• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A stable Co(II)-based metal-organic framework with dual-functional pyrazolate-carboxylate ligand: Construction and CO2selective adsorption and fixation

    2021-05-14 09:48:32GuangruiSiXiangjingKongTaoHeWeiWuLinhuaXieJianrongLi
    Chinese Chemical Letters 2021年2期

    Guangrui Si,Xiangjing Kong,Tao He,Wei Wu,Linhua Xie,Jianrong Li*

    Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, China

    ABSTRACT By taking the functional advantages of both pyrazolate and carboxylate ligands,a unique dual-functional pyrazolate-carboxylate ligand acid, 4-(3,6-di(pyrazol-4-yl)-9-carbazol-9-yl)benzoic acid (H3PCBA) was designed and synthesized.Using it, a new Co(II)-based metal-organic framework (MOF), Co3(PCBA)2(H2O)2(BUT-75)has been constructed.It revealed a (3,6)-connected net based on the 6-connected linear trinuclear metal node,and showed good chemical stability in a wide pH range from 3 to 12 at room temperature,as well as in boiling water.Due to the presence of rich exposed Co(II)sites in pores,BUT-75 presented high selective CO2adsorption capacity over N2at 298 K.Simultaneously,it demonstrated fine catalytic performance for the cycloaddition of CO2with epoxides into cyclic carbonates under ambient conditions.This work has not only enriched the MOF community through integrating diverse functionalities into one ligand but also contributed a versatile platform for CO2fixation,thereby pushing MOF chemistry forward by stability enhancement and application expansion.

    Keywords:Metal-organic framework (MOF) Pyrazolate-carboxylate ligand Construction CO2selective adsorption CO2fixation

    Metal-organic frameworks (MOFs), as an emerging family of crystalline porous materials,have attracted extensive attention for their potential applications in various fields, such as gas storage and separation [1], proton conduction [2], biomedicine [3],chemical sensing [4], heterogeneous catalysis [5] and so forth.Owing to the modular nature of MOFs,their structure and function allow precise tunability by the programmed assembly of diverse organic linkers and inorganic nodes [6–8].However, the issue of the unsatisfactory chemical stability of MOFs has limited their practical applications.

    Based on Pearson’s hard/soft acid/base (HSAB) principle [9],MOFs constructed either from high-valent metals (hard acids,including Zr4+,Hf4+,Fe3+,Al3+)and carboxylate ligands(hard bases)[10,11], or from low-valent metal ions (soft acids, including Zn2+,Co2+,Ni2+)and azolate ligands(soft bases)[12,13],inherently show good chemical stability originated from the robust coordination bonding.Despite excellent acid stability, the carboxylate-based MOFs usually have poor durability under basic conditions; by contrast, the azolate-based analogues exhibiting high base resistance are inevitably vulnerable to acidic species [14,15].It can be found that the nature of coordination bond has imposed great restriction on the stability of most MOFs[16–18].Therefore,developing new MOFs stable in a large pH scope would advance the MOF community toward expansive applications.

    The utilization of dual-functional azolate-carboxylate ligands offers a simple yet effective approach to construct stable MOFs superior to either their azolate-or carboxylate-based counterparts.In this regard, there are several dual-functional azolate-carboxylate ligands employed, showing different combinations of functional groups, size, and symmetry (Scheme 1) [19–23].Among various azolate ligands, pyrazolates with the highest pKa value usually endow the resulting MOFs with enhanced stability by connecting low-valent metal ions.Furthermore,a multifunctional ligand containing more pyrazolate moieties tends to afford more stable MOFs.Therefore, we speculate that a dual-functional pyrazolate-carboxylate ligand bearing more pyrazolate groups would contribute to MOFs with better chemical stability.To date,dual-functional pyrazolate-carboxylate ligand-based MOFs are seldom reported mainly attributed to synthetic difficulties of these ligands and MOF crystals.In addition,the simultaneous coordination of pyrazolate and carboxylate groups with metal centers would afford novel architectures showing high robustness and diverse functionality, which attracts our interest in further exploration.

    Scheme 1.Dual-functional azolate-carboxylate ligand acids reported in the literatures and H3PCBA used in this work.

