• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced thermoelectric performance of hydrothermally synthesized polycrystalline Te-doped SnSe

    2021-05-14 09:47:38PiLiXinAiQihaoZhangShijiaGuLianjunWangWanJianga
    Chinese Chemical Letters 2021年2期

    Pi Li,Xin Ai,Qihao Zhang*,Shijia Gu,Lianjun Wang**,Wan Jianga,

    a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

    b College of Information Science and Technology, Donghua University, Shanghai 201620, China

    c State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

    d Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

    e Institute of Functional Materials, Donghua University, Shanghai 201620, China

    f Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Shanghai 201620, China

    ABSTRACT In this study, large-scale Te-doped polycrystalline SnSe nanopowders were synthesized by a facile hydrothermal approach and the effect of Te doping on the thermoelectric properties of SnSe was fully investigated.It is found that the carrier concentration increases due to the reduction of band gap by alloying with Te, which contributes to significant enhancement of electrical conductivity especially at room temperature.Combined with the moderated Seebeck coefficient, a high power factor of 4.59is obtained at 773 K.Furthermore,the lattice thermal conductivity is greatly reduced upon Te substitution owing to the atomic point defect scattering.Benefiting from the synergistically optimized both electrical- and thermal-transport properties by Te-doping, thermoelectric performance of polycrystalline SnSe is enhanced in the whole temperature range with a maximum ZT of 0.79 at a relatively low temperature (773 K) for SnSe0.85Te0.15.This study provides a low-cost and simple lowtemperature method to mass production of SnSe with high thermoelectric performance for practical applications

    Keywords:Polycrystalline SnSe Hydrothermal synthesis Thermoelectric Te doping

    Thermoelectric (TE) materials which enable the direct energy conversion between electricity and heat have been the focus of attention due to their prospective applications in waste-heat recovery and portable refrigeration [1,2].The performance of a thermoelectric material is evaluated by the relation of the Seebeck coefficient(α),electrical conductivity(s),thermal conductivity(k)and absolute temperature(T),which is defined as the thermoelectric figure of merit, ZT = α2sT/k [3].Obviously, a larger ZT value requires a high power factor (α2s) together with a low thermal conductivity.During the past decades,numerous approaches have been employed to improve ZT through optimizing electrical transport properties by band engineering [4,5], resonant state doping [6,7], energy filtering effect [8], etc., and diminishing thermal conductivity by introducing point defects [9,10], secondphase nanostructures [11,12] and multiscale hierarchical architecturing [13,14].In particular, thesemiconductor PbTe exhibits excellent thermoelectric performance at the mid-temperature range (500-850 K) [15–17].However, its large-scale application is limited by the potential heavy-metal pollution of the toxic Pb.In this regard, efforts devoted to exploring TE materials with nontoxic elements are necessary.

    SnSe, which is made of nontoxic and abundant elements, has drawn much attention in recent years due to its excellent thermoelectric properties [18–21].According to the report [22],SnSe single crystals exhibit a remarkable highat 923 K along the crystallographic b-axis owing to their intrinsically ultralow lattice thermal conductivity, which is derived from the strong lattice anharmonicity [23].Nevertheless, the practical application of SnSe single crystals is prevented by the poor machinability,rigid-controlled crystal growth conditions and high cost of production.Therefore, considerable efforts have been focused on exploring high performance polycrystalline SnSe with better machinability and prospect of scale-up applications [24].Disappointingly,the reported ZT values of polycrystalline SnSe are lower thanthat of single crystal due to the comparatively lower s and higher k.For pristine polycrystalline SnSe, the ZT values are generally lower than 1.0 at about 750 K [25].It is thus highly desired to develop polycrystalline bulk materials with higher ZT.

    For thermoelectric materials,doping has been demonstrated as an effective route to optimize the power factor via tuning the carrier concentration [26–28].Besides, doping can also induce point defects and nanoprecipitates to reduce the lattice thermal conductivity[29].In Ag-doped p-type SnSe,Chen et al.achieved a peak ZT of 0.6 at about 750 K due to significantly increased carrier density[30].Wei et al.demonstrated that alkali dopants(Li,Na and K) can enhance the carrier concentration of polycrystalline SnSe and achieved ZT of 0.8 for 1% Na- or K-doped SnSe at 800 K [31].Chen et al.fabricated bulk SnSe0.9375Te0.0625by solid-state reaction and studied theoretically the effect of Te doping on SnSe,but the Te content was limited to 0 and 0.0625, and the low electrical conductivity resulted in a low power factor ofat 673 K [32].

