• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ion transport regulation through triblock copolymer/PET asymmetric nanochannel membrane: Model system establishment and rectification mapping

    2021-05-14 09:47:44LinsenYangPeiLiuCongongZhuYuanyuanZhaoMiaomiaoYuanXiangYuKongLipingWenLeiJiang
    Chinese Chemical Letters 2021年2期

    Linsen Yang,Pei Liu,Congong Zhu,Yuanyuan Zhao,Miaomiao Yuan,Xiang-Yu Kong*,Liping Wen,Lei Jiang

    a Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190,China

    b School of Future Technology, University of Chinese Academy of Science, Beijing 100049, China

    c The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China

    ABSTRACT Controlling ions transport across the membrane at different pH environments is essential for the physiological process and artificial systems.Many efforts have been devoted to pH-responsive ion gating,while rarely systems can maintain the rectification in pH-changing environments.Here, a composite nanochannel system is fabricated,which shows unidirectional rectification with high performance in a wide pH range.In the system,block copolymer(BCP)and polyethylene terephthalate(PET)are employed for the amphoteric nanochannels fabrication.Based on the composite system, a model is built for the theoretical simulation.Thereafter,rectification mapping is conducted on the system,which can provide abundant information about the relations between charge distribution and ions transport properties.The proposed rectification mapping can definitely help to design new materials with special ion transport properties, such as high-performance membranes used in the salinity gradient power generation field.

    Keywords:Nanochannel Unidirectional rectification Composited membrane Ion transport Rectification mapping

    Biological ion channels can control the ion inflow and outflow across the cell as nanoscale gatekeepers,which is essential to many life processes[1–3].Due to the fragility of the natural ion channels,it is difficult to integrate them into devices [4,5].Smart artificial nanochannels mimicking the functions including ion gating[6–8],ion rectification [9,10], and ion selectivity [11] have been a focus field due to their potential applications in pharmacy, sensing,energy, and desalination [12–21].For example, Siwy and coworkers created a gate system for water,ionic,and neutral species by applying an electric potential across a single hydrophobic nanopore[22].Wen et al.realized light-controlled ion transport through artificial channels by employing DNA technology [23].Wang and coworkers fabricated an asymmetric heterogeneous nanowire membrane which can realize reversible ionic rectification due to the pH-regulating asymmetric wettability [24].By employing the block copolymer,a series of heterogeneous membrane with wellcontrolled ionic transport were fabricated and further applied in osmotic energy harvesting [25–30].Normally, the nanochannel geometry,surface charge polarity, charge density, and wettability are the main factors that control the mass transport properties in the nanoconfined channels [31–34].By regulating the abovementioned factors, artificial nanochannel with desired mass transport properties, such as ionic diode, can be constructed[35,36].Normally, the ion rectification direction and rectifying performance of the fabricated nanochannels will change along with the external pH stimuli and cannot maintain the desired rectification properties, which limits their practical applications,such as osmotic energy harvesting.Yet, rare details of regulating pH-sensitivity and mapping the rectification of the systems have been stated.

    Here, we proposed a facile strategy for making artificial ion channels that show unidirectional rectification in a wide pH range from acidic to basic environment by combining triblock copolymer and nanoporous PET nanochannels.Briefly, the membrane was prepared by casting the BCP membrane,poly(styrene-b-tert-butyl methacrylate- b-2-vinylpyridine (PS-b-PtBuMA-b-P2VP), onto a PET membrane with conical nanochannels (106produced by ion-track etching protocol (Fig.S1 in Supporting information)[37].The system shows unidirectional ion rectification effect in a broad pH range from 3 to 11 due to the synergistic effects of the surface charge distribution and the multilevel channel geometry,and the maximum rectification ratio can achieve 200.As the BCP in our system contains multiple blocks with optional functional groups(pH sensitive)and holds well performance in film building[38], it is suitable to be used as a model system for exploring the influencefactors on ionic rectification.Based on this model system,the rectification mapping is carried out for the first time by employing theoretical simulation, which provides details on how the charge distribution and channel geometry affect the ion transport.The proposed membrane material shows broad application potential in salinity gradient power generation, and this work can provide guidance for materials designing used in energy harvesting and separation fields.

