• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Integration of Fe2O3-based photoanode and atomically dispersed cobalt cathode for efficient photoelectrochemical NH3synthesis

    2021-05-14 09:47:36WeikngWngShengboZhngYnynLiuLiRongZhengGuozhongWngYunxiZhngHiminZhngHuijunZho
    Chinese Chemical Letters 2021年2期

    Weikng Wng,Shengbo Zhng,Ynyn Liu,Li-Rong Zheng,Guozhong Wng,Yunxi Zhng,Himin Zhng,*,Huijun Zho,d,*

    a Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China

    b University of Science and Technology of China, Hefei 230026, China

    c Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

    d Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus, QLD 4222, Australia

    ABSTRACT Realizing nitrogen reduction reaction(NRR)to synthesis NH3under mild conditions has gained extensive attention as a promising alternative way to the energy- and emission-intensive Haber–Bosch process.Among varieties of potential strategies, photoelectrochemical (PEC) NRR exhibits many advantages including utilization of solar energy, water (H2O) as the hydrogen source and ambient operation conditions.Herein,we have designed a solar-driven PEC-NRR system integrating high-efficiency Fe2O3-based photoanode and atomically dispersed cobalt(Co)cathode for ambient NH3synthesis.Using such solar-driven PEC-NRR system, high-efficiency Fe2O3-based photoanode is responsible for H2O/OH-oxidation,and meanwhile the generated photoelectrons transfer to the single-atom Co cathode for the N2reduction to NH3.As a result,this system can afford an NH3yield rate of 1021.5mg mgCo-1h-1and a faradic efficiency of 11.9% at an applied potential bias of 1.2 V (versus reversible hydrogen electrode) on photoanode in 0.2 mol/L NaOH electrolyte under simulated sunlight irradiation.

    Keywords:PEC-NRR Co-SAC CoPi/Ti-Fe2O3NH3synthesis Photoelectrochemisty

    As an essential life building block and important carrier of hydrogen energy, ammonia (NH3) is currently synthesized by the industrial scale Haber-Bosch process [1].However, this over a century-old Haber-Bosch process requires high temperature(400–500) and pressure (100–350 atm), consumes tremendous energy and natural gas(as the hydrogen source),and concurrently results in greenhouse gas(e.g.,CO2)emission[2,3].Therefore,it is highly desirable to develop alternative routes for nitrogen (N2)reduction to NH3under ambient temperature and pressure conditions.In recent years, photocatalytic, electrocatalytic and photoelectrochemical (PEC) techniques have been intensively investigated for the N2reduction reaction (NRR) at ambient conditions, demonstrating great potentials to replace the traditional Haber-Bosch process [4,5].Nonetheless, it is critically important for developing high-efficiency catalysts, capable of adsorption and activation of intrinsically inert N2molecules, as well as reasonable configuration of the catalysts in these systems for high-efficiency NH3synthesis.

    As we know,it has been widely accepted that the photocatalytic oxidation and reduction half-reactions occur at the same photocatalyst particle for a particulate suspension photocatalysis system, resulting in a rapid recombination of photogenerated carriers and thus obviously decreasing photocatalytic efficiency[6,7].This issue existed in the photocatalytic system can be well solved by using the PEC technique, in where a suitable potential bias is applied to a photocatalyst immobilized on a conducting substrate to allow the combination of electrochemical technique with photocatalysis and greatly minimize the charge recombination, thereby significantly increasing the photocatalytic efficiency[8,9].Owing to these advantages, the PEC technique has been successfully employed to water splitting to generate H2, CO2reduction, organic compound oxidation, environmental detection and so on [8–10].Recently, several research groups have demonstrated that N2reduction to NH3by the PEC technique is experimentally feasible, exhibiting high NH3yield rate and selectivity [11,12].Hamers et al.reported that the illuminated hydrogen-terminated diamond under ultraviolet (UV) light in a dual-compartment H-cell can result in electron emission to produce solvated electrons in water,thus inducing NRR at ambient temperature and pressure [13].MacFarlane and co-workers synthesized an Au nanoparticles modified p-type Si photoelectrode, achieving an NH3yield rate of 6.0mgwithout an applied potential bias by photoelectrochemical N2reduction under 2 sun illumination and 7 atm pressure [14].In addition, the development of high-efficiency photocathodes in PEC technique,such as the aerophilic-hydrophilic heterostructured Si-based electrode and R-BiOI photocathode, has become another feasible means for high active and selective N2reduction to NH3.In their studies, the synthesized Si-based and R-BiOI photocathodes have the bifunctionality of solar-light absorption and N2adsorption/activation [12,15].Therefore, reasonable design of the photocathodes’ composition and structure is critically important for high-efficiency PEC N2reduction,but great challenging.Comparatively, varieties of high-efficiency photoanodes have been widely developed and fabricated for PEC applications[16].Indeed,most of recent reported photoanodes in PEC applications are mainly focused on the oxidation half-reactions to overcome the slow reaction kinetics in water oxidation or organic oxidation[9,17,18].As for the PEC N2reduction to NH3, a high-efficiency cathodic catalyst is essential in the PEC system.Therefore,the integration of a high-performance photoanode and an efficient cathodic NRR catalyst in a PEC system can extend its N2reduction application.However, there is no related report in literatures so far.