    Moreover, production cost is considered as another major evaluation factor of thermoelectric materials for practical application.Hydrothermal synthesis as a low-cost and simple lowtemperature method shows better control of size, structure, and morphology of the products compared with traditional synthesis methods such as melting or mechanical alloying [33].In this respect,hydrothermal method is effective to fabricate micro/nanosized products which should possess strong anisotropy.Additionally, the solution-grown products with large surface area would bring about more defects [34], which not only can enhance the phonon scattering, but can also act as electron-acceptors to raise the hole concentrations of SnSe [35].

    Herein, we adopt the simple and efficient hydrothermal approach for the synthesis of polycrystalline SnSe1-xTexnanopowders,which are sintered by spark plasma sintering(SPS)after annealing treatment.The details of synthesis process and characterization are described in Supporting information.Fig.1a shows the XRD patterns of as-synthesized SnSe1-xTexpowders(x=0, 0.05, 0.1, 0.15 and 0.2).All characteristic peaks are well indexed to the orthorhombic SnSe phase with Pnma space group(PDF#48-1224).No other peaks are present in the patterns,indicating the high phase purity of the crystals.Fig.1b exhibits the enlarged view of the strongest(111)diffraction peak taken from all samples.It can be seen that the(111)peak gradually shifts towards the lowerangle with the increasing Te content,which suggests the enlarged lattice parameters.This shift is attributed to the larger atomic radius of Te (1.35 ?) than that of Se (1.17 ?) [32].Based on the results, it can be concluded that Te atom successfully substitutes for Se to form the ternary SnSe1-xTexcompounds by the facile hydrothermal synthesis and annealing process.

    The morphological and structural characteristics of SnSe1-xTexpowders were investigated by FE-SEM and TEM.As a typical sample, detailed SEM and TEM characterization results of SnSe0.85Te0.15powders are presented.SEM images given in Figs.1c and d clearly show the flower-like feature of as-prepared SnSe0.85Te0.15powders consisting of nanoplates with the thickness of about 200 nm and the width ranging from a few hundred nanometers to several microns, and the SnSe0.85Te0.15powders tend to stack together irregularly.Fig.1e is the low-magnification TEM micrograph of the SnSe0.85Te0.15powders, in which clear lamellar structure is observed.High-resolution TEM image(Fig.1f)of SnSe0.85Te0.15shows clear lattice fringes and the labeled lattice spacing of about 2.410 ? and 2.875 ? correspond to the (401) and(400) lattice planes of orthorhombic SnSe, respectively.All these characterizations demonstrate that SnSe0.85Te0.15nanopowders have been successfully synthesized by our facile hydrothermal method.

    To investigate the thermoelectric performance of the hydrothermal synthesized SnSe1-xTex, the annealed powders were sintered into pellets via SPS.Figs.2a and b display the XRD profiles of SnSe1-xTexbulk samples taken in the plane perpendicular and parallel to the pressing direction.All diffraction peaks can be well matched to the crystal structure of SnSe and no impurity peaks are present in the patterns.Moreover, it can be found that the diffraction intensity shows an obviously difference in the two different direction.Typically, the strongest diffraction peak changes from (400) crystal plane in the perpendicular direction to(111)crystal planein theparallel direction,suggesting anisotropy features of the SnSe1-xTexbulk samples.Figs.2c and d are typical SEM images on the fractured surface of SnSe0.85Te0.15bulk samples,which reveals the microstructure in the planes perpendicular and parallel to the press direction.The layered morphology along the parallel direction clearly reveals the preferential orientation of the grains, indicating the strong anisotropic crystal growth.Meanwhile,no obvious micro-cracks or pores can be observed,which is consistent with the high relative density of above 98%as listed in Table 1.Furthermore, the chemical composition and elemental distribution were examined by SEM-EDS and the results of SnSe0.85Te0.15sample are presented in Fig.2e as a typical example.The results indicate that all elements(Sn,Se and Te)are uniformly distributed without enrichment,which further demonstrates that Te is successfully doped into the SnSe lattice.

    Fig.1.(a)XRD patterns of SnSe1-xTex(x=0,0.05,0.1,0.15,0.2)powders and(b)enlarged view of the(111)diffraction peaks.(c,d)SEM images of SnSe0.85Te0.15powder.(e)Lowmagnification and (f) high-resolution TEM images of SnSe0.85Te0.15nanopowder.