    Fig.1.The hydrolysis reaction of the composited membrane.The carboxyl groups can be produced in the tBuMA blocks through the hydrolysis reaction,which can be seen in the top line.After the hydrolysis reaction, the carboxyl groups and pyridyl groups(BCP part)and the carboxyl groups(PET part)can be charged or uncharged along with the pH changes, respectively.

    where frec,I+2Vand I-2Varethe rectification factor,currentmeasured at +2 V, and current measured atrespectively.In the measurement, the anode and cathode electrode are placed at the PETandBCPside,respectively(Fig.S4inSupportinginformation).In this way,a standard parameter(frec)is built for evaluating all the ion transport properties in the nanochannel system.

    The ionic transport properties of our system are investigated by current-voltage (I–V) measurement.The as-prepared PET nanochannel membrane has a negative frec(Fig.S5a in Supporting information)and the composite membrane holds a positive frecafter the BCP membrane casting (Fig.S5b in Supporting information).Besides, the composited membrane shows a nonlinear decrease along with the solution concentration decrease indicating a chargegoverned ion transport in the system (Fig.S5c in Supporting information).Thereafter, the I–V curves of the composited membrane after hydrolysis at different pH values were investigated(Fig.2a).All the curves show the same directional rectification behaviours.The detailedchanges of the currentsat negative biasare shown in Fig.S6(Supporting information).Rectification factors at different pH conditions are presented in Fig.2b.According to the Eq.(1),all the frecare calculated to be positive.In our testing system,the positive frecmeans the ions accumulated in the channels at+2 V bias and depleted at -2 V bias; and vice versa [40].All the frecare bigger than 50 and the maximum value can achieve 200,showing the high ionic regulation performance.This is mainly because of the high surface charge density brought by the two parts of the composite membrane and the multilevel asymmetry brought by the PET part.For the sake of discussion,the system is simplified to a funnel shaped nanochannel according to the characterization of the composite membrane.The states of the system correspond to the ion transportat different pH canbe divided to three types(typeI,II and III in Fig.2c).In the composited membrane,the BCP part and the PET part are in different charged states (charge polarity and charge density)along with the pH changes.Type I shows the charge distribution of the system in pH 2.89, and the composited membrane showed a positive-neutral (BCP-PET) charged state.Here,the neutral PET also plays an essential role in maintaining the rectification of the system, and the system is unlike the cylinder positive charged nanochannel, which shows no rectification [41].The frecreaches the highest value (206) in the pH 4.56 solution,and the charge distribution of the system (type II) is in a positive-negative(BCP-PET)state.The high frecin this condition can ascribe to the charge and geometry asymmetry[42,43].When the system was tested in solution with pH 7.06, 9.01 and 11.01, the system is in a negative-negative(BCP-PET)charged state(type III).This is not the situation in cylinder or conical nanochannels,which shows frecof 1 or negative value, respectively.Both the charging states and geometry could affect the rectification of the system.Also,the ionic transport properties of bare PET nanochannels and composited membrane before hydrolysis reaction were studied(detailed in Fig.S7 in Supporting information).Specially, the composited membrane before hydrolysis tested in solution at pH 9.01 also shows a positive frecvalue,which is in the charged state of neutral-negative (BCP-PET).Therefore,a relative completed set of charged states of the funnel nanochannel is constructed, and it is worth investigating the details of the ionic transport of all the above-mentioned charged states.

    Fig.2.Unidirectional rectification properties of the composite membrane at different pH conditions.(a)I–V curves of the composite membrane in 10 mmol/L KCl at different pH values with sweeping voltage from -2 V to 2 V.In the measurement,the anode is placed at PET side and the cathode is placed at BCP side.(b) The corresponding rectification ratios in (a).The solid line is a guide to the eye.(c)Charge distribution of the system at different pH conditions.Type I corresponds to the system at pH 2.89; Type II corresponds to the system at pH 4.56; Type III presents the charge distribution of the composite membrane at pH 7.06, 9.01 and 11.01.

