• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study on the performance of zigzag graphene nanoribbons for lithium-selenium cathode materials

    2021-05-19 10:41:02YANTaoDUANXiangmeiPANRongjianWULuDUShiyu

    YAN Tao,DUAN Xiangmei,PAN Rongjian,WU Lu,DU Shiyu

    (1.School of Physical Science and Technology,Ningbo University,Ningbo 315211,China;2.Engineering Laboratory for Advanced Energy Materials,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315201,China;3.The First Sub-Institute,Nuclear Power Institute of China,Chengdu 610005,China)

    Abstract:The selenium-graphene system showcases the latest development of lithium-ion battery cathode material,which has attracted attention worldwide.By employing the first-principles calculation,we firstly find that both single Se atom and Sen(n=2,3,4,6,8) clusters prefer to stick to the edge site of zigzag graphene nanoribbons (ZGNRs).Besides,the theoretical capacity of Li on Sen@ZGNRs(n=1,2) is investigated comparatively.The Se1@ZGNRs system shows better capacity than that of Se2@ZGNRs.Our findings not only shed light on the adsorption behaviors between Li,Se atoms and ZGNRs theoretically,but also provide a new strategy for improving the performance of Li-Se cathode materials based on the aspect of Se atom number.

    Key words:first principles;selenium;zigzag graphene nanoribbon;lithium selenium battery

    1 Introduction

    Benefiting from the ultrahigh specific area,atoms or molecules modified two-dimensional (2D) graphene has been processed into sorbent materials used in diverse industrial fields,which range from sensors,electronic to catalysis[1-2].Moreover,graphene with a point-like Fermi surface (Dirac Cone) and a linear dispersion at the Fermi level exhibits intriguing ballistic transport properties.Graphene is also widely applied as electrode materials in lithium-ion batteries (LIBs) owing to its high Coulomb efficiency and outstanding electronic behaviors[3-5].

    Nowadays,high capacity cathode materials are urgently needed in long life rechargeable LIBs.Selenium cathode has recently attracted great attention since lithium-selenium (Li-Se) batteries have some significant advantages,such as high discharge rate and good cycling performance[6-7].But same to the Lithium Sulfur (Li-S) batteries,the shuttle effect still exists in Li-Se batteries[8].The usage of composite materials for electrode can effectively weaken this shuttle effect.For Li-S batteries,the longer life time benefits from the strong adsorption properties of nanocarbon materials and their role in encapsulating and limiting sulfur[9].Similarly,Li-Se batteries may also show this physical mechanism.Selenium and sulfur have a comparable volumetric capacity,which can also be easily used in portable devices.Moreover,selenium has better electrical conductivity than sulfur,so it has better electrochemical performance and faster electronic conductivity[10].As the electrode,selenium will be a better choice.Sha et al[11]constructed Sen-decorated graphene through a facile high-energy ball-milling process and achieved the higher reversible capacity and better cycle stability.However,the physical and chemical interaction between Se clusters and graphene surface is rarely studied.

    In this work,the prior Se atoms adsorption on ZGNRs and the performance of ZGNRs for Li-Se batteries are theoretically studied by first-principles calculation.The results show that both the single selenium atom and selenium atomic clusters are preferred to adsorb on the edges of ZGNRs.The theoretical capacity of lithium atoms adsorption on Sen@ZGNRs is also evaluated.Our results provide a theoretical understanding for the Se@ZGNRs as cathode material in the Li-Se batteries.

    2 Computational Methods

    The calculations of electronic structures are carried out using the Vienna Ab-initio Simulation Package(VASP) based on density functional theory (DFT)[12-15].The exchange-correlation interaction is treated within the generalized gradient approximation (GGA) in the form of Perdew-Burke-Ernzerhof (PBE)[16-18].The cutoff energy is chosen to be 450 eV for the plane wave expansion.To achieve a balance between efficiency and accuracy,Monkhorst-Pack k-sampling with grid of 1×1×5 and 1×1×15 are used in structural optimization and static self-consistent calculation,respectively.The geometries are fully optimized until the forces on each atom are less than 0.1 eV·nm-1and the energy convergence is less than 1.0×10-5eV.The van der Waals corrections are adopted for the adsorption with the scheme of Grimme DFT-D2 involved in the effect of dispersion relationship,which succeeds in describing interaction between graphene and the surface of SiO2[19].