    Fig.2.XRD patterns of bulk SnSe1-xTextaken in the plane(a)perpendicular and(b)parallel to the pressing direction.SEM images of the fractured surfaces(c)perpendicular and (d) parallel to the pressing direction.(e) EDS elemental mapping results of all elements, Sn, Se and Te of bulk SnSe0.85Te0.15.

    The temperature dependence of thermoelectric properties of SnSe1–xTexbulk samples were measured along the direction perpendicular to the pressure during SPS process,which present a better thermoelectric transport performance than those measured parallel to the pressure direction in our work.Fig.3a depicts electrical conductivity s as a function of temperature for different SnSe1–xTexsamples.For pristine SnSe,firstly increases with increasing temperature, then turns to decrease at450 K but finally increases above 650 K.This trend is also found in previous reports,which can be ascribed to amixed scattering mechanism of carrier transport by acoustic phonon and grain boundary potential barrier 36,37].Compared to pure SnSe, the electrical conductivities of Te-doped samples have been greatly enhanced, especially around room temperature.The maximum electrical conductivity of 98.4 S/cm for the sample SnSe0.8Te0.2is obtained at 300 K.This value is significantly higher than those reported in other polycrystalline SnSe [25, 38,39].

    Table 1 Lorenz number, Hall coefficient, volume density and relative density of bulk SnSe1-xTexsamples at room temperature.

    Fig.3.(a)Temperature-dependent electrical conductivity of bulk SnSe1-xTex.(b)Hall carrier concentration and mobility at 300 K.(c)Optical absorption spectra of SnSe1-xTex.The inset shows the calculated optical band gap.(d) Temperature-dependent Seebeck coefficient.

    Fig.4.Temperature dependence of (a) power factor, (b) total thermal conductivity, (c) lattice thermal conductivity with the inset showing the electronic thermal conductivity, and (d) ZT for bulk SnSe1-xTexsamples together with the ZT data of some reported SnSe-based samples for comparison.

    where kBandare the Boltzmann constant and reduced Fermi level, respectively.could be calculated using the measured Seebeck coefficient based on the following equation:

    where e is the reduced energy.In this work,the obtained L values for different SnSe1-xTexsamples fluctuate around( Table 1),which are in accordance with the reported value for SnSe[46].Subtracting kefrom k,we calculated kLand shown the results in Fig.4c.The small difference between k and kLreveals that the heat transport of our SnSe1-xTexmaterials is mainly dominated by the phonon.It can be seen that kLreduces as Te doping content increases,which is due to the enhanced phonon scattering caused by point defect.Nevertheless, the lowest kLis obtained in the SnSe0.85Te0.15sample rather than in the SnSe0.8Te0.2sample.Owing to the similar grain size in all SnSe1- xTexsamples, the strength of grain boundary scattering can be considered relatively identical among these samples.Therefore,the difference of kLwith different Te doping content could be attributed to the synergistic effect of point defect scattering and Umklapp phonon scattering.Increasing Te doping level can not only strengthen the point defect scattering,but also affect the Umklapp scattering.According to previous study[22], the strong Umklapp scattering in SnSe is due to the strong anharmonicity of lattice dynamics resulting from the bonding instability.Such bond instability is driven by the resonantlybonding Se p-states, coupled to stereochemically active Sn lone pair.Substituting Te atoms into the Se site can change the bonding instability, giving rise to the weakened anharmonicity and thus diminishing Umklapp scattering in the SnSe1- xTexsamples.On the whole, the opposite change trend of point defect scattering and Umklapp phonon scattering with increasing Te doping level gives rise to the lowest kLin the SnSe0.85Te0.15.

    The ZT values of all SnSe1-xTexsamples were calculated and presented in Fig.4d.It can be seen that ZT increases with rising temperature and is improved in the whole temperature range by doping with Te.The ZTof SnSe0.85Te0.15sample reaches a maximum value of 0.79 at a comparatively low temperature of 773 K,which is higher than that of previously reported polycrystalline SnSe materials at the same temperature [25, 40,44].This reveals that Te doping via hydrothermal approach is an effective route to enhance the thermoelectric performance of SnSe.