    To dig into the details of the ionic transport properties of our system, numerical simulation based on Poisson–Nernst–Planck(PNP)equations was employed(Fig.S8 in Supporting information)[44,45].Through the simulation,the detailed relations between the ionic transport and the system’s characterization,such as geometry,charge polarity,and charge density,could be revealed.In Figs.3a and b, the currents at +2 V and -2 V voltage bias with different charge distribution in BCP and PET nanochannels are presented,respectively.Besides,the concentration profiles of the K+and Cl-at different charged conditions which are corresponded to the different pH solutions are showed in Fig.S9 (Supporting information).By combining the data in Figs.3a and b, the rectification ratio distribution of the system is mapped in Fig.3c.In our model,only the factors of the charge distribution and geometry, which will largely affect the ion transport performance of the system, are considered.Fortunately, most of our experimental results can be found in the constructed rectification mapping surface.Besides,from Fig.3, we can get some laws between the ionic transport and the system’s charged status.First,the I+2Vhas the biggest value(Fig.3a)when the sBCPand sPETare 0.07 C/m2and-0.12 C/m2,respectively.Along with the small|I-2V|(Fig.3b),the big rectification factorcan be gained(Fig.3c),which is the similar situation with the experiment measured at pH 4.56 (Fig.2b).In the meantime, the I-2Vhas the biggest absolute value (Fig.3b) when the sBCPand sPETare -0.07 C/m2and0.00C/m2,respectively.The seres ults show that the desired current can be obtained at suitable charge distribution.Then, the ionic transport properties of the system with a neutral PET part are studied.Along with the sBCPchanging from negative to positive,|I+2V| increase and |I-2V| decrease, respectively.As a result, the rectification ratio in Fig.3cshowsa symmetric pattern along with the sBCPchanging,which means that the ionic transport is determined by the sBCPparameter.It does show rectification when sBCPis not zero,which is not like the situation in cylinder nanochannel[41].So,the conical part of the funnel nanochannel is essential to its ionic transport property.On the contrary, when sBCPis zero, the funnel nanochannel shows positive frec, where an ion accumulation and depletion zone are formed in the channels at+2 V andvoltage bias(Fig.S8 in Supporting information),respectively[46].Thus,the result of our experiment conducted at pH 2.89 (Fig.3b) can be explained.Normally,the conical nanochannel shows a negative frecdue to the negative carboxyl groups.Here, by adding a section of neutral nanochannel, the ionic transport can be tuned to the opposite direction, showing that the ionic transport of the nanochannel is a comprehensive result of different factors.Thirdly,Fig.3c shows that in the region with negative sBCPandsPET,which is the situation of the system in pH 7.06,9.01,and 11.01 solutions,all the frecare relatively small.While in the neighbour zone with positive sBCPand negative sPET,all the frecare relatively big.Apart from the geometry, the opposite charge polarity can render the significant rectification phenomenon in the system, which is an effective way to increase the performance of the nanofluidics[33,34].

    For further investigating how the ionic transport changes along with the charge status of the nanochannels,the contour plot of the rectification factor was presented (Fig.4a).In Fig.4a, it could be clearly seen the frecchanges from the ‘flat’ region to the ‘rough’region with big rectification factors.It is worth noting that the region fenced by the lines tagged‘1.0’andis actually a‘dead’region which is a result of our definition of ‘frec’.According to our definition,freccan be in the following three conditions:(1) equals to 1 (line with tag 1.0 in Fig.4a), which shows no rectification;(2)bigger than 1(right side of the‘1.0’line in Fig.4a),which shows bigger |I+2V|; (3) smaller than(left side of the ‘line in Fig.4a), which shows bigger |I-2V|.Interestingly, the boundaries which divide the rectification map into two main regions is not overlapped with the zero line (black dash line in Fig.4b).For understanding the detailed transition of the frecfrom positive to negative, the refined charge density is applied to solve the PNP equation(Numerical simulation in Supporting information)and a fine contour plot is obtained (Fig.4b).In Fig.4b, the rectification ratio can be equal to 1 when the sBCPand sPETare both negative with about -0.10 C/m2and -0.07 C/m2, respectively.Our results are not the same with Azzaroni’s report [30], where negative rectification means a negative surface charge and vice versa.The difference can be attributed to the different geometry which is also an important factor in ionic transport of the nanochannels.In the region where is fenced by the ‘1.00’ line, black dash line, and parts of the ‘sBCP’ and ‘sPET’ axis, even both the BCP and PET nanochannels are negative charged, the positive freccan be still reached.Our ion transport experiments with pH 7.06, 9.01, and 11.01 just confirmed the above-mentioned situation.The BCP part with fewCOOH groups holds low negative charges and the PET part are fully deprotonated.The findings present great potential in new nanofluidic membrane designing.For example, the reported heterogeneous membrane for osmotic energy harvest mainly worked in the pH of 4.3 [20], to maintain the opposite charge distribution.As the pH 4.3 is not suitable for the practical application,the materials work well in near neutral condition are needed to be developed.Our results point out that the opposite charge polarity for reaching positive frecin heterogeneous nanochannels[18,20]is not necessary,which can also be reached with all negative charged nanochannels.