    In this work,the single layer ZGNRs with the width of 10 carbon atoms in both armchair and zigzag direction is adopted as the initial supercell model,and Se and its clusters are adsorbed on the surface.This width will not be too large to show the graphene characteristics instead of ZGNRs,nor is it too small to show unreliable edge effects[20].2 nm vacuum between edge-to-edge and layer-to-layer are added to eliminate the coupling between adjacent nanoribbons,while the crystal structure has periodicity in thez(zigzag) direction.In order to prevent the chemical reactivity between dangling bonds,the nanoribbon edges are passivated with hydrogen atoms.The adsorption energy (Eads) of the Senclusters on the surface of ZGNRs is defined as

    3 Results and Discussions

    3.1 Single Se adsorption on ZGNRs

    In this work,calculations are started with adsorption of a single selenium atom on ZGNRs.As shown in Fig.1,the 1~8 and 1’~8’ adsorption positions,including hole,bridge,and top sites along armchair direction,are considered to study the relative stability.The distance between two adjacent numbers is equal inydirection.We find that the energy at the edge site is smallest,which indicates indirectly that it is more stable at the edge,shown in Table 1.The same phenomenon is found in other studies[21-22].There is small fluctuation of energy near the middle of zigzag graphene nanoribbon,which is reasonable due to pseudo-periodicity at the center area of the nanoribbon.

    Fig.1 The 1~8 and 1’~8’ adsorption positions on ZGNRs

    Table 1 Energy of the 1~8 and 1’~8’ adsorption positions on ZGNRs eV

    To further confirm that the edge site is the preferred location for Se adsorption,three different sites of Se adatom near the edge are taken into calculation again.As shown in Fig.2(a),the bridge site refers to the midpoint position between two nearest-neighbor carbon atoms,the hollow site indicates the center of a carbon ring,and the top site represents the top of one carbon atom.After optimization,the selenium atom moves from the above considered three sites to the site between carbon and hydrogen atom near edge,as shown in Fig.2(b).The adsorption energy is -1.78 eV and the distance between Se and the nearest carbon atom is 0.201 nm.Thus,we are able to reconfirm that the edge site is the most energetically favorable,meaning that single selenium atom is more likely to occupy the edge position.

    Fig.2 Three high symmetry adsorption positions (a) and fully relaxed configuration of one Se adsorption on ZGNRs (b)

    3.2 Se clusters adsorption on ZGNRs

    The structures of selenium clusters on ZNGRs are then investigated.Eight cluster structures shown in Fig.3,including Se2,C2vand D3hstructures of Se3,C2vand C2hstructures of Se4,C2vand D3dstructures of Se6,and D4dstructure of Se8,are selected as adsorption models,which are comparable to the possible structures of Se3,Se4,Se5,Se6,Se7and Se8calculated by Hohl et al[23]and Li et al[24].In this work,the bond length and energy of selenium dimer are 0.220 nm and -5.29 eV,respectively.The bond length is in good agreement with the experimental results of 0.217 nm[24-25].Se3includes nearly degenerate (D3h) and open (C2v) structures.The bond lengths are 0.223 and 0.238 nm in C2vand D3hstructures,respectively.The C2vstructure shows a slightly lower energy (-9.16 eV) than the D3hstructure(-9.06 eV).Se4has open (C2v) and zigzag (C2h)structures.The energy of C2v(-12.96 eV) is again lower than C2hstructure (-12.62 eV).As for Se6,it has the symmetrical structures of C2vand D3dwith D3dshowing higher stability (-20.71 eV) than C2v(-20.31 eV).The D4dstructure of Se8,showing a bond length of 0.235 nm and angle of 109°,is well consistent with the experimental data[26]and Hohl’s data[23].All data and structural models are presented in Fig.3 and Table 2.

    Fig.3 Optimized structure of selenium clusters

    Table 2 Bond length d,bond angles α and total energy E of Se clusters

    The difference between ours and Hohl’s work lies in the C2vstructure of Se4.The structure is built according to Hohl’s parameters and the optimization leads to an angle of only 94.2°,which is same as Pan’s data[27],while the angle of the Hohl’s data is 102°.Here we choose to use the C2vstructure of Se4obtained from our calculations.By comparing energy values of Se clusters,the most stable structures include Se2,C2vstructure for Se3,C2vstructure for Se4,D3dstructure for Se6,and D4hstructure for Se8.