    In summary, we have succeeded in fabricating p-type SnSe1- xTexpolycrystalline nano-powders using eco-friendly and cost-effective hydrothermal approach and densifying the nanopowders by spark plasms sintering.The electrical conductivity for Te-doped bulk SnSe samples are greatly improved in the temperature range of 300–773 K, which is ascribed to the enhanced carrier concentration and mobility due to the band gap shrinking.As a result,an enhanced power factor is achieved in spite of the decreased Seebeck coefficient.On the other hand,the thermal conductivity at room temperature is significantly reduced from 1.20 Wfor pristine SnSe to 0.79 Wfor SnSe0.85Te0.15sample, resulting from the strengthened pointdefect scattering on phonon caused by doping Te on Se site.The simultaneous optimization of both power factor andthermal conductivitycontributes to a high ZT value of 0.79 at 773 K in SnSe0.85Te0.15.This work provides a facile and low-cost method to the mass production of polycrystalline SnSe with high thermoelectric performance for practical applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This work was funded by the Fundamental Research Funds for the Central Universities (No.2232020A-02), National Natural Science Foundation of China(Nos.51774096,51871053,51902333),Shanghai Committee of Science and Technology(No.18JC1411200),Program for Innovative Research Team in University of Ministry of Education of China (No.IRT_16R13).Q.Zhang acknowledges financial support sponsored by Shanghai Sailing Program (No.19YF1454000)and Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-JSC037).

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.04.046.