    Fig.3.Simulated currents at (a) +2 V and (b) -2 V bias with different charge density in BCP and PET nanochannels.The rectification ratio mapping (c) of the composited membrane with different charge distribution derived from (a) and (b).

    Fig.4.Contour plot of the rectification mapping (a) Image of the different charging states of the system.(b) Image with refined BCP charge density changes.

    In summary, we conducted experimental and theoretical studies on the ion transport of a composited membrane, which show positive frecin a wide pH range from acidic to basic environment.The pH responsive groups in BCP and PET along with the geometry endow the membrane with unidirectional rectification.Theoretical simulation based on PNP equation is conducted for the rectification mapping, which is devoted to better understanding the detailed ion transport.The proposed system turns out locating in the positive frecregion.Specifically,it is found that even both the BCP and PET nanochannels are negative, the positive freccan be still reached.Furthermore, the rectification mapping with different charge distribution in funnel nanochannel could be used for the guidance of membrane designing in various pH conditions, showing great potential in energy harvesting and separation fields.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the Beijing Natural Science Foundation (No.2194088) and the National Natural Science Foundation of China (Nos.21905287, 21625303,51673206, 21988102, 81972488, 81701836).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.04.047.

    亚洲三区欧美一区| 丝瓜视频免费看黄片| 成人av一区二区三区在线看| 日韩欧美一区二区三区在线观看 | 欧美人与性动交α欧美精品济南到| 久久久国产一区二区| 精品国产国语对白av| 欧美日韩亚洲高清精品| 在线免费观看的www视频| 深夜精品福利| 精品国产一区二区三区四区第35| 女警被强在线播放| 99riav亚洲国产免费| 中文欧美无线码| 一区在线观看完整版| 亚洲五月婷婷丁香| 久久午夜亚洲精品久久| 亚洲人成电影免费在线| 国产成人免费观看mmmm| 麻豆国产av国片精品| 国产精品成人在线| 十八禁人妻一区二区| 他把我摸到了高潮在线观看| 涩涩av久久男人的天堂| 亚洲午夜精品一区,二区,三区| av免费在线观看网站| 国产成人精品久久二区二区免费| 91九色精品人成在线观看| 亚洲一区二区三区不卡视频| 欧美最黄视频在线播放免费 | a级毛片在线看网站| 欧美精品一区二区免费开放| 美国免费a级毛片| 国产精品 欧美亚洲| 咕卡用的链子| 露出奶头的视频| 欧美黄色片欧美黄色片| 亚洲精品一二三| 国产三级黄色录像| 99国产精品一区二区蜜桃av | 久热爱精品视频在线9| 丰满饥渴人妻一区二区三| 老熟妇乱子伦视频在线观看| 人人澡人人妻人| 国产精品一区二区免费欧美| 精品少妇久久久久久888优播| 色综合婷婷激情| 国产免费男女视频| 黄色成人免费大全| 妹子高潮喷水视频| 亚洲成人免费av在线播放| 国产精品免费一区二区三区在线 | 午夜精品在线福利| 视频区图区小说| 久久午夜亚洲精品久久| 久久午夜亚洲精品久久| 欧美久久黑人一区二区| 黄色 视频免费看| 在线免费观看的www视频| 99riav亚洲国产免费| 国产成人啪精品午夜网站| 美女福利国产在线| 久久国产精品影院| 国产在线一区二区三区精| 国产精品九九99| 黄片大片在线免费观看| 欧美成人免费av一区二区三区 | 精品卡一卡二卡四卡免费| 建设人人有责人人尽责人人享有的| 国产精品综合久久久久久久免费 | 国产人伦9x9x在线观看| 精品久久久久久久久久免费视频 | 久久久国产成人精品二区 | 亚洲精品av麻豆狂野| 欧美成人午夜精品| 波多野结衣av一区二区av| www.999成人在线观看| 在线看a的网站| 高清黄色对白视频在线免费看| 激情视频va一区二区三区| 变态另类成人亚洲欧美熟女 | av国产精品久久久久影院| 国产精品自产拍在线观看55亚洲 | 如日韩欧美国产精品一区二区三区| 99热国产这里只有精品6| 99久久国产精品久久久| 国产成人免费观看mmmm| 成年人午夜在线观看视频| av在线播放免费不卡| 欧美精品人与动牲交sv欧美| 午夜免费鲁丝| 极品少妇高潮喷水抽搐| 一级,二级,三级黄色视频| 久久久久精品国产欧美久久久| 一级a爱视频在线免费观看| 人妻 亚洲 视频| 久久久久国内视频| 免费观看精品视频网站| av中文乱码字幕在线| 丝袜美腿诱惑在线| 欧美成人免费av一区二区三区 | 91成年电影在线观看| 操出白浆在线播放| 欧美国产精品va在线观看不卡| 亚洲精品久久成人aⅴ小说| 日韩人妻精品一区2区三区| 免费av中文字幕在线| 麻豆成人av在线观看| 欧美色视频一区免费| 国产欧美日韩精品亚洲av| 久久九九热精品免费| 50天的宝宝边吃奶边哭怎么回事| 999久久久精品免费观看国产| 欧美日本中文国产一区发布| x7x7x7水蜜桃| 成年人午夜在线观看视频| 丰满的人妻完整版| 人人妻人人澡人人看| 9191精品国产免费久久| 99re在线观看精品视频| 男人操女人黄网站| 天天躁日日躁夜夜躁夜夜| 在线观看一区二区三区激情| 亚洲五月婷婷丁香| 日日爽夜夜爽网站| av在线播放免费不卡| 又大又爽又粗| 乱人伦中国视频| 亚洲av电影在线进入| 少妇的丰满在线观看| 免费日韩欧美在线观看| 热99久久久久精品小说推荐| 18禁黄网站禁片午夜丰满| 在线观看舔阴道视频| 久久狼人影院| 亚洲熟女精品中文字幕| 一级毛片高清免费大全| 国产精品久久久av美女十八| 国产精华一区二区三区| 好看av亚洲va欧美ⅴa在| 美女午夜性视频免费| 午夜福利在线观看吧| 91老司机精品| 日韩欧美国产一区二区入口| 亚洲黑人精品在线| 黄色毛片三级朝国网站| 日韩精品免费视频一区二区三区| 69精品国产乱码久久久| 欧美人与性动交α欧美软件| 美女高潮喷水抽搐中文字幕| 美女 人体艺术 gogo| 亚洲自偷自拍图片 自拍| 亚洲精品久久成人aⅴ小说| 欧美精品一区二区免费开放| 亚洲午夜理论影院| 国产欧美日韩一区二区三| 男人操女人黄网站| 一边摸一边抽搐一进一出视频| 国产精品免费一区二区三区在线 | 手机成人av网站| 午夜免费观看网址| 一进一出抽搐动态| 国产精品98久久久久久宅男小说| 国产精品一区二区在线观看99| 精品久久蜜臀av无| 老熟妇仑乱视频hdxx| 中文字幕另类日韩欧美亚洲嫩草| 欧美久久黑人一区二区| 