    Herein,we report a stable Co(II)-MOF,Co3(PCBA)2(H2O)2(BUT-75, BUT=Beijing University of Technology) constructed from a unique dual-functional pyrazolate-carboxylate ligandwith low symmetry (-(3,6-di (1H-pyrazolate-4-yl)-9H-carbazol-9-yl))benzoate).By integrating the advantages of both pyrazolate and carboxylate ligands for constructing stable MOFs,BUT-75 with linear 6-connected Co3clusters thus showed good chemical stability in aqueous solutions of a wide pH range(3-12)and boiling water.With abundant open Co(II) sites in the framework, this MOF also presented high CO2affinity and thus high selective CO2adsorption capacity over N2at 298 K.In addition,BUT-75 demonstrated high catalytic activity toward the CO2-epoxide cycloaddition reaction under ambient conditions.This work offers a typical example of building stable versatile MOFs from dual-functional ligands, meanwhile contributes an effective adsorbent for selective CO2capture, as well as a recyclable heterogeneous catalyst for CO2conversion.

    In the structure, the PCBA3-ligand shows some configuration distortion by rotating the peripheral aromatic rings away from the central carbazole plane.The dihedral angle between the phenyl and carbazole ring is, and that between pyrazolate containing the N1/N3 atom and the carbazole plane isrespectively,thus well matching the coordination geometry of the formed linear Co3cluster in BUT-75.It is worth noting that terminal H2O molecules coordinated to the Co3cluster would afford open metal sites in BUT-75 after being removed.

    Fig.1.(a)Asymmetric unit of BUT-75 structure.(b)Structure of the linear 6-connected Co3cluster in BUT-75.3D network of BUT-75 showing 1D(c)rhombic and(d)triangular channels.H atoms are omitted for clarity.

    Fig.2.(a)PXRD patterns simulated from the BUT-75 structure and of samples after different treatments.(b)N2adsorption/desorption isotherms of BUT-75 sample and of those after different treatments at 77 K.(c) CO2and N2adsorption isotherms for BUT-75 at 273 K and 298 K.

    The good stability of a new MOF material is necessary for its involvement in various applications.The stability of BUT-75 has thus been investigated.As can be seen from the thermogravimetric curve (Fig.S6 in Supporting information), BUT-75 can be thermally stable up toproving fine thermal stability.To confirm the chemical robustness of BUT-75, the samples were soaked in HCl aqueous solution (pH 3), NaOH aqueous solution(pH 12) at room temperature, and in boiling water for 24 h,respectively.As expected, the PXRD patterns of these treated samples remain almost unchanged compared with the assynthesized sample, demonstrating no phase transition or framework collapse in tests (Fig.2a and Fig.S7 in Supporting information)[27].It can also be seen that peak intensities of high 2u Bragg angles are relatively weak,which is mainly caused by the higher peak intensity ratios of peaks located at around 4.2compared to those of high angles.In addition, the N2sorption isotherms of the treated samples are nearly identical to that of the untreated sample,further indicating the high chemical stability of BUT-75(Fig.2b).The strong acidic/basic resistance of BUT-75 may be mainly attributed to the use of the dual-functional H3PCBA ligand, in which the co-existence of pyrazolate and carboxylate moieties enhances the stability of the resulting MOF.Such stability lays the foundation for BUT-75 to be exploited in significant applications.

    With rich open Co(II)sites and good chemical stability,BUT-75 may be an excellent sorbent candidate for gas adsorption.Therefore, the gas adsorption measurements of pure CO2and N2over BUT-75 were experimentally conducted at 298 K and 273 K,respectively, and the results are shown in Fig.2c.The maximum uptakes of CO2and N2are 43.1 and 3.6 cm3/g at 273 K,and 26.3 and 2.6 cm3/g at 298 K.It can be found that the uptakes of CO2are significantly higher than those of N2,showing the potential of BUT-75 in selective CO2adsorption over N2[28].In order to evaluate the adsorption selectivities of BUT-75 for CO2/N2, the initial slopes of their adsorption isotherms were fitted at low-pressure ranges as reported [29].The estimated CO2/N2selectivities are 10.0:1.0 at 273 K and 8.0:1.0 at 298 K (Fig.S8 in Supporting information),suggesting that BUT-75 could selectively adsorb CO2over N2.Based on the CO2adsorption data,the CO2sorption heat(Qst)of BUT-75 is calculated to be in the range of 15.5–17.1 kJ/mol by using the Clausius-Clapeyron equation (Fig.S9 in Supporting information)[30],which demonstrates moderate interaction between the MOF framework and guest CO2molecules.These findings indicate that BUT-75 would be a nice CO2adsorbent,favoring its application in CO2capture and conversion with a good affinity toward CO2.