    av片东京热男人的天堂| 18禁黄网站禁片免费观看直播| 黄色女人牲交| 99国产精品一区二区三区| 18禁黄网站禁片免费观看直播| 中文字幕av在线有码专区| 国产69精品久久久久777片| 欧美性猛交╳xxx乱大交人| 国产一区二区在线观看日韩 | 一进一出抽搐动态| 在线a可以看的网站| 精品人妻一区二区三区麻豆 | 国内少妇人妻偷人精品xxx网站| 天堂影院成人在线观看| 午夜福利在线观看吧| 丰满的人妻完整版| 三级国产精品欧美在线观看| 亚洲中文日韩欧美视频| 亚洲av电影不卡..在线观看| 俺也久久电影网| 国产老妇女一区| 特级一级黄色大片| 中文字幕高清在线视频| 伊人久久大香线蕉亚洲五| 亚洲天堂国产精品一区在线| 有码 亚洲区| 国产免费男女视频| 精品乱码久久久久久99久播| 91在线观看av| 国产伦精品一区二区三区四那| 国产伦人伦偷精品视频| avwww免费| 亚洲av日韩精品久久久久久密| 搡老熟女国产l中国老女人| 一个人观看的视频www高清免费观看| 国产高清激情床上av| 国产一区二区三区视频了| 国产91精品成人一区二区三区| 在线播放无遮挡| 国产av一区在线观看免费| 中国美女看黄片| 91麻豆精品激情在线观看国产| 精品国产亚洲在线| 国产伦一二天堂av在线观看| 老司机午夜福利在线观看视频| 18禁美女被吸乳视频| 国产精品乱码一区二三区的特点| 九色国产91popny在线| 国产日本99.免费观看| 岛国在线免费视频观看| 成人国产综合亚洲| 亚洲狠狠婷婷综合久久图片| 看黄色毛片网站| 欧美性猛交╳xxx乱大交人| 国产成年人精品一区二区| 国产野战对白在线观看| 女同久久另类99精品国产91| 18+在线观看网站| 在线观看午夜福利视频| 婷婷六月久久综合丁香| 99热这里只有精品一区| 亚洲av免费高清在线观看| 国内毛片毛片毛片毛片毛片| 在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| av国产免费在线观看| 成年女人看的毛片在线观看| 熟妇人妻久久中文字幕3abv| 国产日本99.免费观看| 精品国产美女av久久久久小说| 两性午夜刺激爽爽歪歪视频在线观看| 成年免费大片在线观看| 欧美成人一区二区免费高清观看| 欧美一级毛片孕妇| 九色成人免费人妻av| 久久香蕉精品热| xxx96com| 亚洲人成网站在线播| 亚洲人与动物交配视频| 一夜夜www| 女生性感内裤真人,穿戴方法视频| 岛国视频午夜一区免费看| 亚洲精品一区av在线观看| 日本黄大片高清| 欧美不卡视频在线免费观看| 人妻久久中文字幕网| 国产伦一二天堂av在线观看| 亚洲国产色片| 亚洲五月婷婷丁香| 亚洲av一区综合| eeuss影院久久| 国产伦一二天堂av在线观看| 中文字幕久久专区| 色尼玛亚洲综合影院| x7x7x7水蜜桃| 老司机午夜十八禁免费视频| 老熟妇仑乱视频hdxx| 亚洲精品一卡2卡三卡4卡5卡| 99久久九九国产精品国产免费| 久久久国产成人免费| 亚洲精品影视一区二区三区av| 国产一区二区在线av高清观看| 亚洲真实伦在线观看| aaaaa片日本免费| 国产精品一区二区三区四区久久| 人妻夜夜爽99麻豆av| 欧美日韩精品网址| 亚洲一区高清亚洲精品| 欧美乱码精品一区二区三区| 亚洲五月婷婷丁香| 噜噜噜噜噜久久久久久91| 久久99热这里只有精品18| 国产精品综合久久久久久久免费| 国产探花在线观看一区二区| 色av中文字幕| 成人亚洲精品av一区二区| 久久午夜亚洲精品久久| 噜噜噜噜噜久久久久久91| 欧美性猛交黑人性爽| 欧美一区二区亚洲| 国产精品自产拍在线观看55亚洲| 日韩中文字幕欧美一区二区| 亚洲av不卡在线观看| 久久精品综合一区二区三区| 丰满人妻一区二区三区视频av | 亚洲精品美女久久久久99蜜臀| 长腿黑丝高跟| 村上凉子中文字幕在线| 日本五十路高清| 看片在线看免费视频| av专区在线播放| 精品一区二区三区av网在线观看| 免费看日本二区| 国产精品久久久久久久久免 | 亚洲专区中文字幕在线| 少妇高潮的动态图| 波多野结衣巨乳人妻| 免费在线观看日本一区| 亚洲男人的天堂狠狠| 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕一区二区三区有码在线看| 淫妇啪啪啪对白视频| 夜夜躁狠狠躁天天躁| 午夜福利视频1000在线观看| 男女下面进入的视频免费午夜| 成人高潮视频无遮挡免费网站| 亚洲在线自拍视频| 精品久久久久久久久久久久久| 