    After that,the above-mentioned stable structures of selenium clusters are placed at three highly symmetric point shown in Fig.2(a) on the surface of ZGNRs.Generally,there are two adsorption forms of clusters on ZGNRs.The first form is parallel to ZGNRs,called“sleep-mode”,and the second form is perpendicular to ZGNRs,named as“stand-mode”.In both modes,geometric centers of selenium clusters are regarded as a point tentatively adsorbed on three different positions of edge sites.Thus,30 types of adsorption structures are built as initial guesses.After full relaxation,five most stable structures are obtained,as shown in Fig.4.

    Fig.4 The most stable structures of Sen adsorbed on pristine ZGNRs

    To better understand the changes before and after adsorption,the comparisons of structure parameters,including bond length between selenium (dSe-Se),nearest distance between selenium and carbon (dSe-C) and the angle of C-Se-C (θC-Se-C),are listed in Table 3.Forn<4 in Sen@ZGNRs system,the small distance between Se and nearest C may confirm that the two types of atom may form covalent bond.However,Sen(n≥4) clusters bind weakly with the ZGNRs by van der Waals forces,which may be related to lower adsorption energy.As to the energy,the adsorption energies show decrease tendency with cluster size increasing.

    Table 3 Initial site including cluster form and structure parameters of Sen on ZGNRs

    To further understand the interaction between Senclusters and ZGNRs,we compute the distribution of charge by calculating charge density difference.The charge distribution is calculated based on the formula:

    Fig.5 The charge redistributions by calculating charge density difference for Sen@ZGNRs in the side and top views

    3.3 Theoretical capacity of lithium storage

    The theoretical lithium-storage capacity calculations based on a single Se atom and Se dimer on ZGNRs are performed.The lithium atom and selenium atom form clusters are denoted as LixSe and LixSe2.The selenium atom is adsorbed on the edges of ZGNRs,which results in selenium atoms with strong edge states,with larger electron density and high activity[29].Moreover,the lithium atom is also more likely adsorbed on the hollow site at the edge of ZGNRs[21,30].Thus,Li atom is initially placed on top of the hollow site or functional group(between a hydrogen atom and a near-neighbor hydrogen atom) around the selenium atom at the edge site.The theoretical capacity is determined by calculating its lithiation voltages with respect to the potential of Li/Li+at various stages of lithiation using the following formula[30]:

    Fig.6 shows optimized structure of LixSe clusters adsorbed on ZGNRs,as expected,the adsorption of Li atom occurs at the edge of ZGNRs.In Fig.6(a),one single Li atom strongly prefers to occupy the hollow site at the edge of ZNGRs,similar to graphene[31]and ZGNRs[21,30].

    Fig.6 Optimized structures of LixSe adsorbed on ZGNRs

    The binding energy is obtained by:

    Table 4 Structural parameters of LixSe adsorbed on ZGNRs

    Fig.7 The calculated lithiation potential of Se1/Se2@ZGNRs

    We further calculate the lithium capacity of Se2@ZGNRs system.The optimized structures of Lixon Se2@ZGNRs are shown in Fig.8.Meanwhile,the relevant parameters are also listed in the Table 5.Compared to the case of Se@ZGNRs,the theoretical capacity of Li becomes bigger after adding one selenium atom,the value is 7,as shown in dotted line in Fig.7.As the number of Li atoms increases,the distance becomes larger and the interaction becomes smaller between the two selenium atoms,corresponding to dissociation of the dimer into single Se atoms when interacting with surrounding Li atoms.This phenomenon implies that LixSe2is not as stable as LixSe adsorbed on ZGNRs.Therefore,better capacity in electrodes may be obtained in the single Se-graphene systems.These results may provide new clues for improving the performance of Li-Se batteries.