    Considering good chemical stability, high-density exposed Co(II) sites, and selective CO2sorption at room temperature, the catalytic activity of BUT-75 toward the CO2cycloaddition with epoxides was investigated under solvent-free conditions [31–33].Various reaction parameters (time, temperature, and catalyst dosage) were altered in the model reaction by using propylene oxide as the substrate,and the results are summarized in Table 1.BUT-75 catalyzed this reaction with a 30.1% conversion of propylene oxide in 24 h (Table 1, entry 1).After adding the phase transfer catalyst tetra-n-tertbutylammonium bromide (TBAB),BUT-75 gave a significantly higher propylene oxide conversion of 80.5%(Table1,entry 2).It could be reasoned that the presence ofTBAB facilitates the contact of reactants and catalysts on phase interfaces(gas to liquid and liquid to solid),thereby improving the catalysis performance of BUT-75 [34–36].Control experiments demonstrated that no conversion of propylene oxide was observed in the absence of BUT-75 and TBAB (Table 1, entry 3), and only a conversion of 12.5%was available by using the TBAB alone(Table 1,entry 4).As a result, BUT-75 can catalyze the CO2cycloaddition with epoxides effectively with the assistance of TBAB.As shown in entries 2 and 5–7,the reaction had a slow reaction rate within the first 6 h, and the conversion reached 80.5% for 24 h, indicating an induction period required in the reaction.Further prolonging the reaction time cannot obviously increase the conversion of propylene oxide, 24 h is thus the optimum time for the reaction.The conversion of epoxide also increased with temperature(Table 1, entry 2, 8 and 9, from 17.7% at 0to 93.5% at 50)and catalyst dosage(Table 1,entry 2,10–12,from 32.2%with 10 mg to 91.2%with 40 mg).By rationally balancing the cost and catalysis performance, the reaction catalyzed by BUT-75 of 20 mg in the presence of TBAB at 25for 24 h was established as the optimal conditions.

    Table 1 Cycloaddition of CO2and propylene oxide under different conditions.a

    With the optimized conditions in hand, we further expanded the substrate scope of the CO2-epoxides cycloaddition reaction catalyzed by BUT-75.Different epoxides with various substituent groups were checked.These reactions were carried out with BUT-75 under the standard conditions.As shown in Table S2(Supporting information), the conversions of 1,2-butene oxide,epichlorohydrin, and styrene oxide to the corresponding cyclic carbonates after 24 h are 34.1%,27.6%and 14.8%,respectively.It can be seen that the conversions of epoxides with larger substituent groups are all lower than that of the propylene oxide with a methyl substitution (80.5%) after 24 h.When the reaction time was extended to 48 h, the obtained conversions were raised to 71.5%,63.3%and 20.4%,still being lower than that of the propylene oxide(83.2%).These lower conversions may be attributed to that the small pore aperture of BUT-75 limits the diffusion of bulky substrates in the channel,giving rise to reduced production of the resulting cyclic carbonates [37,38].

    The recyclability is also significant for a heterogeneous catalyst.The cycling experiment was conducted under standard conditions.After the reaction, the BUT-75 catalyst was separated from the system,washed,and dried for the next cycle.As shown in Fig.S10(Supporting information),the catalytic activity of BUT-75 remains almost unchanged after five cycles.Furthermore,the FT-IR spectra,PXRD patterns, and N2adsorption isotherms (Figs.S4 and S11 in Supporting information) of the re-collected BUT-75 samples exhibit no obvious changes compared to those of the sample used in the first cycle, indicating its structural integrity in recycling.

    Overall, the above results verify the good performance of the recyclable BUT-75 MOF as an efficient heterogeneous catalyst toward the CO2-epoxide cycloaddition.More importantly, this conversion can proceed under ambient conditions in the presence of the BUT-75 catalyst, which can reduce the energy input and meet the requirement of green chemistry.To the best of our knowledge, only a few MOFs can catalyze this reaction under ambient conditions, among which BUT-75 is superior to others with higher efficiency (Table S3 in Supporting information).

    A possible reaction mechanism is then proposed on the basis of the experimental results and previous reports (Scheme S3 in Supporting information) [39,40].The coordinately unsaturated Co(II)ions exposed in the pores of BUT-75 serve as the active Lewis acidic sites,whose interaction to the O atom of the epoxide could activate the epoxy ring [A].Then thespecies from the TBAB attacks the less steric-hindered carbon of the epoxide, thus opening the epoxy ring to afford the intermediate[B].The oxygen anion from the epoxy ring reacts with CO2to form an alkylcarbonate anion[C].Finally,[C]undergoes cyclization to give the final cyclic carbonate product [D], with the BUT-75 catalyst recovered for the next catalysis cycle.Based on this mechanism,the practical catalytic performance of BUT-75 largely relies on the accessibility of active Co(II) sites to the substrates.Therefore, the relatively small pores of BUT-75 prevent the bulky substrates from approaching, accounting for their reduced conversions.