成熟少妇高潮喷水视频| 色综合欧美亚洲国产小说| 极品教师在线免费播放| 久久国产乱子伦精品免费另类| 中文资源天堂在线| 国产色爽女视频免费观看| avwww免费| 观看美女的网站| 国内毛片毛片毛片毛片毛片| 欧美bdsm另类| 国产一级毛片七仙女欲春2| 757午夜福利合集在线观看| 国产探花极品一区二区| 国产成人av教育| 成人无遮挡网站| 一进一出好大好爽视频| 国产高潮美女av| 在线观看av片永久免费下载| 国产在视频线在精品| 国产精华一区二区三区| 性色av乱码一区二区三区2| 欧美乱色亚洲激情| 日韩欧美在线乱码| 欧美极品一区二区三区四区| 在线观看午夜福利视频| 欧美av亚洲av综合av国产av| 在线播放无遮挡| 色综合欧美亚洲国产小说| 女人被狂操c到高潮| 国产精品嫩草影院av在线观看 | 搡女人真爽免费视频火全软件 | 又爽又黄无遮挡网站| 国产极品精品免费视频能看的| 18美女黄网站色大片免费观看| 久久久久久久精品吃奶| 久久亚洲真实| 91久久精品国产一区二区成人 | 丝袜美腿在线中文| 一夜夜www| 宅男免费午夜| 中文字幕人妻丝袜一区二区| 少妇丰满av| 2021天堂中文幕一二区在线观| 91字幕亚洲| 国产三级中文精品| 国内少妇人妻偷人精品xxx网站| 国产精品98久久久久久宅男小说| 国产精品久久久久久久电影 | 极品教师在线免费播放| 欧美在线一区亚洲| 九九久久精品国产亚洲av麻豆| 成人精品一区二区免费| 国产探花在线观看一区二区| 欧美黑人巨大hd| 国产黄色小视频在线观看| 黄色视频,在线免费观看| 伊人久久大香线蕉亚洲五| 午夜日韩欧美国产| 丁香六月欧美| 无限看片的www在线观看| 制服人妻中文乱码| 亚洲不卡免费看| 搡老妇女老女人老熟妇| 观看免费一级毛片| 亚洲美女视频黄频| 国产三级在线视频| 国产高潮美女av| 91字幕亚洲| 最好的美女福利视频网| 久久精品人妻少妇| 午夜视频国产福利| 国产伦在线观看视频一区| 久久草成人影院| 国产精品 国内视频| av视频在线观看入口| 成人午夜高清在线视频| 免费搜索国产男女视频| 午夜福利18| 九九在线视频观看精品| 亚洲国产精品久久男人天堂| 国产97色在线日韩免费| 精品欧美国产一区二区三| 午夜激情欧美在线| 夜夜夜夜夜久久久久| 桃色一区二区三区在线观看| 国产淫片久久久久久久久 | 欧美在线一区亚洲| 一本一本综合久久| 长腿黑丝高跟| 中文字幕人妻丝袜一区二区| 乱人视频在线观看| 又紧又爽又黄一区二区| 熟女电影av网| 国产99白浆流出| 男人舔奶头视频| 久久欧美精品欧美久久欧美| 搡老岳熟女国产| 18禁黄网站禁片免费观看直播| 国产麻豆成人av免费视频| 美女高潮喷水抽搐中文字幕| 国产真人三级小视频在线观看| 日韩欧美一区二区三区在线观看| 宅男免费午夜| 听说在线观看完整版免费高清| 免费电影在线观看免费观看| 老熟妇乱子伦视频在线观看| 免费看美女性在线毛片视频| 给我免费播放毛片高清在线观看| 最近在线观看免费完整版| 精品一区二区三区视频在线 | 欧美大码av| 亚洲天堂国产精品一区在线| 脱女人内裤的视频| 国产成人av激情在线播放| 欧美最黄视频在线播放免费| 看黄色毛片网站| 少妇高潮的动态图| 一区二区三区激情视频| 又黄又爽又免费观看的视频| 亚洲在线观看片| 韩国av一区二区三区四区| 又黄又粗又硬又大视频| 免费在线观看亚洲国产| 欧美丝袜亚洲另类 | 亚洲av一区综合| 国产高清有码在线观看视频| 一边摸一边抽搐一进一小说| 国产在视频线在精品| 国产视频一区二区在线看| 国产精品 国内视频| 亚洲精品粉嫩美女一区| 国内毛片毛片毛片毛片毛片| 俺也久久电影网| 狂野欧美激情性xxxx| 亚洲久久久久久中文字幕| 欧美一级a爱片免费观看看| 欧美乱码精品一区二区三区| 免费av不卡在线播放| 欧美不卡视频在线免费观看| 免费av不卡在线播放| 久久精品国产综合久久久| 97超级碰碰碰精品色视频在线观看| 国内精品久久久久久久电影| 非洲黑人性xxxx精品又粗又长| 最近最新中文字幕大全免费视频| 久久久久九九精品影院| 少妇人妻精品综合一区二区 | 欧美最黄视频在线播放免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 97超级碰碰碰精品色视频在线观看| 在线观看午夜福利视频| 午夜激情福利司机影院| 亚洲欧美精品综合久久99| 色尼玛亚洲综合影院| 亚洲av成人精品一区久久| 真人一进一出gif抽搐免费| 三级毛片av免费| 