巨乳人妻的诱惑在线观看| 亚洲精品自拍成人| 一区二区三区国产精品乱码| 好男人电影高清在线观看| 露出奶头的视频| 日韩欧美在线二视频 | 久久精品人人爽人人爽视色| 人人妻,人人澡人人爽秒播| 成人三级做爰电影| 午夜91福利影院| 免费在线观看影片大全网站| 欧美黑人欧美精品刺激| 亚洲五月天丁香| 操美女的视频在线观看| 看黄色毛片网站| av天堂在线播放| 视频区欧美日本亚洲| bbb黄色大片| 日日夜夜操网爽| 国产精品久久久久久精品古装| a级片在线免费高清观看视频| 一区二区三区精品91| 国产精品一区二区在线不卡| 又黄又爽又免费观看的视频| 国产成人系列免费观看| 国产免费现黄频在线看| 久久香蕉激情| 国产在线精品亚洲第一网站| 美女国产高潮福利片在线看| 国产精品影院久久| 久久国产精品大桥未久av| 中国美女看黄片| 夜夜夜夜夜久久久久| 中文字幕av电影在线播放| 亚洲三区欧美一区| 欧美黄色片欧美黄色片| 老鸭窝网址在线观看| 一级片'在线观看视频| 手机成人av网站| 久久天堂一区二区三区四区| 18禁裸乳无遮挡免费网站照片 | 后天国语完整版免费观看| 亚洲情色 制服丝袜| 老汉色∧v一级毛片| 亚洲,欧美精品.| 最新的欧美精品一区二区| 欧美精品av麻豆av| 精品国内亚洲2022精品成人 | 久久这里只有精品19| 丰满迷人的少妇在线观看| 国产精品国产高清国产av | 少妇的丰满在线观看| a级毛片黄视频| 村上凉子中文字幕在线| 午夜福利,免费看| 亚洲色图 男人天堂 中文字幕| 国产99久久九九免费精品| 乱人伦中国视频| 国产精品av久久久久免费| 欧美一级毛片孕妇| 成年版毛片免费区| 一本一本久久a久久精品综合妖精| 欧美日韩成人在线一区二区| 成人18禁高潮啪啪吃奶动态图| 黄网站色视频无遮挡免费观看| 国产不卡av网站在线观看| 亚洲精品自拍成人| 高清在线国产一区| 少妇 在线观看| 国产av一区二区精品久久| 亚洲五月天丁香| 伦理电影免费视频| 天堂俺去俺来也www色官网| 宅男免费午夜| 欧美精品一区二区免费开放| 真人做人爱边吃奶动态| 免费看a级黄色片| 亚洲aⅴ乱码一区二区在线播放 | 别揉我奶头~嗯~啊~动态视频| 一级毛片精品| 亚洲免费av在线视频| 精品久久久久久久久久免费视频 | 久久午夜综合久久蜜桃| 在线观看舔阴道视频| 日韩制服丝袜自拍偷拍| 国内毛片毛片毛片毛片毛片| 久久精品国产99精品国产亚洲性色 | tocl精华| 免费观看精品视频网站| 不卡一级毛片| 久久中文看片网| 久久精品成人免费网站| 亚洲免费av在线视频| 黄色a级毛片大全视频| 亚洲 国产 在线| 在线av久久热| 超碰成人久久| 久热这里只有精品99| 男人的好看免费观看在线视频 | 久久午夜亚洲精品久久| 久久国产亚洲av麻豆专区| 国产成人系列免费观看| 欧美成狂野欧美在线观看| 91九色精品人成在线观看| 国产精品久久久av美女十八| 亚洲五月婷婷丁香| 在线观看舔阴道视频| 久久精品国产清高在天天线| 国产精品美女特级片免费视频播放器 | 国产成人av激情在线播放| 国产一区二区三区视频了| 国产精品免费一区二区三区在线 | 久久国产亚洲av麻豆专区| 精品电影一区二区在线| 国产午夜精品久久久久久| 日本一区二区免费在线视频| 好看av亚洲va欧美ⅴa在| 啦啦啦免费观看视频1| 亚洲一区二区三区欧美精品| 亚洲精品久久午夜乱码| 不卡一级毛片| 性色av乱码一区二区三区2| 国产精品 欧美亚洲| 国产视频一区二区在线看| 91成年电影在线观看| 女人被狂操c到高潮| 亚洲国产精品合色在线| 在线观看免费视频网站a站| 男人操女人黄网站| 一本大道久久a久久精品| 精品一品国产午夜福利视频| 国产色视频综合| 好看av亚洲va欧美ⅴa在| 国产蜜桃级精品一区二区三区 | 国产精品99久久99久久久不卡| 亚洲国产毛片av蜜桃av| 高清毛片免费观看视频网站 | 桃红色精品国产亚洲av| 欧美另类亚洲清纯唯美| 999久久久精品免费观看国产| 国产精品九九99| 免费不卡黄色视频| 99国产精品一区二区三区| 精品乱码久久久久久99久播| 国产极品粉嫩免费观看在线| 亚洲成人手机| 亚洲国产看品久久| 日韩人妻精品一区2区三区| 大片电影免费在线观看免费| 