    In summary, a stable versatile Co(II)-MOF, BUT-75, was constructed by using a newly designed dual-functional pyrazolate-carboxylate ligand H3PCBA.This MOF possesses a (3,6)-connected network structure with the 6-connected linear Co3cluster.Assembled by integratingandcoordination bonds into one framework,BUT-75 has good acid/base stability in a wide pH range from 3 to 12.Besides, it showed selective CO2adsorption capacity over N2at 298 K.Due to high framework robustness and abundant open Co(II) sites, BUT-75 demonstrated good catalytic performance in the CO2cycloaddition reaction under ambient conditions, being a potential heterogeneous catalyst with good regeneration ability.This work opens a new door for building stable multifunctional MOFs through the rational ligand design, and thus expands their applications in addressing urgent environmental issues, such as the CO2fixation.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(Nos.21771012,21601008,51621003)and the Science & Technology Project of Beijing Municipal Education Committee (No.KZ201810005004).

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.07.023.

    80岁老熟妇乱子伦牲交| av在线老鸭窝| 成人综合一区亚洲| 色综合色国产| 亚洲熟女精品中文字幕| 国产一区二区亚洲精品在线观看| 一本一本综合久久| 真实男女啪啪啪动态图| 国产高清不卡午夜福利| 国产一区二区在线观看日韩| 69av精品久久久久久| 久久精品国产亚洲网站| 免费看不卡的av| 五月开心婷婷网| 成人欧美大片| av播播在线观看一区| 日韩视频在线欧美| 亚洲国产成人一精品久久久| 成人亚洲精品av一区二区| 干丝袜人妻中文字幕| 又爽又黄无遮挡网站| 最近手机中文字幕大全| 最后的刺客免费高清国语| 亚洲最大成人手机在线| 久久久色成人| 简卡轻食公司| 建设人人有责人人尽责人人享有的 | 久久ye,这里只有精品| 丰满少妇做爰视频| av在线老鸭窝| 国产女主播在线喷水免费视频网站| 日韩大片免费观看网站| 一区二区三区免费毛片| 欧美高清性xxxxhd video| 在线精品无人区一区二区三 | 亚洲av免费在线观看| 亚洲欧美日韩卡通动漫| av线在线观看网站| av.