国产av一区在线观看免费| 美女高潮的动态| 色综合欧美亚洲国产小说| 色综合欧美亚洲国产小说| 久久久久九九精品影院| 我要搜黄色片| 久久精品国产亚洲av香蕉五月| 成年女人看的毛片在线观看| 99久久久亚洲精品蜜臀av| 日本与韩国留学比较| 一本综合久久免费| 久久久久久久午夜电影| 69人妻影院| 国产精品一区二区三区四区久久| 亚洲一区二区三区色噜噜| 波野结衣二区三区在线 | 国产野战对白在线观看| 色综合亚洲欧美另类图片| 一个人看视频在线观看www免费 | 国产成人aa在线观看| 亚洲国产中文字幕在线视频| 在线观看日韩欧美| 国产淫片久久久久久久久 | 日韩 欧美 亚洲 中文字幕| 国产99白浆流出| 国产色婷婷99| 757午夜福利合集在线观看| 国产精品98久久久久久宅男小说| 免费一级毛片在线播放高清视频| 麻豆一二三区av精品| 久久香蕉精品热| 欧美日本亚洲视频在线播放| 大型黄色视频在线免费观看| 成人永久免费在线观看视频| 女同久久另类99精品国产91| 亚洲一区二区三区色噜噜| 免费无遮挡裸体视频| 亚洲 欧美 日韩 在线 免费| 可以在线观看毛片的网站| 欧美成人免费av一区二区三区| 久久伊人香网站| 91在线观看av| 国产极品精品免费视频能看的| 日韩中文字幕欧美一区二区| 精品不卡国产一区二区三区| 日本与韩国留学比较| 宅男免费午夜| 国产一区二区在线av高清观看| 日本免费a在线| 亚洲片人在线观看| 99国产精品一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 欧美中文日本在线观看视频| 99国产综合亚洲精品| or卡值多少钱| 深夜精品福利| 又粗又爽又猛毛片免费看| h日本视频在线播放| 人人妻人人看人人澡| 91久久精品国产一区二区成人 | 日韩免费av在线播放| 亚洲av五月六月丁香网| 伊人久久大香线蕉亚洲五| 免费看光身美女| 国产精品久久久久久久电影 | 一夜夜www| 高清毛片免费观看视频网站| 日韩中文字幕欧美一区二区| 日韩欧美精品v在线| 国产主播在线观看一区二区| 别揉我奶头~嗯~啊~动态视频| 在线观看舔阴道视频| 色综合亚洲欧美另类图片| 无人区码免费观看不卡| 国产在线精品亚洲第一网站| 岛国在线观看网站| 波多野结衣高清无吗| 老汉色av国产亚洲站长工具| 精品久久久久久久末码| 性欧美人与动物交配| 99久久综合精品五月天人人| 国产在线精品亚洲第一网站| 久久国产精品人妻蜜桃| 激情在线观看视频在线高清| 日韩精品青青久久久久久| 久久亚洲真实| 波多野结衣巨乳人妻| 两性午夜刺激爽爽歪歪视频在线观看| 日韩 欧美 亚洲 中文字幕| av女优亚洲男人天堂| 成人高潮视频无遮挡免费网站| 老汉色av国产亚洲站长工具| 亚洲久久久久久中文字幕| 国产高清视频在线播放一区| 夜夜爽天天搞| 欧美乱码精品一区二区三区| 国产精品,欧美在线| 两人在一起打扑克的视频| 全区人妻精品视频| 在线观看美女被高潮喷水网站 | 男女床上黄色一级片免费看| 三级毛片av免费| 国产精品98久久久久久宅男小说| 成年女人永久免费观看视频| 特大巨黑吊av在线直播| 麻豆久久精品国产亚洲av| 99国产精品一区二区蜜桃av| 国产精品野战在线观看| 少妇丰满av| 欧美日韩福利视频一区二区| 搞女人的毛片| 国产精品三级大全| 精品久久久久久成人av| 国产99白浆流出| 男女之事视频高清在线观看| 久久香蕉国产精品| 麻豆国产av国片精品| 欧美最新免费一区二区三区 | 91久久精品电影网| 亚洲aⅴ乱码一区二区在线播放| 看免费av毛片| 亚洲精品成人久久久久久| 精品一区二区三区视频在线 | 香蕉丝袜av| 国产高清三级在线| 亚洲 国产 在线| 国产精品久久视频播放| 亚洲午夜理论影院| 国产成年人精品一区二区| 欧美极品一区二区三区四区| 精品电影一区二区在线| 中国美女看黄片| 欧美乱色亚洲激情| 女生性感内裤真人,穿戴方法视频| 蜜桃久久精品国产亚洲av| 亚洲专区中文字幕在线| 日韩av在线大香蕉| 亚洲av不卡在线观看| 日韩免费av在线播放| 亚洲av熟女| 99久久99久久久精品蜜桃| 18禁国产床啪视频网站| 国产精品亚洲av一区麻豆| 免费在线观看影片大全网站| 男女视频在线观看网站免费| 午夜视频国产福利| 国产欧美日韩一区二区三| 午夜免费激情av| 亚洲最大成人中文| 国产亚洲欧美在线一区二区| 亚洲不卡免费看| 午夜福利18| 在线观看午夜福利视频| 99久久99久久久精品蜜桃| 久久久久久久久久黄片| 色综合欧美亚洲国产小说| 