    Fig.8 Optimized structures of Lix on Se2@ZGNRs

    Table 5 The structural parameters of Lix on Se2@ZGNRs

    4 Conclusion

    In summary,the structures of selenium and selenium clusters absorbed on zigzag graphene nanoribbons are studied and the atomic lithium capacities of Se1/Se2@ZGRNs are explored by DFT computation.The results show that a single selenium atom is more easily adsorbed on the edge of ZGNRs,i.e.,the C-H bridge site.The selenium atom in Sen(n<4) clusters are covalently bonded with ZGNRs,while the interaction between Sen(n≥4) and ZGNRs is mainly stabilized by the van der Waals force.It is also found the insertion of lithium may increase the distance between selenium atom and ZGNRs.The LixSe and LixSe2clusters adsorbed on ZGNRs show maximum capacity values of 4 and 7,respectively.As the number of Li atoms increases,the interaction between selenium atoms decreases and atomized Se may bring higher capacity than clustered Se in ZGNRs.Our results may provide new clue on the performance improvement of the selenium-ZGNRs as cathode material in lithiumselenium battery.

    国产精品久久久久久久久免| or卡值多少钱| 亚洲成人精品中文字幕电影| 久久久久久九九精品二区国产| 成人亚洲欧美一区二区av| 黄色配什么色好看| 成人高潮视频无遮挡免费网站| 亚洲在久久综合| 国产成人freesex在线| 色5月婷婷丁香| 97超碰精品成人国产| 赤兔流量卡办理| kizo精华| 特级一级黄色大片| 久久久欧美国产精品| 美女被艹到高潮喷水动态| 亚洲av中文字字幕乱码综合| 亚洲人成网站在线观看播放| 国产激情偷乱视频一区二区| 国产淫语在线视频| 亚洲在线自拍视频| 欧美成人午夜免费资源| 又爽又黄a免费视频| 亚洲人成网站高清观看| 中国美白少妇内射xxxbb| 啦啦啦韩国在线观看视频| 啦啦啦观看免费观看视频高清| 亚洲av成人精品一区久久| 夜夜爽夜夜爽视频| 久久久久久久国产电影| 成人亚洲精品av一区二区| 亚洲国产精品国产精品| 久久久a久久爽久久v久久| 观看免费一级毛片| 日本三级黄在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲国产最新在线播放| 亚洲av免费高清在线观看| 禁无遮挡网站| 老司机影院成人| 能在线免费观看的黄片| 国产黄色视频一区二区在线观看 | 久久草成人影院| 99久国产av精品| 亚洲av电影不卡..