    Herein, we report the conversion N2into NH3by solar-driven PEC technique, composed of high-efficiency cobalt phosphate(CoPi)modified Ti-doped Fe2O3(CoPi/Ti-Fe2O3)nanoarrays photoanode and cobalt single-atom catalyst (Co-SAC) constructed cathode.As shown in Scheme S1 (Supporting information), the fabricated CoPi/Ti-Fe2O3photoanode under a suitable potential bias and solar light irradiation is responsible for the oxidation halfreaction in alkaline media,namely,oxidation of H2O/OH–to release O2, and meanwhile the photogenerated electrons under suitable potential bias transfer to the Co-SAC cathode to attack the adsorbed N2on the Co-SAC, thus yielding NH3.As a result, such solar-driven PEC-NRR system can achieve an NH3yield rate of 1021.5and faradic efficiency (FE) of 11.9% at an applied bias of 1.2 V versus reversible hydrogen electrode(vs.RHE)on photoanode in 0.2 mol/L NaOH electrolyte.The high NH3synthesis performance using such solar-driven PEC-NRR system can be attributed to the developed high-efficiency CoPi/Ti-Fe2O3photoanode and Co-SAC cathode to overcome the slow reaction kinetics of anode H2O oxidation,provide abundant photoelectrons and N(O)-coordinated Co active sites for N2adsorption/activation,leading to an efficient conversion of N2to NH3.

    In this work, we employed a facile hydrothermal method to fabricate FeOOH nanoarrays on FTO conductive glass[19],followed by chemical vapor deposition(CVD)of TiCl4and thermal treatment to obtain Ti doped Fe2O3nanoarrays(denoted as Ti-Fe2O3)[20].For comparison,the pure Fe2O3nanoarrays on FTO substrate(denoted as Fe2O3) were also fabricated by thermal treatment of FeOOH nanoarrays.Subsequently, CoPi modified Ti-Fe2O3(CoPi/Ti-Fe2O3)nanoarrays photoanode was fabricated by a photoassisted deposition method [19].In this study, the aim of Ti doping and CoPi modification in Fe2O3nanoarrays is to promote the charge conductivity and water oxidation efficiency of photoanode,respectively, thus enhancing the PEC efficiency of photoanode[17,21,22].

    Fig.1.(a) XRD patterns of Fe2O3-based photoanodes.(b) Vertical-view and cross-sectional SEM, (c) TEM and (d) HRTEM images of CoPi/Ti-Fe2O3photoanode.

    Fig.2.(a)XRD patterns of BCFs,Co/BCFs and Co-SAC.(b)HAADF-STEM image and selected-area magnified HAADF-STEM images with bright SA-Co marked in red circles of Co-SAC.(c) Normalized Co K-edge XANES spectra and (d) FT k3-weighted EXAFS spectra of Co-SAC and reference samples.