在线天堂| 日日撸夜夜添| 国产在视频线精品| 免费黄频网站在线观看国产| 成人毛片60女人毛片免费| 亚洲欧美精品专区久久| 青春草亚洲视频在线观看| 少妇 在线观看| 欧美一级a爱片免费观看看| 在线天堂最新版资源| 少妇被粗大猛烈的视频| 亚洲高清免费不卡视频| 免费黄频网站在线观看国产| 国内少妇人妻偷人精品xxx网站| 搡女人真爽免费视频火全软件| 国产免费视频播放在线视频| 中文字幕制服av| 久久鲁丝午夜福利片| 国产午夜精品久久久久久一区二区三区| 男女国产视频网站| 久久99热6这里只有精品| 国产精品人妻久久久久久| 久久久午夜欧美精品| 嫩草影院精品99| 三级国产精品片| 欧美高清性xxxxhd video| 日韩国内少妇激情av| av国产免费在线观看| 校园人妻丝袜中文字幕| 欧美极品一区二区三区四区| 久久久久久久久久久免费av| 免费不卡的大黄色大毛片视频在线观看| 91精品伊人久久大香线蕉| 久久精品久久久久久久性| 久久亚洲国产成人精品v| 国产黄频视频在线观看| 亚洲婷婷狠狠爱综合网| 亚洲av成人精品一区久久| 亚洲电影在线观看av| 日韩制服骚丝袜av| 一级a做视频免费观看| 天天躁日日操中文字幕| 日韩不卡一区二区三区视频在线| 在线观看三级黄色| 最近的中文字幕免费完整| 最近最新中文字幕大全电影3| 美女脱内裤让男人舔精品视频| 99热网站在线观看| 日韩免费高清中文字幕av| 国产 一区 欧美 日韩| 插逼视频在线观看| av一本久久久久| 秋霞在线观看毛片| 欧美激情国产日韩精品一区| 99久久精品热视频| 国产精品99久久99久久久不卡 | 欧美一区二区亚洲| 亚洲图色成人| 我的老师免费观看完整版| 五月玫瑰六月丁香| 人妻系列 视频| 尾随美女入室| 欧美日韩视频精品一区| 欧美日韩国产mv在线观看视频 | 在线精品无人区一区二区三 | 成人国产av品久久久| 成人欧美大片| 精品久久久久久久久亚洲| 日本爱情动作片www.在线观看| 18禁动态无遮挡网站| 国产成人freesex在线| 日韩伦理黄色片| 国产高清有码在线观看视频| 真实男女啪啪啪动态图| 国产亚洲5aaaaa淫片| 久久影院123| 亚洲成人一二三区av| 黄色一级大片看看| av又黄又爽大尺度在线免费看| 久久久色成人| 人人妻人人看人人澡| 欧美日韩在线观看h| 国精品久久久久久国模美| 欧美成人午夜免费资源| 纵有疾风起免费观看全集完整版| 国产综合精华液| 国产精品一二三区在线看| 久久鲁丝午夜福利片| 国内揄拍国产精品人妻在线| 高清日韩中文字幕在线| 久久久久久伊人网av| 麻豆国产97在线/欧美| 亚洲av.av天堂| 午夜激情久久久久久久| 国产综合精华液| 午夜福利视频精品| 亚洲精品国产成人久久av| 六月丁香七月| 干丝袜人妻中文字幕| 国产日韩欧美在线精品| 欧美人与善性xxx| 天天躁夜夜躁狠狠久久av| 久久99热这里只有精品18| 国产高清国产精品国产三级 | 毛片女人毛片| 国产精品久久久久久久久免| 国产成人一区二区在线| 午夜免费男女啪啪视频观看| 汤姆久久久久久久影院中文字幕| 视频中文字幕在线观看| 日本一本二区三区精品| 日本色播在线视频| 大香蕉97超碰在线| 日日摸夜夜添夜夜添av毛片| 91aial.com中文字幕在线观看| 免费观看无遮挡的男女| 伊人久久国产一区二区| 亚洲精品亚洲一区二区| 国产成人a∨麻豆精品| 观看免费一级毛片| 男女边摸边吃奶| 校园人妻丝袜中文字幕| 青春草视频在线免费观看| 午夜福利在线在线| videossex国产| 男人添女人高潮全过程视频| 日韩中字成人| 国产成人aa在线观看| 国产精品99久久久久久久久| 国产成人91sexporn| 国产片特级美女逼逼视频| 少妇的逼水好多| 国产精品福利在线免费观看| 久久国内精品自在自线图片| 久久久久久久久久成人| 亚洲国产av新网站| 99热6这里只有精品| 国产成人freesex在线| 亚洲av.av天堂| 99久国产av精品国产电影| a级一级毛片免费在线观看| 91aial.com中文字幕在线观看| 嫩草影院入口| 熟女av电影| 亚洲国产av新网站| 人妻系列 视频| 国产白丝娇喘喷水9色精品| 一级毛片 在线播放| 夫妻午夜视频| 成年免费大片在线观看| 日本-黄色视频高清免费观看| 男女国产视频网站| av黄色大香蕉| 日韩欧美 国产精品| 日韩成人av中文字幕在线观看| 