在线观看| 欧美成人午夜免费资源| 亚洲天堂国产精品一区在线| 精品久久久噜噜| kizo精华| 少妇高潮的动态图| 色综合色国产| 色网站视频免费| 欧美最新免费一区二区三区| 国产精品一二三区在线看| 久久久色成人| 最近2019中文字幕mv第一页| 成人鲁丝片一二三区免费| 超碰97精品在线观看| 精品99又大又爽又粗少妇毛片| av线在线观看网站| 一级爰片在线观看| 国产激情偷乱视频一区二区| 欧美日本视频| 人妻制服诱惑在线中文字幕| 一个人看视频在线观看www免费| 免费看光身美女| 小说图片视频综合网站| 免费观看在线日韩| 日韩一本色道免费dvd| 欧美日本亚洲视频在线播放| 久久精品夜夜夜夜夜久久蜜豆| 日本wwww免费看| 久久99热这里只有精品18| 日韩欧美三级三区| 亚洲国产欧洲综合997久久,| 九色成人免费人妻av| 综合色av麻豆| 18禁在线播放成人免费| 久久6这里有精品| 欧美色视频一区免费| 免费在线观看成人毛片| 久久精品国产99精品国产亚洲性色| 欧美高清性xxxxhd video| 国产色爽女视频免费观看| 小蜜桃在线观看免费完整版高清| 欧美激情国产日韩精品一区| 九草在线视频观看| 小说图片视频综合网站| 边亲边吃奶的免费视频| 久久久午夜欧美精品| 欧美bdsm另类| 精品午夜福利在线看| 国产一区二区在线av高清观看| 观看美女的网站| 欧美成人一区二区免费高清观看| 一级二级三级毛片免费看| 性插视频无遮挡在线免费观看| 精品欧美国产一区二区三| 国产亚洲一区二区精品| 国产在线一区二区三区精 | 熟妇人妻久久中文字幕3abv| 18+在线观看网站| 精品少妇黑人巨大在线播放 | 国产成人a∨麻豆精品| 久久久色成人| 韩国高清视频一区二区三区| 成年av动漫网址| 国产精品久久电影中文字幕| 国产综合懂色| 亚洲av中文字字幕乱码综合| www.av在线官网国产| 熟女电影av网| 国产乱人视频| 欧美日韩在线观看h| 日本wwww免费看| 99久久中文字幕三级久久日本| 国产国拍精品亚洲av在线观看| 嫩草影院精品99| 最近中文字幕高清免费大全6| 视频中文字幕在线观看| 能在线免费看毛片的网站| 一级av片app| 高清毛片免费看| 亚洲精品456在线播放app| 国产免费又黄又爽又色| 国产亚洲精品av在线| 亚洲最大成人中文| 大话2 男鬼变身卡| 亚洲精品日韩av片在线观看| av免费在线看不卡| 狂野欧美激情性xxxx在线观看| 成人无遮挡网站| 亚洲中文字幕一区二区三区有码在线看| 免费无遮挡裸体视频| 国产极品精品免费视频能看的| 亚洲自拍偷在线| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产精品成人久久小说| 毛片女人毛片| 建设人人有责人人尽责人人享有的 | 黄色配什么色好看| 亚洲精品aⅴ在线观看| 日本五十路高清| 日韩大片免费观看网站 | 国产成人aa在线观看| 99热这里只有精品一区| 超碰97精品在线观看| 国产大屁股一区二区在线视频| 午夜视频国产福利| 亚洲经典国产精华液单| 亚洲av日韩在线播放| 欧美日韩精品成人综合77777| 色综合站精品国产| 免费观看性生交大片5| 性色avwww在线观看| 韩国av在线不卡| 国产久久久一区二区三区| av专区在线播放| 亚洲欧美日韩东京热| 国产成人精品婷婷| 久久婷婷人人爽人人干人人爱| 亚洲欧洲国产日韩| a级一级毛片免费在线观看| 国产高清不卡午夜福利| 婷婷色麻豆天堂久久 | 狂野欧美激情性xxxx在线观看| 在线免费观看的www视频| 国产高清国产精品国产三级 | 能在线免费看毛片的网站| 韩国av在线不卡| 午夜精品一区二区三区免费看| 免费看光身美女| 亚洲精品久久久久久婷婷小说 | 亚洲国产精品成人综合色| 国产人妻一区二区三区在| 在线播放国产精品三级| 国产精品麻豆人妻色哟哟久久 | 国产精品国产高清国产av| 身体一侧抽搐| 免费av毛片视频| 两个人视频免费观看高清| 欧美3d第一页| 久久这里有精品视频免费| 免费观看在线日韩| 精品久久久久久久久亚洲| 成人漫画全彩无遮挡| 国产老妇伦熟女老妇高清| 观看免费一级毛片| 三级男女做爰猛烈吃奶摸视频| 黄片无遮挡物在线观看| 一级毛片电影观看 | 高清毛片免费看| 伊人久久精品亚洲午夜| 