    In a PEC-NRR system integrated of CoPi/Ti-Fe2O3photoanode and Co-SAC cathode, the NRR performance of Co-SAC is highly dependent on the performance of CoPi/Ti-Fe2O3photoanode.Therefore, we firstly investigated the optical properties of the assynthesized CoPi/Ti-Fe2O3photoanode.Fig.3a shows the UV–vis diffuse reflection spectra (DRS) of Fe2O3, Ti-Fe2O3and CoPi/Ti-Fe2O3samples.The calculated bandgap is 2.09 eV, 2.05 eV and 2.05 eV for Fe2O3, Ti-Fe2O3and CoPi/Ti- Fe2O3based on the DRS,respectively (Fig.3b).Obviously, Ti doping in Fe2O3results in narrower bandgap than that of pristine Fe2O3, meaning its better visible-light harvesting capacity [17,46].Moreover, the CoPi modification on Ti-Fe2O3has not significant influence on its bandgap,still exhibiting superior visible light absorption property for CoPi/Ti-Fe2O3, favourable for high PEC performance.Fig.3c shows the incident photon-to-current efficiency (IPCE) curves of Fe2O3, Ti-Fe2O3and CoPi/Ti-Fe2O3measured at 1.23 V (vs.RHE in 0.2 mol/L NaOH solution)under simulated sunlight irradiation(AM 1.5 G, 100 mW/cm2).The results reveal that CoPi/Ti-Fe2O3possesses the highest IPCE value of35% at a wavelength of 370 nm,and its IPCE is over ~10%in wider wavelength range from 300 nm to 500 nm, indicating that Ti doping and CoPi modification can afford high PEC performance of Fe2O3photoelectrode [25].

    Fig.3.(a) UV–vis DRS, (b) Bandgap determination via Tauc plots, (c) IPCE (measured under 1.23 V vs.RHE) and (d) LSV under light irradiation (5 mV/s) of Fe2O3-based photoanodes.