女同久久另类99精品国产91| 午夜福利免费观看在线| 亚洲人成伊人成综合网2020| 伦理电影免费视频| 两性夫妻黄色片| 亚洲在线自拍视频| av线在线观看网站| 亚洲aⅴ乱码一区二区在线播放 | 免费观看人在逋| 校园春色视频在线观看| 9热在线视频观看99| 国产主播在线观看一区二区| 母亲3免费完整高清在线观看| 国产成人av激情在线播放| av天堂在线播放| 交换朋友夫妻互换小说| 久久人妻av系列| 十八禁高潮呻吟视频| 啪啪无遮挡十八禁网站| 99国产精品99久久久久| 久热这里只有精品99| tocl精华| 国产精品电影一区二区三区 | 久久香蕉激情| 亚洲午夜精品一区,二区,三区| 亚洲av美国av| 中出人妻视频一区二区| 国产亚洲av高清不卡| 俄罗斯特黄特色一大片| 淫妇啪啪啪对白视频| 国产又色又爽无遮挡免费看| 亚洲熟女精品中文字幕| 午夜福利影视在线免费观看| 丰满的人妻完整版| 欧美丝袜亚洲另类 | 国产精品一区二区免费欧美| 大型黄色视频在线免费观看| 狠狠婷婷综合久久久久久88av| 国产亚洲欧美精品永久| 飞空精品影院首页| 国产av精品麻豆| 国产熟女午夜一区二区三区| 搡老乐熟女国产| 日韩免费av在线播放| 国产精品 国内视频| 亚洲av片天天在线观看| 丰满的人妻完整版| 99热网站在线观看| 超碰97精品在线观看| 午夜福利在线免费观看网站| 久久久久视频综合| 久久香蕉精品热| 视频区欧美日本亚洲| 熟女少妇亚洲综合色aaa.| 女人高潮潮喷娇喘18禁视频| 精品福利永久在线观看| 咕卡用的链子| 久久中文看片网| 日本vs欧美在线观看视频| 一区二区三区国产精品乱码| 老司机福利观看| 亚洲伊人色综图| 中文字幕人妻丝袜制服| 久久ye,这里只有精品| 婷婷精品国产亚洲av在线 | 日日夜夜操网爽| av中文乱码字幕在线| 欧美在线一区亚洲| 夜夜躁狠狠躁天天躁| 亚洲国产看品久久| 三级毛片av免费| 精品少妇一区二区三区视频日本电影| 大香蕉久久网| 久久久国产一区二区| 久久久久久免费高清国产稀缺| 91av网站免费观看| 国产精品欧美亚洲77777| 免费在线观看影片大全网站| 69av精品久久久久久| 91老司机精品| 久久亚洲精品不卡| 国产熟女午夜一区二区三区| 午夜福利影视在线免费观看| 一进一出好大好爽视频| 三级毛片av免费| 97人妻天天添夜夜摸| 久久香蕉国产精品| 久久久久国产一级毛片高清牌| 在线观看www视频免费| 亚洲av日韩在线播放| 国产激情欧美一区二区| 黄色女人牲交| 极品人妻少妇av视频| 国产一区二区三区视频了| 欧美在线一区亚洲| 亚洲自偷自拍图片 自拍| 19禁男女啪啪无遮挡网站| 高清av免费在线| 色在线成人网| 日本一区二区免费在线视频| 欧美精品亚洲一区二区| 久久中文字幕一级| 国产在线精品亚洲第一网站| 成年动漫av网址| 无人区码免费观看不卡| 建设人人有责人人尽责人人享有的| 99精国产麻豆久久婷婷| 国产成人av激情在线播放| 免费黄频网站在线观看国产| a在线观看视频网站| 美国免费a级毛片| 日韩欧美三级三区| 国产成人欧美在线观看 | 国产av精品麻豆| 看免费av毛片| 国产不卡av网站在线观看| 很黄的视频免费| 精品国产超薄肉色丝袜足j| 俄罗斯特黄特色一大片| 成人影院久久| 日本五十路高清| 国产黄色免费在线视频| 中文字幕精品免费在线观看视频| 黄片小视频在线播放| 国产成人免费观看mmmm| 身体一侧抽搐| 国产精品一区二区在线观看99| 正在播放国产对白刺激| 国产精品久久久av美女十八| 1024视频免费在线观看| av在线播放免费不卡| 在线观看午夜福利视频| 热99国产精品久久久久久7| 捣出白浆h1v1| 伦理电影免费视频| 亚洲第一av免费看| 两人在一起打扑克的视频| 999久久久国产精品视频| 亚洲国产欧美一区二区综合| 一区二区三区国产精品乱码| 日韩欧美三级三区| 国产高清国产精品国产三级| 国产在线观看jvid| 美女 人体艺术 gogo| 日本黄色视频三级网站网址 | 9色porny在线观看| 国产免费av片在线观看野外av| 精品国产一区二区久久| 日本黄色视频三级网站网址 | 老司机深夜福利视频在线观看| 色94色欧美一区二区| 美女 人体艺术 gogo| 