神马国产精品三级电影在线观看| 久久久久久久久大av| 观看美女的网站| 免费在线观看成人毛片| 免费一级毛片在线播放高清视频| 一级黄色大片毛片| 欧美日韩精品成人综合77777| 男女边吃奶边做爰视频| 亚洲va在线va天堂va国产| 免费看日本二区| 国产伦理片在线播放av一区| 亚洲精品亚洲一区二区| 免费电影在线观看免费观看| 国产黄色小视频在线观看| av女优亚洲男人天堂| 亚洲天堂国产精品一区在线| 99久久九九国产精品国产免费| 欧美日本亚洲视频在线播放| 国国产精品蜜臀av免费| 一本一本综合久久| 老师上课跳d突然被开到最大视频| 成年版毛片免费区| 黄片wwwwww| 日本免费a在线| 久久精品国产亚洲网站| 欧美97在线视频| 国产极品精品免费视频能看的| 搡女人真爽免费视频火全软件| 国产伦精品一区二区三区视频9| 日本av手机在线免费观看| 少妇熟女欧美另类| 成人一区二区视频在线观看| 亚洲av日韩在线播放| 国产精品一及| 六月丁香七月| 国产在线一区二区三区精 | 国产午夜精品久久久久久一区二区三区| 精品久久国产蜜桃| 级片在线观看| 99久久精品一区二区三区| 午夜福利高清视频| 天天躁日日操中文字幕| av在线亚洲专区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久精品94久久精品| 国产成人a区在线观看| 亚洲精品成人久久久久久| 国产人妻一区二区三区在| 久久久久久久久久久免费av| 免费看美女性在线毛片视频| videos熟女内射| 亚洲欧美日韩无卡精品| 99热6这里只有精品| 高清午夜精品一区二区三区| 69av精品久久久久久| 天堂av国产一区二区熟女人妻| 婷婷六月久久综合丁香| 欧美成人免费av一区二区三区| 久久热精品热| 1024手机看黄色片| 一级黄色大片毛片| 91在线精品国自产拍蜜月| 青春草视频在线免费观看| 搡女人真爽免费视频火全软件| 中文字幕精品亚洲无线码一区| 成人亚洲欧美一区二区av| 超碰av人人做人人爽久久| 免费观看精品视频网站| 99久久中文字幕三级久久日本| 国产精品伦人一区二区| 久久热精品热| 99久国产av精品国产电影| 99久久九九国产精品国产免费| 亚洲最大成人av| 十八禁国产超污无遮挡网站| 美女国产视频在线观看| 高清毛片免费看| 亚洲欧美精品专区久久| 秋霞在线观看毛片| 午夜福利在线观看免费完整高清在| 国产高清有码在线观看视频| 国产精品99久久久久久久久| 狂野欧美激情性xxxx在线观看| 亚洲人成网站高清观看| 我的女老师完整版在线观看| 九九爱精品视频在线观看| 日本五十路高清| 国产淫片久久久久久久久| 黄色日韩在线| 91久久精品国产一区二区成人| 亚洲国产日韩欧美精品在线观看| 男女边吃奶边做爰视频| 精品国内亚洲2022精品成人| 国产精品av视频在线免费观看| 成人鲁丝片一二三区免费| 久久热精品热| 人妻少妇偷人精品九色| 国产高潮美女av| 午夜免费激情av| 少妇高潮的动态图| 99国产精品一区二区蜜桃av| 在线播放无遮挡| 精品久久久久久久久av| 国产探花在线观看一区二区| 久久久久久久久久黄片| 国产在视频线在精品| 少妇丰满av| 人妻系列 视频| 欧美精品一区二区大全| 亚洲欧美日韩高清专用| 日本黄色视频三级网站网址| 一级毛片我不卡| 欧美激情久久久久久爽电影| 女人十人毛片免费观看3o分钟| 欧美日本视频| 欧美性感艳星| 色5月婷婷丁香| 天堂√8在线中文| 午夜久久久久精精品| 午夜a级毛片| 女人被狂操c到高潮| 天天躁夜夜躁狠狠久久av| 在现免费观看毛片| 日本免费在线观看一区| av卡一久久| 国内精品一区二区在线观看| 天美传媒精品一区二区| 国产探花极品一区二区| 综合色丁香网| 内射极品少妇av片p| 最近视频中文字幕2019在线8| 国产探花在线观看一区二区| 国产精品人妻久久久影院| 中文字幕人妻熟人妻熟丝袜美| 色噜噜av男人的天堂激情| 干丝袜人妻中文字幕| 波多野结衣高清无吗| 国产精品一区www在线观看| 日本黄大片高清| 男插女下体视频免费在线播放| 