ARGs研究提出幾點(diǎn)建議。
與其他相似污染物不同,ARB和ARGs可以通過空氣顆粒物傳播,該空氣顆粒物具有許多附著點(diǎn)并使其ARB和ARGs在高污染的大氣中更穩(wěn)定地懸浮。研究表明空氣傳播被認(rèn)為是ARGs傳播的重要途徑。與其他介質(zhì)相比,大氣中的ARB和ARGs黏附在空氣顆粒后易于被人體吸入,更深地沉積在肺部,對(duì)人體健康構(gòu)成直接的危害。有學(xué)者研究香港17個(gè)幼兒園室內(nèi)空調(diào)過濾器灰塵和小孩尿液樣本中的ARGs和ARB。結(jié)果發(fā)現(xiàn)幼兒園室內(nèi)存在16種ARG和、的多重耐藥細(xì)菌[13]。在污水處理廠(細(xì)格柵和污泥濃縮池)、浴室、實(shí)驗(yàn)室、醫(yī)院和室外等6類大氣樣品中檢測(cè)到19種ARGs,其中在霧霾天室外檢測(cè)到的ARGs總濃度最高(9×105copies/m3),而最低的是在浴室環(huán)境中(4.2×104copies/m3),醫(yī)院大氣環(huán)境中的ARGs種類最多。此外,在這6個(gè)大氣環(huán)境中發(fā)現(xiàn)的ARGs中主要是β-內(nèi)酰胺類ARGs[14]。房文艷等學(xué)者研究了深圳市某典型社區(qū)農(nóng)貿(mào)市場(chǎng)內(nèi)空氣微生物及ARGs,發(fā)現(xiàn)活禽交易區(qū)可培養(yǎng)細(xì)菌濃度遠(yuǎn)高于一般室內(nèi)區(qū)域,其中PM2.5中所含菌量占總菌量42%以上;活禽交易區(qū)空氣介質(zhì)中、、和檢出率高達(dá)70%,周邊環(huán)境空氣樣品中,隨著與活禽交易區(qū)距離的增加,空氣微生物含量和ARGs豐度呈顯著下降趨勢(shì)[15]。有學(xué)者收集我國(guó)北部的三個(gè)特大城市(北京、天津和石家莊)的灰塵,發(fā)現(xiàn)灰塵中含有大量的ARGs,并且夏季的ARGs含量要比冬季高,在夏季磺胺類、四環(huán)素類和β-內(nèi)酰胺類TEM-1的含量分別可達(dá)到~107.1copies/g、106.4copies/g、107.3copies/g,這可能是夏季人類活動(dòng)頻率比冬季高造成的[16]。Ling等對(duì)豬場(chǎng)和乳制品廠內(nèi)部環(huán)境、診所和避難所室外環(huán)境的空氣樣品進(jìn)行定量檢測(cè),結(jié)果表明在所有空氣樣品中,、均有檢出,并且養(yǎng)殖場(chǎng)和室內(nèi)環(huán)境均高于室外,而僅在養(yǎng)殖場(chǎng)中檢出[17]。McEachran等研究了養(yǎng)牛場(chǎng)空氣PM10顆粒物,檢出、、和[18]。Chandan等研究霧霾時(shí)期大氣樣品,被檢出64種耐藥基因,大氣可能是重要的耐藥基因儲(chǔ)存庫(kù)[19]。Gilbert等發(fā)現(xiàn)醫(yī)院空氣中微生物氣溶膠含有、和基因[20]。
大多數(shù)依附空氣傳播的病原體具有多重耐藥性[21–24],人類呼吸道疾病的增加也可能與水平方向上的ARB和ARGs的傳播增加有關(guān),不同體系的微生物中攜帶的ARB和ARGs通過霧化作用釋放到大氣環(huán)境中,依附具有許多附著點(diǎn)的空氣顆粒物傳播,其中促進(jìn)空氣傳播的生物顆粒物為生物氣溶膠,主要包括細(xì)菌、真菌孢子、植物花粉、藻類以及細(xì)胞排泄物或碎片[21],占顆粒物(PM)的30%∽80%[25]。這意味著生物氣溶膠中可能存在大量的致病性和非致病性微生物,并對(duì)人類健康和氣候產(chǎn)生重大影響。生物氣溶膠具有許多附著點(diǎn)并使其ARB和ARGs在高污染的大氣中更穩(wěn)定地懸浮,通過云滴,冰晶以及降水等作用循環(huán)到環(huán)境中的其他介質(zhì),影響水文循環(huán)和氣候[21]。此外,ARB和ARGs粘附在空氣顆粒后易于通過呼吸作用吸入,更深地沉積在人體肺部,導(dǎo)致呼吸系統(tǒng)癥狀、傳染病、急性毒性以及癌癥,從而也成為人類健康的主要問題[26]。除病原體外,空氣中ARGs還可通過不同的人類活動(dòng)或風(fēng)向使其重新霧化而直接排放[27](圖1),這對(duì)人類的健康構(gòu)成了嚴(yán)重威脅。然而關(guān)于大氣中ARGs污染概況及其吸入健康影響的研究十分缺乏,可能是由于難以捕獲足夠數(shù)量的生物氣溶膠以進(jìn)行ARGs識(shí)別和進(jìn)一步量化。
圖1 ARGs環(huán)境回路示意圖[28]