    Subsequently, we evaluated the PEC NRR performance using CoPi/Ti-Fe2O3photoanode and Co-SAC cathode integrated in a photoelectrochemical cell (Scheme S1).Fig.S6 (Supporting information) shows the photograph of photoelectrochemical cell composed of CoPi/Ti-Fe2O3photoanode and Co-SAC cathode.Prior to all measurements,14N2(or15N2) feeding gas was pre-treated using 0.01 mol/L H2SO4solution and distilled water to eliminate any environmental NH3interferences [52].Then, the used N2tail gas passing through the cathodic compartment was absorbed by two series of 0.01 mol/L H2SO4solution to avoid the loss of NH3analyzed by the indophenol blue method (Fig.S7 in Supporting information) [53].Using this photoelectrochemical system, the yielded NH3from PEC NRR on Co-SAC cathode was quantitatively preliminary experimental results demonstrate that the NH3product yielded can be detected in the samples obtained from the cathodic compartment and tail gas absorption solution.Therefore, the NH3yield is the collective amount of the NH3produced from the cathodic compartment and tail gas absorption solution in this work.Fig.4a shows the dependence of the NH3yield rate and faradaic efficiency(FE)on different applied potential bias employed on the CoPi/Ti-Fe2O3photoanode in 0.2 mol/L NaOH electrolyte under AM 1.5 G simulated solar light irradiation of 1 h(light intensity of 100 mW/cm2).The corresponding photocurrent density curves are shown in Fig.4b.The results demonstrate that the largest NH3yield rate can achieved to be 1021.5mg mgCo-1h-1(12.26mgcat.-1h-1) with the highest FE of 11.9% on Co-SAC cathode at an applied potential bias of 1.2 V (vs.RHE) on photoanode, which is comparable to recently reported singleatomic NRR catalysts (Table S2 in Supporting information).With further increasing potential bias, the photocurrent density is obviously enhanced(Fig.4b),but the NH3yield rate and FE are both decreased, mainly attributed to the competitive hydrogen evolution reaction (HER) concurrently happened on the Co-SAC cathode [39,53].For comparison, we also performed the experiment at open-circuit potential (OCP) condition under AM 1.5 G simulated solar-light irradiation of 1 h, the yielded NH3is almost undetectable (Fig.4a and Fig.S8 in Supporting information).The above result suggests that the photoelectrocatalytic approach by employing a potential bias on the CoPi/Ti-Fe2O3can dramatically enhance its photogenerated charge transfer efficiency [54], thus improving the NRR performance on the Co-SAC.Additionally, we also compared the PEC NRR performance on the Co-SAC cathode using Fe2O3and Ti-Fe2O3photoanode at 1.2 V(vs.RHE)in 0.2 mol/L NaOH solution under AM 1.5 G simulated solar light irradiation of 1 h.As shown in Fig.S9 (Supporting information), the NH3yield rate is 371.4 and 422.4mg mgCo-1h-1with FE of 4.5% and 11.1% on the Co-SAC cathode using the Fe2O3and Ti-Fe2O3photoanode,respectively,obviously lower than that(1021.5mg mgCo-1h-1with FE of 11.9%) on the Co-SAC cathode using the CoPi/Ti-Fe2O3photoanode, indicating that the CoPi/Ti-Fe2O3photoanode possesses higher PEC performance.To confirm the yielded NH3resulted from the Co-SAC cathode in this solar-driven CoPi/Ti-Fe2O3photoanode involved PEC system, several control experiments were also conducted in this work.As shown in Fig.S8, the yielded NH3is ignorable when the experiments were carried out in N2-saturated 0.2 mol/L NaOH solution without Co-SAC catalyst at a potential bias of 1.2 V (vs.RHE) on photoanode with light irradiation (denoted as blank) and with Co-SAC catalyst and light irradiation but under open-circuit condition (denoted as opencircuit).In addition,when the experiments were carried out in Arsaturated 0.2 mol/L NaOH solution with Co-SAC catalyst at a potential bias of 1.2 V (vs.RHE) on photoanode (denoted as Arsaturated electrolyte), the measurable NH3is also ignorable.The above control experimental results indicate that the yielded NH3is from the NRR on Co-SAC cathode in the solar-driven CoPi/Ti-Fe2O3photoanode involved PEC system without any noticeable environmental interference.To further confirm this, the isotopic labeling experiments were subsequently conducted using14N2and15N2as the feeding gases in 0.2 mol/L NaOH solution at an applied potential bias of 1.2 V (vs.RHE) on photoanode for 1 h PEC-NRR period[53].Then we analyzed qualitatively and quantitatively the1H nuclear magnetic resonance(NMR)spectra of the samples[55].Based on the NMR spectra of14NH4+and15NH4+standards, the corresponding calibration curves are shown in Fig.S10(Supporting information).The experimental results (Fig.4c) show that the yielded concentration of14NH4+and15NH4+calculated by1H NMR is 1.21 and 1.33mg/mL, respectively, nearly identical with the determined values (1.26mg/mL for14NH4+and 1.38mg/mL for15NH4+) by the indophenol blue method.The almost identical14NH4+and15NH4+concentrations determined by both methods categorically demonstrate that the yielded NH3is indeed originated from the Co-SAC catalyzed NRR in the solar-driven CoPi/Ti-Fe2O3photoanode involved PEC system.

    Fig.4.(a)PEC-NRR performance on Co-SAC with different applied bias on CoPi/Ti-Fe2O3photoanode and(b)corresponding operating photo-current density(J)vs.time(t).(c)1H NMR spectra of the yielded 14NH4+and 15NH4+from14N2and 15N2feed gases,and standards(all standard concentration of 10mg/mL);(d)NH3yield rate and FE stability on Co-SAC with CoPi/Ti-Fe2O3NAs photoanode (applied bias of 1.2 V vs.RHE in 0.2 mol/L NaOH).

    The recycling stability of the PEC-NRR system is tested as shown in Fig.4d.Employing an applied potential bias of 1.2 V(vs.RHE)on CoPi/Ti-Fe2O3photoanode with light irradiation,the NH3yield rate and FE on Co-SAC cathode in 0.2 mol/L NaOH solution can be well maintained after 6 consecutive cycles.After 6 cycles of measurements, the collected cathode electrocatalyst (labeled as Co-SACused)was characterized by the XRD and HAADF-STEM techniques.The XRD characterization results (Fig.S11a in Supporting information) reveal that only one broad peak centered at 2u =20ascribed to the graphitic carbon can be detected and no characteristic peaks derived from metallic Co nanoparticles are detectable, similar to that of pristine Co-SAC catalyst (Fig.2a).Moreover, the HAADF-STEM image (Fig.S11b in Supporting information) of the Co-SAC-used still shows atomically dispersed nature of Co on the BC converted graphitic carbon.The above results indicate that the Co-SAC possesses high stability,favourable for high-efficiency PEC-NRR to NH3.