亚洲经典国产精华液单| 亚洲五月天丁香| 色综合色国产| 亚洲精品影视一区二区三区av| 欧美激情久久久久久爽电影| 亚洲av熟女| 久久久久久久久久成人| 一个人免费在线观看电影| 亚洲无线观看免费| 日韩成人av中文字幕在线观看| 日日摸夜夜添夜夜添av毛片| 中国国产av一级| 国产成人午夜福利电影在线观看| 男女国产视频网站| 久久久欧美国产精品| 久久精品综合一区二区三区| 欧美变态另类bdsm刘玥| 国产亚洲最大av| 美女被艹到高潮喷水动态| 欧美精品国产亚洲| 日韩一区二区视频免费看| 一边亲一边摸免费视频| 青春草视频在线免费观看| 五月玫瑰六月丁香| 国产精品电影一区二区三区| 国产精品日韩av在线免费观看| 精品国内亚洲2022精品成人| 国国产精品蜜臀av免费| 波多野结衣巨乳人妻| 国国产精品蜜臀av免费| 久久久欧美国产精品| 欧美性猛交黑人性爽| 国产在线男女| 乱人视频在线观看| 亚洲国产日韩欧美精品在线观看| 久久综合国产亚洲精品| 亚洲在久久综合| 校园人妻丝袜中文字幕| 色综合色国产| 日韩欧美精品免费久久| 免费观看在线日韩| 成人av在线播放网站| 精品一区二区三区人妻视频| 水蜜桃什么品种好| 婷婷色麻豆天堂久久 | 精品国产三级普通话版| 国产av一区在线观看免费| 九九久久精品国产亚洲av麻豆| 国产精品永久免费网站| 爱豆传媒免费全集在线观看| 大又大粗又爽又黄少妇毛片口| 国产av不卡久久| 联通29元200g的流量卡| 久久久久久大精品| 日日摸夜夜添夜夜添av毛片| 天美传媒精品一区二区| 国产白丝娇喘喷水9色精品| 欧美成人a在线观看| av天堂中文字幕网| 亚洲av免费高清在线观看| 国产精品一区二区性色av| 99在线视频只有这里精品首页| 1000部很黄的大片| 一级黄片播放器| 亚洲欧美精品专区久久| 秋霞在线观看毛片| 亚洲精品久久久久久婷婷小说 | 午夜福利网站1000一区二区三区| 狂野欧美白嫩少妇大欣赏| 婷婷色麻豆天堂久久 | 美女国产视频在线观看| 国产成人a区在线观看| 长腿黑丝高跟| 人人妻人人看人人澡| 激情 狠狠 欧美| 伦精品一区二区三区| 一夜夜www| 黄色一级大片看看| 插阴视频在线观看视频| 一区二区三区高清视频在线| a级毛色黄片| 成人三级黄色视频| 国产精品永久免费网站| 亚洲av福利一区| a级一级毛片免费在线观看| 狂野欧美激情性xxxx在线观看| a级一级毛片免费在线观看| or卡值多少钱| 黄色配什么色好看| 日韩高清综合在线| 人体艺术视频欧美日本| 午夜爱爱视频在线播放| 人人妻人人澡欧美一区二区| 中文字幕制服av| 久久婷婷人人爽人人干人人爱| 日韩欧美国产在线观看| 国产一区二区在线av高清观看| 国产又色又爽无遮挡免| 一区二区三区四区激情视频| 夫妻性生交免费视频一级片| 欧美色视频一区免费| 亚洲精品亚洲一区二区| 久热久热在线精品观看| 国产成人91sexporn| 午夜精品一区二区三区免费看| 久久精品综合一区二区三区| 日韩国内少妇激情av| 亚洲精品影视一区二区三区av| 亚洲电影在线观看av| 能在线免费观看的黄片| 深夜a级毛片| 亚洲国产精品久久男人天堂| 中文精品一卡2卡3卡4更新| 中文字幕av在线有码专区| 欧美一区二区亚洲| 国产精品一区二区在线观看99 | 午夜激情福利司机影院| www日本黄色视频网| 又爽又黄a免费视频| 久久人人爽人人爽人人片va| 91狼人影院| 岛国在线免费视频观看| 亚洲电影在线观看av| 亚洲人与动物交配视频| 日韩精品有码人妻一区| 亚洲丝袜综合中文字幕| 国产精品野战在线观看| 在线播放无遮挡| 成人高潮视频无遮挡免费网站| 亚洲激情五月婷婷啪啪| 国产成人精品婷婷| 午夜福利视频1000在线观看| 丝袜喷水一区| 午夜日本视频在线| 欧美成人a在线观看| 成人美女网站在线观看视频| 国产成人精品久久久久久| 高清av免费在线| 热99re8久久精品国产| 欧美高清成人免费视频www| av免费观看日本| 18禁裸乳无遮挡免费网站照片| 一级爰片在线观看| 午夜福利网站1000一区二区三区| 国产精品爽爽va在线观看网站| 国产一级毛片在线| 国产老妇女一区| 精品久久国产蜜桃| 久久久国产成人精品二区| 久久久久久久久久久免费av| 亚洲av.av天堂| 中文乱码字字幕精品一区二区三区 | 国产精品1区2区在线观看.