欧美激情久久久久久爽电影 | 三上悠亚av全集在线观看| 久久精品亚洲av国产电影网| 国产精品1区2区在线观看. | 后天国语完整版免费观看| av免费在线观看网站| 51午夜福利影视在线观看| 99精品在免费线老司机午夜| 国产欧美日韩一区二区三| 久久草成人影院| 欧美+亚洲+日韩+国产| 如日韩欧美国产精品一区二区三区| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区精品| 亚洲av成人不卡在线观看播放网| 国产精品美女特级片免费视频播放器 | 亚洲色图综合在线观看| 热99久久久久精品小说推荐| 亚洲第一欧美日韩一区二区三区| 岛国在线观看网站| 人人妻人人添人人爽欧美一区卜| 精品人妻1区二区| 亚洲五月婷婷丁香| 变态另类成人亚洲欧美熟女 | 色婷婷久久久亚洲欧美| 满18在线观看网站| 一级毛片高清免费大全| 国产不卡av网站在线观看| 在线播放国产精品三级| 18禁观看日本| 99热国产这里只有精品6| 国产成人系列免费观看| 制服人妻中文乱码| 国产免费现黄频在线看| 777久久人妻少妇嫩草av网站| 久久人妻熟女aⅴ| 下体分泌物呈黄色| 99国产精品一区二区蜜桃av | 十八禁网站免费在线| 窝窝影院91人妻| 亚洲综合色网址| 悠悠久久av| 一区在线观看完整版| 久久婷婷成人综合色麻豆| 中文字幕人妻熟女乱码| 欧美日韩av久久| 中亚洲国语对白在线视频| 麻豆成人av在线观看| 99国产精品一区二区蜜桃av | 欧美午夜高清在线| 黄色丝袜av网址大全| 久久亚洲精品不卡| 熟女少妇亚洲综合色aaa.| 亚洲美女黄片视频| 亚洲免费av在线视频| 免费看a级黄色片| 99热网站在线观看| 国产一区有黄有色的免费视频| 亚洲成国产人片在线观看| 女人被躁到高潮嗷嗷叫费观| 欧美日韩成人在线一区二区| 一二三四在线观看免费中文在| 久久精品成人免费网站| 久热爱精品视频在线9| 国产黄色免费在线视频| 精品国产超薄肉色丝袜足j| 欧美人与性动交α欧美精品济南到| 悠悠久久av| 久久午夜亚洲精品久久| 午夜精品国产一区二区电影| 精品久久久久久电影网| 亚洲美女黄片视频| 成熟少妇高潮喷水视频| 亚洲精品久久成人aⅴ小说| 正在播放国产对白刺激| 欧美黄色片欧美黄色片| 久久青草综合色| 亚洲av日韩精品久久久久久密| 精品国产国语对白av| 男女免费视频国产| 天天躁日日躁夜夜躁夜夜| 性色av乱码一区二区三区2| 亚洲色图av天堂| 18在线观看网站| 欧美日韩黄片免| 国产精品美女特级片免费视频播放器 | 丝袜在线中文字幕| 18在线观看网站| 亚洲精品在线美女| 国产熟女午夜一区二区三区| 丝瓜视频免费看黄片| 精品无人区乱码1区二区| 极品少妇高潮喷水抽搐| 免费在线观看亚洲国产| 国产成人系列免费观看| 美女扒开内裤让男人捅视频| 18禁国产床啪视频网站| 免费在线观看日本一区| 大香蕉久久网| 亚洲午夜理论影院| 少妇裸体淫交视频免费看高清 | 欧美激情高清一区二区三区| 国产亚洲精品一区二区www | 精品高清国产在线一区| 国产精品一区二区在线观看99| 99国产精品99久久久久| 99精国产麻豆久久婷婷| 91在线观看av| 午夜亚洲福利在线播放| 水蜜桃什么品种好| a在线观看视频网站| 久久婷婷成人综合色麻豆| 18禁黄网站禁片午夜丰满| 极品少妇高潮喷水抽搐| 最新在线观看一区二区三区| 成年动漫av网址| 91老司机精品| 99在线人妻在线中文字幕 | 亚洲,欧美精品.| 久久国产精品人妻蜜桃| 亚洲av日韩精品久久久久久密| 国产在视频线精品| cao死你这个sao货| 国产视频一区二区在线看| 一级作爱视频免费观看| 免费看a级黄色片| 午夜成年电影在线免费观看| 日本精品一区二区三区蜜桃| 天天躁日日躁夜夜躁夜夜| 久久亚洲真实| 悠悠久久av| 亚洲免费av在线视频| 久久精品国产亚洲av香蕉五月 | 欧美黄色片欧美黄色片| 精品高清国产在线一区| 在线看a的网站| 亚洲精品国产区一区二| 国产精品亚洲av一区麻豆| 精品国产美女av久久久久小说| 国精品久久久久久国模美| 亚洲九九香蕉| 国产视频一区二区在线看| 美女 人体艺术 gogo| 两个人免费观看高清视频| 国产成人免费无遮挡视频| 久久久久久久精品吃奶|