    In summary, we developed a photoelectrochemical N2reduction system integrated of CoPi/Ti-Fe2O3photoanode and Co-SAC cathode.Utilizing such PEC-NRR system,the NH3yield rate on Co-SAC cathode can be achieved to be 1021.5with a faradic efficiency of 11.9% at an applied potential bias of 1.2 V (vs.RHE) in 0.2 mol/L NaOH electrolyte under simulated solar irradiation.The high PEC-NRR to NH3performance can be resulted from high-efficient CoPi/Ti-Fe2O3photoanode providing abundant photoelectrons and Co-SAC catalyst supplying electrocatalytically active Co-N(O)xsites for N2adsorption and activation.The findings in this work demonstrate the feasibility of integrating highefficiency photoanode and efficient NRR catalyst cathode for solardriven PEC-NRR to NH3application.Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.51872292 and 51672277) and the CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences, China.The authors would like to thank the 1W1B station for XAFS measurements in the Beijing Synchrotron Radiation Facility (BSRF).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.04.013.

    国产亚洲一区二区精品| 久久这里只有精品19| 99国产精品一区二区蜜桃av | 99久久人妻综合| 国产精品国产av在线观看| 99国产综合亚洲精品| 国产精品一国产av| 久久久久精品国产欧美久久久 | 秋霞在线观看毛片| 国产免费又黄又爽又色| 午夜福利免费观看在线| 久久精品久久久久久噜噜老黄| 天堂8中文在线网| 黄色视频在线播放观看不卡| 亚洲精品一区蜜桃| 亚洲国产日韩一区二区| 最新的欧美精品一区二区| av又黄又爽大尺度在线免费看| 国精品久久久久久国模美| 在线观看www视频免费| 国产av一区二区精品久久| 大话2 男鬼变身卡| 色婷婷av一区二区三区视频| 男女国产视频网站| 精品一区二区三区av网在线观看 | 婷婷丁香在线五月| 久久人妻熟女aⅴ| 成人黄色视频免费在线看| 国产精品一区二区在线不卡| 亚洲精品第二区| 成年动漫av网址| 国产成人精品在线电影| 大型av网站在线播放| 国产男女超爽视频在线观看| 大香蕉久久网| 国产免费现黄频在线看| 99国产综合亚洲精品| 亚洲黑人精品在线| 免费不卡黄色视频| 一区二区三区乱码不卡18| 嫩草影视91久久| 亚洲中文av在线| 免费观看a级毛片全部| 青青草视频在线视频观看| 亚洲三区欧美一区| 亚洲国产精品999| 又大又爽又粗| 中国国产av一级| 久热爱精品视频在线9| 精品人妻在线不人妻| 99国产精品一区二区蜜桃av | 亚洲av美国av| 亚洲美女黄色视频免费看| 欧美大码av| 久久国产精品影院| 国产不卡av网站在线观看| 一级,二级,三级黄色视频| 欧美另类一区| 亚洲三区欧美一区| www.999成人在线观看| 国产色视频综合| 国产一区二区 视频在线| 又紧又爽又黄一区二区| 