| 99在线人妻在线中文字幕| 国产精品久久久久久久久免| 国内精品美女久久久久久| 欧美精品国产亚洲| 亚洲精品456在线播放app| 久久精品91蜜桃| 亚洲av一区综合| 国产色爽女视频免费观看| 国产精品福利在线免费观看| 男人的好看免费观看在线视频| 亚洲欧美成人精品一区二区| 七月丁香在线播放| 亚洲精品456在线播放app| 国产精品福利在线免费观看| 欧美丝袜亚洲另类| 色网站视频免费| 视频中文字幕在线观看| 人人妻人人看人人澡| 长腿黑丝高跟| 99久久人妻综合| 精品人妻视频免费看| a级毛色黄片| 波多野结衣高清无吗| 最近2019中文字幕mv第一页| 99视频精品全部免费 在线| 一级毛片电影观看 | 午夜视频国产福利| 亚洲国产精品专区欧美| 欧美极品一区二区三区四区| 国产精品无大码| 一级av片app| 国产亚洲5aaaaa淫片| 午夜激情欧美在线| 麻豆久久精品国产亚洲av| 两个人视频免费观看高清| 看黄色毛片网站| 色吧在线观看| 午夜福利成人在线免费观看| 精品人妻视频免费看| 国产免费一级a男人的天堂| av国产免费在线观看| 国产黄色视频一区二区在线观看 | 男人的好看免费观看在线视频| 老司机影院毛片| 国产精品女同一区二区软件| 亚洲性久久影院| 青春草亚洲视频在线观看| 一级毛片aaaaaa免费看小| 亚洲av.av天堂| 别揉我奶头 嗯啊视频| 草草在线视频免费看| 亚洲精品乱码久久久v下载方式| www日本黄色视频网| 一级av片app| 日韩精品有码人妻一区| 高清毛片免费看| 我的女老师完整版在线观看| 国产亚洲av片在线观看秒播厂 | 边亲边吃奶的免费视频| 能在线免费观看的黄片| 久久精品人妻少妇| 国产乱来视频区| 欧美日本亚洲视频在线播放| 久久久国产成人精品二区| 黄片wwwwww| 亚洲不卡免费看| 亚洲综合色惰| av在线老鸭窝| 九色成人免费人妻av| 久久久久久久久中文| 久久久精品欧美日韩精品| 国产伦理片在线播放av一区| 天美传媒精品一区二区| 我的老师免费观看完整版| 国产精品蜜桃在线观看| АⅤ资源中文在线天堂| 岛国毛片在线播放| 水蜜桃什么品种好| 国产精品av视频在线免费观看| 国产激情偷乱视频一区二区| av国产久精品久网站免费入址| av在线观看视频网站免费| 国产又黄又爽又无遮挡在线| 日本av手机在线免费观看| 精品一区二区三区人妻视频| 中文字幕制服av| 亚洲欧洲日产国产| 国产精品1区2区在线观看.| 韩国av在线不卡| 免费电影在线观看免费观看| 91狼人影院| 日本欧美国产在线视频| 深夜a级毛片| 国产免费又黄又爽又色| 岛国在线免费视频观看| 纵有疾风起免费观看全集完整版 | 国产日韩欧美在线精品| 日本免费a在线| 波野结衣二区三区在线| 午夜福利视频1000在线观看| 国产女主播在线喷水免费视频网站 | 日韩欧美三级三区| 国产激情偷乱视频一区二区| 亚洲av电影在线观看一区二区三区 | 免费在线观看成人毛片| 波野结衣二区三区在线| 最近手机中文字幕大全| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲精品久久久com| 成人毛片60女人毛片免费| 一级黄片播放器| 26uuu在线亚洲综合色| 尤物成人国产欧美一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 看片在线看免费视频| 久久精品久久精品一区二区三区| av福利片在线观看| 欧美色视频一区免费| 亚洲精品日韩在线中文字幕| 丝袜美腿在线中文| 夜夜看夜夜爽夜夜摸| 91精品国产九色| 久久久精品94久久精品| 人体艺术视频欧美日本| 亚洲精品456在线播放app| 久久久久久久午夜电影| 中文亚洲av片在线观看爽| 嘟嘟电影网在线观看| 色哟哟·www|