微生物系統(tǒng)中抗生素的出現(xiàn)可能導(dǎo)致正常敏感細(xì)菌的遺傳或突變,使細(xì)菌能夠存活并進(jìn)一步繁殖,成為帶ARGs的ARB。ARGs擴(kuò)散傳播的主要機(jī)制是垂直基因轉(zhuǎn)移(VGT)和水平基因轉(zhuǎn)移(HGT)。其中VGT是通過微生物自身繁殖使得ARGs在水體、土壤、大氣不同環(huán)境介質(zhì)中擴(kuò)散傳播(圖2)。HGT是以包括質(zhì)粒、整合子和噬菌體在內(nèi)的移動(dòng)遺傳元件(MGEs)作為載體,通過接合、轉(zhuǎn)導(dǎo)和轉(zhuǎn)化等作用傳播ARGs[28,29](圖3)。大氣中細(xì)菌群落主要由四個(gè)門組成:Actinobacteria、Bacteroidetes、Firmicutes和Proteobacteria[30]。但是在同一水平上空氣傳播細(xì)菌的可變性,主要取決于它們對(duì)環(huán)境條件的適應(yīng)性。此外氣象參數(shù)(大氣溫度、風(fēng)速、太陽輻射、相對(duì)濕度、大氣壓強(qiáng)、蒸汽壓力、降雨、降雪)和理化因素(氮氧化物、懸浮物[PM2.5、PM10]、CO、SO2、O3等)以及采樣位置可以直接影響空中細(xì)菌群落的組成[31–34]。
圖2 ARGs擴(kuò)散傳播主要機(jī)制
圖3 基因水平轉(zhuǎn)移途徑
目前已有多種分子生物學(xué)法被用于檢測(cè)ARGs。這些方法主要有普通聚合酶鏈?zhǔn)椒磻?yīng)(Polymerase chain reaction,PCR)、實(shí)時(shí)熒光定量PCR、宏基因組學(xué)方法等。PCR基本原理是:對(duì)特定核苷酸片段進(jìn)行指數(shù)級(jí)擴(kuò)增,在擴(kuò)增反應(yīng)結(jié)束后,再通過凝膠電泳對(duì)產(chǎn)物定性分析。一般步驟為:樣品DNA提取→目標(biāo)基因引物設(shè)計(jì)→PCR擴(kuò)增反應(yīng)→凝膠電泳驗(yàn)證擴(kuò)增產(chǎn)物。該技術(shù)可直接在空氣樣品中提取總DNA,再利用PCR方法分析樣品中的ARGs。該方法不需要對(duì)微生物進(jìn)行培養(yǎng),可將環(huán)境中低濃度目標(biāo)DNA或RNA 進(jìn)行擴(kuò)增和檢測(cè),結(jié)果更加準(zhǔn)確,快速靈敏[35,36]。
普通PCR只能對(duì)ARGs定性檢測(cè),而實(shí)時(shí)熒光定量PCR (Real-time quantitative PCR,RT-QPCR)技術(shù),從數(shù)量上可以更直觀地表征環(huán)境中ARGs的水平,有助于摸索其在環(huán)境介質(zhì)中的遷移和傳播等行為。RT-QPCR 技術(shù)原理是:通過熒光標(biāo)記探針,把核酸擴(kuò)增、雜交、光譜分析和實(shí)時(shí)檢測(cè)計(jì)算技術(shù)結(jié)合起來,然后借助熒光信號(hào)檢測(cè)PCR產(chǎn)物[37]。熒光標(biāo)記物與擴(kuò)增產(chǎn)物結(jié)合后,被激發(fā)的熒光強(qiáng)度就與擴(kuò)增產(chǎn)物量成正比,從而可實(shí)現(xiàn)精確定量,準(zhǔn)確表征環(huán)境的抗性基因水平。RT-QPCR 技術(shù)可進(jìn)行實(shí)時(shí)監(jiān)測(cè)和連續(xù)分析,自動(dòng)化程度高,它不需要通過電泳確認(rèn)擴(kuò)增產(chǎn)物的長(zhǎng)度,具有特異性更強(qiáng)、能有效解決PCR污染問題等優(yōu)點(diǎn),被廣泛應(yīng)用于環(huán)境微生物生態(tài)系統(tǒng)中特定基因定量檢測(cè)。
宏基因組學(xué)方法(Metagenomics)是將樣品中的DNA直接克隆到載體并導(dǎo)入宿主細(xì)菌中,進(jìn)而篩選目的基因進(jìn)行測(cè)序分析等。宏基因組方法用于檢測(cè)ARGs的流程:宏基因組DNA提取與純化→宏基因組文庫(kù)的構(gòu)建→宏基因組文庫(kù)的篩選和分析[38,39]。大氣中ARGs 采集借鑒微生物氣溶膠的采集方法,目前已用于大氣中ARGs的采集方法和檢測(cè)技術(shù)主要如下表1。
表1 大氣中ARGs的采樣技術(shù)和檢測(cè)方法
我國(guó)對(duì)大氣中ARGs 的研究尚處于起步階段。大氣環(huán)境作為 ARGs 的潛在儲(chǔ)存庫(kù)在一定程度上缺乏詳細(xì)的研究數(shù)據(jù),本文簡(jiǎn)要綜述了大氣中 ARGs 的研究現(xiàn)狀,對(duì)未來相關(guān)研究開展提出幾點(diǎn)建議:
(1)由于空氣具有流動(dòng)性,不同季節(jié)不同大氣環(huán)境ARGs污染的種類、濃度和其影響因素應(yīng)是未來研究的重點(diǎn)。