高清毛片免费看| av在线蜜桃| 2018国产大陆天天弄谢| 午夜激情福利司机影院| 看免费成人av毛片| 国产视频首页在线观看| 中文字幕人妻熟人妻熟丝袜美| 91久久精品电影网| 国产免费一区二区三区四区乱码| 国产毛片在线视频| 又粗又硬又长又爽又黄的视频| 久热久热在线精品观看| 国产精品一区二区在线观看99| 亚洲内射少妇av| 中文字幕免费在线视频6| 欧美日韩一区二区视频在线观看视频在线 | 嫩草影院入口| 日韩成人伦理影院| 久久99热这里只有精品18| 国产中年淑女户外野战色| 精品视频人人做人人爽| 制服丝袜香蕉在线| 69人妻影院| 免费少妇av软件| av国产免费在线观看| 成年人午夜在线观看视频| 日韩国内少妇激情av| 又大又黄又爽视频免费| 亚洲欧美一区二区三区国产| 午夜福利在线观看免费完整高清在| 久久久精品欧美日韩精品| 日日啪夜夜爽| 久久久午夜欧美精品| 欧美成人一区二区免费高清观看| 久久久久久久久久成人| 综合色av麻豆| 国产在线一区二区三区精| 久久热精品热| 国内精品宾馆在线| av天堂中文字幕网| 欧美性感艳星| 亚洲丝袜综合中文字幕| 亚洲av.av天堂| 女人被狂操c到高潮| 国产精品一区二区性色av| 久久99热这里只频精品6学生| 国产成人a区在线观看| 亚洲熟女精品中文字幕| 亚洲欧美一区二区三区国产| 国产成人精品久久久久久| 国精品久久久久久国模美| a级一级毛片免费在线观看| 国产精品久久久久久精品电影| 亚洲欧美一区二区三区国产| 日本黄大片高清| 视频中文字幕在线观看| 欧美高清成人免费视频www| 久久99热这里只有精品18| 最后的刺客免费高清国语| 亚洲在久久综合| 九九久久精品国产亚洲av麻豆| 男人和女人高潮做爰伦理| 日本熟妇午夜| 国产精品女同一区二区软件| 天堂网av新在线| 哪个播放器可以免费观看大片| 最近手机中文字幕大全| 欧美激情久久久久久爽电影| 综合色丁香网| 国产欧美日韩精品一区二区| 美女国产视频在线观看| 国产欧美日韩一区二区三区在线 | 一级av片app| 我的老师免费观看完整版| 大片免费播放器 马上看| 国产成人午夜福利电影在线观看| 有码 亚洲区| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品,欧美精品| 97热精品久久久久久| 观看免费一级毛片| 三级男女做爰猛烈吃奶摸视频| 九九久久精品国产亚洲av麻豆| 国精品久久久久久国模美| 日本黄色片子视频| 人妻一区二区av| 精品人妻视频免费看| 噜噜噜噜噜久久久久久91| 三级国产精品片| 国产免费又黄又爽又色| 国产乱人视频| 18禁裸乳无遮挡动漫免费视频 | 欧美日韩综合久久久久久| freevideosex欧美| 噜噜噜噜噜久久久久久91| 亚洲精品中文字幕在线视频 | 自拍欧美九色日韩亚洲蝌蚪91 | 国产 精品1| 国产有黄有色有爽视频| 欧美日韩国产mv在线观看视频 | 日韩精品有码人妻一区| 超碰97精品在线观看| 国产精品一区二区性色av| 97热精品久久久久久| 欧美激情久久久久久爽电影| 国产高清有码在线观看视频| 日韩,欧美,国产一区二区三区| 欧美少妇被猛烈插入视频| 一级爰片在线观看| 亚洲美女视频黄频| 亚洲国产成人一精品久久久| 日韩中字成人| 成人亚洲精品av一区二区| 久久99蜜桃精品久久| 五月天丁香电影| 99视频精品全部免费 在线| 日本av手机在线免费观看| 成人午夜精彩视频在线观看| av又黄又爽大尺度在线免费看| 国产视频内射| 22中文网久久字幕| 在现免费观看毛片| 国产精品久久久久久久电影| 亚洲精品国产av成人精品| 国产伦在线观看视频一区| 亚洲成人精品中文字幕电影| 又爽又黄无遮挡网站| 国产极品天堂在线| 午夜亚洲福利在线播放| kizo精华| 久久久久久国产a免费观看| 天堂网av新在线| 成人国产av品久久久| 欧美亚洲 丝袜 人妻 在线| 国内精品宾馆在线| 熟女电影av网| 国产亚洲av嫩草精品影院| 大陆偷拍与自拍| 久久97久久精品| 