国产精品久久久久久亚洲av鲁大| 性色avwww在线观看| 天天一区二区日本电影三级| 亚洲国产欧美人成| av黄色大香蕉| 嫩草影视91久久| 亚洲精品久久国产高清桃花| 国内精品一区二区在线观看| 久久久久久国产a免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 十八禁人妻一区二区| 欧美+日韩+精品| 亚洲精品粉嫩美女一区| 中文字幕人妻熟人妻熟丝袜美 | e午夜精品久久久久久久| 麻豆久久精品国产亚洲av| 成年免费大片在线观看| 成人鲁丝片一二三区免费| 老汉色∧v一级毛片| 啪啪无遮挡十八禁网站| 国产伦一二天堂av在线观看| 亚洲av免费在线观看| 蜜桃久久精品国产亚洲av| 亚洲乱码一区二区免费版| 麻豆成人午夜福利视频| 99国产精品一区二区三区| 国产精品三级大全| 亚洲在线观看片| 国产私拍福利视频在线观看| 国产精品久久电影中文字幕| 国产三级在线视频| 一进一出抽搐动态| 动漫黄色视频在线观看| 天天躁日日操中文字幕| 日韩精品中文字幕看吧| 香蕉丝袜av| 欧美高清成人免费视频www| 成年女人永久免费观看视频| 久久人妻av系列| 九九久久精品国产亚洲av麻豆| 色综合欧美亚洲国产小说| 色在线成人网| 国产成人av教育| 亚洲av成人不卡在线观看播放网| 成年人黄色毛片网站| 成年女人看的毛片在线观看| 在线观看午夜福利视频| 黄色日韩在线| 免费观看人在逋| 精品国内亚洲2022精品成人| www.色视频.com| av黄色大香蕉| 男女下面进入的视频免费午夜| 免费看日本二区| 国产野战对白在线观看| 国产中年淑女户外野战色| 又粗又爽又猛毛片免费看| av女优亚洲男人天堂| 悠悠久久av| 日韩亚洲欧美综合| 亚洲av二区三区四区| 男女视频在线观看网站免费| 久久久久国产精品人妻aⅴ院| 在线观看美女被高潮喷水网站 | 成人鲁丝片一二三区免费| 久久欧美精品欧美久久欧美| 久99久视频精品免费| 亚洲 欧美 日韩 在线 免费| 俺也久久电影网| 亚洲中文字幕日韩| 在线观看午夜福利视频| 99视频精品全部免费 在线| 91久久精品国产一区二区成人 | 97人妻精品一区二区三区麻豆| 中出人妻视频一区二区| 精品久久久久久,| 国产97色在线日韩免费| 亚洲欧美日韩无卡精品| 女人被狂操c到高潮| 日韩欧美精品v在线| 中文字幕高清在线视频| 亚洲av二区三区四区| 91久久精品国产一区二区成人 | 免费看a级黄色片| av片东京热男人的天堂| 国产真实伦视频高清在线观看 | 国产成年人精品一区二区| 99热这里只有是精品50| 欧美黄色片欧美黄色片| 色噜噜av男人的天堂激情| 女人被狂操c到高潮| 美女免费视频网站| 校园春色视频在线观看| 欧美bdsm另类| 亚洲人成网站在线播| 久久婷婷人人爽人人干人人爱| 国产精品 欧美亚洲| 一区福利在线观看| 国产精品永久免费网站| 国产精品久久久人人做人人爽| 高清在线国产一区| 国产91精品成人一区二区三区| 亚洲精品乱码久久久v下载方式 | 国产成人欧美在线观看| 精品人妻1区二区| 亚洲成a人片在线一区二区| 日韩欧美精品v在线| 中文字幕精品亚洲无线码一区| 久久欧美精品欧美久久欧美| 国产欧美日韩一区二区精品| 欧美三级亚洲精品| 别揉我奶头~嗯~啊~动态视频| 色哟哟哟哟哟哟| 欧美日韩福利视频一区二区| 日韩欧美国产一区二区入口| 久久精品国产99精品国产亚洲性色| 精品人妻1区二区| 国产中年淑女户外野战色| 成人av一区二区三区在线看| 亚洲人与动物交配视频| 国产精品久久久久久久电影 | 黄色成人免费大全| 精品久久久久久久末码| 夜夜看夜夜爽夜夜摸| 精品一区二区三区视频在线 | 给我免费播放毛片高清在线观看| 麻豆久久精品国产亚洲av| 成人性生交大片免费视频hd| 最好的美女福利视频网| 性欧美人与动物交配| 欧美在线黄色| 尤物成人国产欧美一区二区三区| 天堂动漫精品| 精品久久久久久久人妻蜜臀av| 极品教师在线免费播放| 99国产精品一区二区三区| 亚洲精华国产精华精| 在线天堂最新版资源| 日本一二三区视频观看| 成人av一区二区三区在线看| 免费在线观看成人毛片| www日本黄色视频网| av黄色大香蕉| 一二三四社区在线视频社区8| 国产成人av激情在线播放| 国产av不卡久久| 9191精品国产免费久久| 午夜亚洲福利在线播放| 婷婷亚洲欧美| 黄片大片在线免费观看| 91字幕亚洲| 亚洲精品456在线播放app | 99久久综合精品五月天人人| 在线观看一区二区三区|