(2)空氣樣品通常因?yàn)椴环€(wěn)定性因素太多,樣品收集方法和提取技術(shù)對(duì)結(jié)果影響較大,我們應(yīng)該在不同領(lǐng)域(例如,紡織工業(yè)、食品工業(yè)、醫(yī)藥和生物修復(fù))中研究空氣傳播細(xì)菌活性和生物勘探。在今后的研究中致力于優(yōu)化大氣中ARGs 的樣品采集和定性定量檢測(cè)方法,可以考慮新一代測(cè)序方法以測(cè)定更多的ARGs,為大氣中ARGs的削減提供新思路。
[1] DEMAIN A L, SANCHEZ S. Microbial drug discovery: 80 years of progress[J]. The Journal of antibiotics, 2009, 62(1): 5–16.
[2] NISHA A R. Antibiotic Residues-A Global Health Hazard[J]. Veterinary world, 2008, 1(12): 375–377.
[3] GELBAND H, MILLER-PETRIE M, SURAJ P, et al. The state of the world's antibiotics 2015[J]. Wound Healing Southern Africa, 2015, 8(2): 30–34.
[4] National Academies of Sciences, Engineering, and Medicine. Environmental Chemicals, the Human Microbiome, and Health Risk: A Research Strategy[M]. The National Academies Press, 2018.
[5] QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment international, 2018, 110: 160–172.
[6] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environmental science & technology, 2006, 40(23): 7445–7450.
[7] CHO I, BLASER M J. The human microbiome: at the interface of health and disease[J]. Nature Reviews Genetics, 2012, 13(4): 260–270.
[8] HIDRON A I, EDWARDS J R, PATEL J, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007[J]. Infection Control & Hospital Epidemiology, 2008, 29(11): 996–1011.
[9] LUO Y I, MAO D, RYSZ M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental science & technology, 2010, 44(19): 7220–7225.
[10] ZHAI W, YANG F, MAO D, et al. Fate and removal of various antibiotic resistance genes in typical pharmaceutical wastewater treatment systems[J]. Environmental Science and Pollution Research, 2016, 23(12): 12030–12038.
[11] DANG B, MAO D, XU Y, et al. Conjugative multi-resistant plasmids in Haihe River and their impacts on the abundance and spatial distribution of antibiotic resistance genes[J]. Water research, 2017, 111: 81–91.
[12] WANG J, MAO D, MU Q, et al. Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants[J]. Science of the Total Environment, 2015, 526: 366–373.
[13] LI N, CHAI Y, YING G G, et al. Airborne antibiotic resistance genes in Hong Kong kindergartens[J]. Environmental Pollution, 2020, 260: 114009–114017.