欧美日本视频| 国产淫片久久久久久久久| 伦理电影大哥的女人| 久久久精品欧美日韩精品| 国产在线男女| 久久精品综合一区二区三区| 免费人成在线观看视频色| 大码成人一级视频| 日本一本二区三区精品| 中文精品一卡2卡3卡4更新| 尤物成人国产欧美一区二区三区| 日日撸夜夜添| 国产一区有黄有色的免费视频| 99久久精品热视频| videos熟女内射| 国产精品久久久久久精品电影| 高清毛片免费看| 久久精品久久久久久噜噜老黄| 晚上一个人看的免费电影| 日本与韩国留学比较| 久久久久性生活片| 亚洲真实伦在线观看| 国产成人aa在线观看| 久久久久久九九精品二区国产| 精品一区二区三区视频在线| 纵有疾风起免费观看全集完整版| 亚洲成人久久爱视频| 午夜福利高清视频| 水蜜桃什么品种好| 蜜臀久久99精品久久宅男| 亚洲成人久久爱视频| 国内少妇人妻偷人精品xxx网站| 精品一区二区三区视频在线| 国产乱人视频| 天堂俺去俺来也www色官网| 午夜日本视频在线| 热re99久久精品国产66热6| 亚洲精品久久久久久婷婷小说| 中文乱码字字幕精品一区二区三区| 日本黄大片高清| 五月天丁香电影| 我的老师免费观看完整版| 国产老妇伦熟女老妇高清| 国产男女超爽视频在线观看| 欧美日韩国产mv在线观看视频 | 精品国产乱码久久久久久小说| 国产精品蜜桃在线观看| 26uuu在线亚洲综合色| 建设人人有责人人尽责人人享有的 | 女人久久www免费人成看片| 日日摸夜夜添夜夜爱| 免费看光身美女| 亚洲欧美日韩卡通动漫| 黄色日韩在线| 激情 狠狠 欧美| 欧美潮喷喷水| 听说在线观看完整版免费高清| 中文资源天堂在线| 精品一区在线观看国产| 特级一级黄色大片| 校园人妻丝袜中文字幕| 精品酒店卫生间| 亚洲av一区综合| 高清视频免费观看一区二区| 色视频在线一区二区三区| 色5月婷婷丁香| 亚洲av福利一区| 蜜桃亚洲精品一区二区三区| 国产 一区精品| 免费看av在线观看网站| 免费播放大片免费观看视频在线观看| 新久久久久国产一级毛片| 亚洲av成人精品一二三区| 熟妇人妻不卡中文字幕| 久久久久久伊人网av| 日本一本二区三区精品| 国国产精品蜜臀av免费| 国产大屁股一区二区在线视频| 亚洲国产精品专区欧美| 一级爰片在线观看| 精品一区在线观看国产| 国产伦理片在线播放av一区| 91久久精品国产一区二区成人| 欧美最新免费一区二区三区| 亚洲欧美清纯卡通| 在线看a的网站| 国产精品久久久久久精品电影小说 | 亚洲精品乱码久久久久久按摩| 三级国产精品片| 国产真实伦视频高清在线观看| 国产69精品久久久久777片| 日韩人妻高清精品专区| 成人二区视频| 亚洲综合色惰| 国产色婷婷99| 99九九线精品视频在线观看视频| 99久久九九国产精品国产免费| 97热精品久久久久久| 国产成人精品久久久久久| 国产成人aa在线观看| 自拍偷自拍亚洲精品老妇| 欧美日韩亚洲高清精品| 99热国产这里只有精品6| 97在线人人人人妻| 亚洲精品色激情综合| 97在线人人人人妻| 国产 一区精品| 水蜜桃什么品种好| 亚洲av日韩在线播放| 九色成人免费人妻av| 免费黄色在线免费观看| 欧美日韩综合久久久久久| 狂野欧美激情性xxxx在线观看| 韩国av在线不卡| 91狼人影院| 亚洲av.av天堂| 亚洲综合精品二区| 97在线人人人人妻| 精华霜和精华液先用哪个| 干丝袜人妻中文字幕| 涩涩av久久男人的天堂| av免费观看日本| 亚洲精品第二区| 三级男女做爰猛烈吃奶摸视频| 最近中文字幕高清免费大全6| 亚洲精品一区蜜桃| 交换朋友夫妻互换小说| 亚洲婷婷狠狠爱综合网| 欧美老熟妇乱子伦牲交| 国产黄a三级三级三级人| 午夜精品国产一区二区电影 | 五月天丁香电影| 日韩av在线免费看完整版不卡| 美女xxoo啪啪120秒动态图| 欧美极品一区二区三区四区| 久久久久久久久久人人人人人人| 国产男人的电影天堂91| 三级国产精品片| 久久女婷五月综合色啪小说 | 如何舔出高潮| 亚洲图色成人| 边亲边吃奶的免费视频| 