[14] WANG Y, WANG C, SONG L. Distribution of antibiotic resistance genes and bacteria from six atmospheric environments: Exposure risk to human[J]. Science of the Total Environment, 2019, 694: 133750–133758.
[15] 房文艷, 高新磊, 李繼, 等. 城市社區(qū)農(nóng)貿(mào)市場(chǎng)空氣微生物及抗生素抗性基因研究[J]. 生態(tài)毒理學(xué)報(bào), 2015, 10(5): 95–99.
[16] ZHOU H, WANG X, LI Z, et al. Occurrence and distribution of urban dust-associated bacterial antibiotic resistance in Northern China[J]. Environmental Science & Technology Letters, 2018, 5(2): 50–55.
[17] LING A L, PACE N R, HERNANDEZ M T, et al. Tetracycline resistance and class 1 integron genes associated with indoor and outdoor aerosols[J]. Environmental science & technology, 2013, 47(9): 4046–4052.
[18] MCEACHRAN A D, BLACKWELL B R, HANSON J D, et al. Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter[J]. Environmental health perspectives, 2015, 123(4): 337–343.
[19] PAL C, BENGTSSON-PALME J, KRISTIANSSON E, et al. The structure and diversity of human, animal and environmental resistomes[J]. Microbiome, 2016, 4(1): 1-15.
[20] GILBERT Y, VEILLETTE M, DUCHAINE C. Airborne bacteria and antibiotic resistance genes in hospital rooms[J]. Aerobiologia, 2010, 26(3): 185–194.
[21] FR?HLICH-NOWOISKY J, KAMPF C J, WEBER B, et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions[J]. Atmospheric Research, 2016, 182: 346–376.
[22] KIM K H, KABIR E, JAHAN S A. Airborne bioaerosols and their impact on human health[J]. Journal of Environmental sciences, 2018, 67: 23–35.
[23] DELORT A-M, AMATO P. Microbiology of Aerosols[M]. John Wiley &Sons, 2017.
[24] POLYMENAKOU P N. Atmosphere: a source of pathogenic or beneficial microbes?[J]. Atmosphere, 2012, 3(1): 87–102.
[25] XIE Z, FAN C, LU R, et al. Characteristics of ambient bioaerosols during haze episodes in China: A review[J]. Environmental Pollution, 2018, 243: 1930–1942.
[26] DOUWES J, THORNE P, PEARCE N, et al. Bioaerosol health effects and exposure assessment: progress and prospects[J]. The Annals of occupational hygiene, 2003, 47(3): 187–200.
[27] ZHU G, WANG X, YANG T, et al. Air pollution could drive global dissemination of antibiotic resistance genes[J]. The ISME Journal, 2021, 15(1): 270–281.
[28] MARTíNEZ J L, COQUE T M, BAQUERO F. What is a resistance gene? Ranking risk in resistomes[J]. Nature Reviews Microbiology, 2015, 13(2): 116–123.
[29] VIKESLAND P J, PRUDEN A, ALVAREZ P J J, et al. Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance[J]. Environmental science & Technology, 2017, 51(22): 13061–13069.
[30] CUTHBERTSON L, AMORES-ARROCHA H, MALARD L A, et al. Characterisation of Arctic bacterial communities in the air above Svalbard[J]. Biology, 2017, 6(2): 29–50.
[31] FUJIYOSHI S, TANAKA D, MARUYAMA F. Transmission of airborne bacteria across built environments and its measurement standards: a review[J]. Frontiers in M23icrobiology, 2017, 8: 2336–2352.
[32] BOWERS R M, CLEMENTS N, EMERSON J B, et al. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere[J]. Environmental science & technology, 2013, 47(21): 12097–12106.
[33] GANDOLFI I, BERTOLINI V, AMBROSINI R, et al. Unravelling the bacterial diversity in the atmosphere[J]. Applied microbiology and biotechnology, 2013, 97(11): 4727–4736.
[34] ?ANTL-TEMKIV T, GOSEWINKEL U, STARNAWSKI P, et al. Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states[J]. FEMS microbiology ecology, 2018, 94(4): 31–40.
[35] 高盼盼, 羅義, 周啟星, 等. 水產(chǎn)養(yǎng)殖環(huán)境中抗生素抗性基因 (ARGs) 的研究及進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào), 2009, 4(6): 770–779.
[36] 孫平勇, 劉雄倫, 劉金靈, 等. 空氣微生物的研究進(jìn)展[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2010, 26(11): 336–340.
[37] 王麗梅, 羅義, 毛大慶, 等. 抗生素抗性基因在環(huán)境中的傳播擴(kuò)散及抗性研究方法[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2010 (4): 1063–1069.
[38] MONIER J M, DEMANèCHE S, DELMONT T O, et al. Metagenomic exploration of antibiotic resistance in soil[J]. Current opinion in microbiology, 2011, 14(3): 229–235.
[39] WRIGHT G D. The antibiotic resistome: the nexus of chemical and genetic diversity[J]. Nature Reviews Microbiology, 2007, 5(3): 175–186.
[40] 高敏, 仇天雷, 秦玉成, 等. 養(yǎng)雞場(chǎng)空氣中抗性基因和條件致病菌污染特征[J]. 環(huán)境科學(xué), 2017, 38(2): 510–516.
[41] 曾慶濤. 農(nóng)田土壤典型抗生素抗性基因污染及其土——?dú)膺w移研究[D]. 浙江大學(xué), 2019.
[42] 高新磊, 邵明非, 賀小萌, 等. 污水處理廠空氣介質(zhì)抗生素抗性基因的分布[J]. 生態(tài)毒理學(xué)報(bào), 2015 (5): 89-94.
[43] 董玉芳. 城市農(nóng)貿(mào)市場(chǎng)空氣微生物群落特征及抗生素抗性基因污染[D]. 黑龍江: 哈爾濱工業(yè)大學(xué), 2014.
[44] 劉長(zhǎng)利, 鄭國(guó)砥, 王磊, 等. 養(yǎng)豬場(chǎng)空氣中抗性基因和條件致病菌污染特征[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2018, 29(8): 2730–2738.
[45] MCEACHRAN A D, BLACKWELL B R, HANSON J D, et al. Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter[J]. Environmental health perspectives, 2015, 123(4): 337–343.
[46] XIE J, JIN L, LUO X, et al. Seasonal disparities in airborne bacteria and associated antibiotic resistance genes in PM2. 5 between urban and rural sites[J]. Environmental Science & Technology Letters, 2018, 5(2): 74–79.
[47] ECHEVERRIA-PALENCIA C M, THULSIRAJ V, TRAN N, et al. Disparate antibiotic resistance gene quantities revealed across 4 major cities in California: a survey in drinking water, air, and soil at 24 public parks[J]. ACS omega, 2017, 2(5): 2255–2263.
[48] BENGTSSON-PALME J, LARSSON D G J, KRISTIANSSON E. Using metagenomics to investigate human and environmental resistomes[J]. Journal of Antimicrobial Chemotherapy, 2017, 72(10): 2690–2703.
[49] LIS D O, PACHA J Z, IDZIK D. Methicillin resistance of airborne coagulase-negative staphylococci in homes of persons having contact with a hospital environment[J]. American journal of infection control, 2009, 37(3): 177–182.
[50] HU J, ZHAO F, ZHANG X X, et al. Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event[J]. Science of the Total Environment, 2018, 615: 1332–1340.
[51] LI B, YANG Y, MA L, et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes[J]. The ISME journal, 2015, 9(11): 2490–2502.
Research Progress of Antibiotic Resistance Genes in Atmospheric Environment
HE Hong-mei1, ZHANG Wen-bin1,2, ZHANG Xiao-rong2, HE Kai3, ZHANG Li1
(1. School of Materials and Chemical Engineering, Pingxiang University, Pingxiang, Jiangxi 337000, China; 2. Longhui NO.6 Middle School, Shaoyang, Hunan 422208, China; 3. Long Hui County Tobacco Monopoly Bureau, Shaoyang, Hunan 422210, China)
Antibiotic resistance genes (ARGs) have
widespread attention as an emerging environmental pollutant, and there are few studies on ARGs in the atmosphere. The atmospheric environment is a potential reservoir of ARGs, and diseases by antibiotic-resistant bacteria are mainly from airborne transmission. Based on a review of a large amount of domestic and international literature, the paper systematically elaborates the current status of contamination of ARGs in the atmospheric environment, potential route of transmission and their mechanisms and relevant detection methods, and points out the necessity and importance of conducting research on ARGs in the atmosphere in China under the current situation, and puts forward several suggestions for relevant institutions to carry out research on ARGs in aerosols.
antibiotic resistance genes; drug-resistant bacteria; atmospheric environment
X831
A
2095-9249(2021)06-0051-05
2021-11-16
江西省教育廳科學(xué)研究項(xiàng)目(GJJ161263)
賀紅梅(1984—),江西萍鄉(xiāng)人,實(shí)驗(yàn)師,碩士,研究方向:環(huán)境微生物。
〔責(zé)任編校:吳侃民〕