少妇裸体淫交视频免费看高清| 内地一区二区视频在线| 纵有疾风起免费观看全集完整版| 青春草亚洲视频在线观看| 日日摸夜夜添夜夜添av毛片| 国产免费一级a男人的天堂| 欧美国产精品一级二级三级 | 国产有黄有色有爽视频| 国产男人的电影天堂91| 少妇熟女欧美另类| 人人妻人人爽人人添夜夜欢视频 | 一级毛片电影观看| 久久精品熟女亚洲av麻豆精品| xxx大片免费视频| 欧美潮喷喷水| 男女国产视频网站| 97超碰精品成人国产| 成人亚洲精品一区在线观看 | 国产av码专区亚洲av| 亚洲精品久久午夜乱码| 18+在线观看网站| 中文精品一卡2卡3卡4更新| 日本一本二区三区精品| 日韩大片免费观看网站| 亚洲av在线观看美女高潮| 少妇丰满av| 中文字幕亚洲精品专区| 国产爱豆传媒在线观看| 色婷婷久久久亚洲欧美| 亚洲欧美一区二区三区黑人 | 伦精品一区二区三区| 成人漫画全彩无遮挡| 熟女av电影| 国产精品精品国产色婷婷| 亚洲精华国产精华液的使用体验| 少妇的逼好多水| 国产在线男女| 天天躁日日操中文字幕| 久久久亚洲精品成人影院| 美女视频免费永久观看网站| 亚洲av.av天堂| 18+在线观看网站| 性插视频无遮挡在线免费观看| av网站免费在线观看视频| 欧美 日韩 精品 国产| 99久久中文字幕三级久久日本| 国产成人a区在线观看| 久久综合国产亚洲精品| 欧美日韩一区二区视频在线观看视频在线 | 亚洲天堂国产精品一区在线| 国产精品三级大全| 成人高潮视频无遮挡免费网站| av国产久精品久网站免费入址| 全区人妻精品视频| 国产乱来视频区| 久久久久久久久大av| 成年女人在线观看亚洲视频 | 亚洲av日韩在线播放| 一级av片app| 国产精品人妻久久久影院| 欧美+日韩+精品| 免费观看的影片在线观看| 久久久午夜欧美精品| 伊人久久国产一区二区| 国产高清国产精品国产三级 | 色吧在线观看| 国产精品人妻久久久久久| 一区二区三区免费毛片| 在线观看av片永久免费下载| 特大巨黑吊av在线直播| 日韩av免费高清视频| 色综合色国产| 国产黄色视频一区二区在线观看| 日本wwww免费看| 欧美潮喷喷水| 性插视频无遮挡在线免费观看| 亚洲精品自拍成人| 久久精品国产亚洲av天美| 综合色av麻豆| 美女脱内裤让男人舔精品视频| 建设人人有责人人尽责人人享有的 | 自拍偷自拍亚洲精品老妇| 免费黄频网站在线观看国产| 视频中文字幕在线观看| 两个人的视频大全免费| 熟妇人妻不卡中文字幕| 国产视频首页在线观看| 在线天堂最新版资源| 又爽又黄无遮挡网站| 啦啦啦在线观看免费高清www| 精品少妇黑人巨大在线播放| 中文乱码字字幕精品一区二区三区| 黄片wwwwww| 久久这里有精品视频免费| 91精品伊人久久大香线蕉| 国内少妇人妻偷人精品xxx网站| 欧美成人午夜免费资源| 舔av片在线| 日本-黄色视频高清免费观看| 如何舔出高潮| 久久精品综合一区二区三区| 99精国产麻豆久久婷婷| 干丝袜人妻中文字幕| 一级片'在线观看视频| www.av在线官网国产| 国产美女午夜福利| 日日撸夜夜添| 不卡视频在线观看欧美| 老司机影院成人| 成人国产麻豆网| 国产在线男女| 亚洲精品国产av成人精品| 97人妻精品一区二区三区麻豆| 久久精品熟女亚洲av麻豆精品| 激情 狠狠 欧美| 国产成人精品福利久久| 婷婷色综合www| 成年版毛片免费区| 久久热精品热| 亚洲人与动物交配视频| 欧美亚洲 丝袜 人妻 在线| 91精品国产九色| 搡女人真爽免费视频火全软件| tube8黄色片| av又黄又爽大尺度在线免费看| 国产午夜精品一二区理论片| 偷拍熟女少妇极品色| 亚洲成色77777| 好男人在线观看高清免费视频| 久久精品人妻少妇| 国产69精品久久久久777片| 日本wwww免费看| 久久精品熟女亚洲av麻豆精品| 成人漫画全彩无遮挡| 看十八女毛片水多多多| 亚洲精品国产av成人精品| 91午夜精品亚洲一区二区三区| 国产精品久久久久久久久免| 久久久久久久久大av| 日韩欧美一区视频在线观看 | 少妇高潮的动态图|