两个人免费观看高清视频| 亚洲黑人精品在线| 精品一区在线观看国产| 亚洲成人免费电影在线观看 | 亚洲,一卡二卡三卡| 看免费av毛片| 丝袜美腿诱惑在线| 欧美精品人与动牲交sv欧美| 免费人妻精品一区二区三区视频| 精品国产乱码久久久久久小说| 中文字幕人妻熟女乱码| 欧美日韩视频精品一区| 中文字幕人妻熟女乱码| 一区二区av电影网| 老司机午夜十八禁免费视频| 国产激情久久老熟女| 久久 成人 亚洲| 久久久久网色| 日日摸夜夜添夜夜爱| 日日爽夜夜爽网站| 午夜福利视频精品| 精品卡一卡二卡四卡免费| 2021少妇久久久久久久久久久| 亚洲精品在线美女| 欧美97在线视频| 老汉色av国产亚洲站长工具| 亚洲九九香蕉| 如日韩欧美国产精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 中文精品一卡2卡3卡4更新| 男女国产视频网站| 女人爽到高潮嗷嗷叫在线视频| 国产精品国产三级国产专区5o| 精品亚洲乱码少妇综合久久| 亚洲成av片中文字幕在线观看| 大型av网站在线播放| 少妇人妻 视频| 一边亲一边摸免费视频| 黄色毛片三级朝国网站| 在线 av 中文字幕| 伊人久久大香线蕉亚洲五| 精品一区二区三卡| 老汉色av国产亚洲站长工具| 黄频高清免费视频| 国产精品一国产av| 操美女的视频在线观看| 激情五月婷婷亚洲| 国产免费一区二区三区四区乱码| 一级黄色大片毛片| 女人高潮潮喷娇喘18禁视频| 国产不卡av网站在线观看| 欧美日韩亚洲综合一区二区三区_| 亚洲精品久久久久久婷婷小说| 亚洲熟女精品中文字幕| 国产精品欧美亚洲77777| av国产久精品久网站免费入址| 性色av一级| 久久精品国产亚洲av涩爱| 午夜老司机福利片| 丰满少妇做爰视频| 久久精品熟女亚洲av麻豆精品| 亚洲一区二区三区欧美精品| 91老司机精品| 日本五十路高清| 国产成人精品久久久久久| 国产激情久久老熟女| 午夜两性在线视频| 大香蕉久久网| xxx大片免费视频| 国产精品免费视频内射| 日韩,欧美,国产一区二区三区| 国产成人av教育| 夜夜骑夜夜射夜夜干| 亚洲精品久久成人aⅴ小说| 亚洲人成电影观看| 国产成人a∨麻豆精品| 极品少妇高潮喷水抽搐| 日韩av不卡免费在线播放| 精品一区二区三区av网在线观看 | 亚洲综合色网址| 久久人人爽人人片av| 十八禁网站网址无遮挡| 亚洲久久久国产精品| 欧美亚洲 丝袜 人妻 在线| 精品第一国产精品| 嫩草影视91久久| 黄频高清免费视频| 免费av中文字幕在线| 婷婷色av中文字幕| 国产av精品麻豆| 大片电影免费在线观看免费| 麻豆乱淫一区二区| 欧美激情极品国产一区二区三区| 在线av久久热| 国产精品一二三区在线看| 成人免费观看视频高清| 国产亚洲欧美精品永久| 免费看av在线观看网站| 99国产综合亚洲精品| 免费av中文字幕在线| 欧美日韩亚洲高清精品| 亚洲九九香蕉| 激情五月婷婷亚洲| 中文字幕亚洲精品专区| 国产精品二区激情视频| 成人午夜精彩视频在线观看| 午夜激情av网站| 国产精品国产三级国产专区5o| 人妻 亚洲 视频| 一级毛片黄色毛片免费观看视频| 欧美日韩福利视频一区二区| 国产精品欧美亚洲77777| 亚洲欧美中文字幕日韩二区| av视频免费观看在线观看| 成人亚洲精品一区在线观看| 亚洲美女黄色视频免费看| 国产亚洲欧美精品永久| 9色porny在线观看| 久久久久网色| www.自偷自拍.com| 亚洲成av片中文字幕在线观看| 国产成人精品无人区| 极品人妻少妇av视频| 亚洲色图综合在线观看| 国产亚洲av高清不卡| 久久国产精品男人的天堂亚洲| 黄色视频不卡| 日本av免费视频播放| 亚洲精品国产一区二区精华液| 欧美人与性动交α欧美软件| 黑人巨大精品欧美一区二区蜜桃| 日本黄色日本黄色录像| 十八禁人妻一区二区| 久久午夜综合久久蜜桃| 国产亚洲精品第一综合不卡| 香蕉国产在线看| 精品久久久精品久久久| 欧美人与善性xxx| 99热网站在线观看| 中文字幕精品免费在线观看视频| 久久久国产一区二区| 国产成人免费观看mmmm| 最近手机中文字幕大全| 巨乳人妻的诱惑在线观看| 国产成人精品久久二区二区91| 成人国产av品久久久| 亚洲国产精品999| 美女主播在线视频| 亚洲 欧美一区二区三区| 亚洲少妇的诱惑av| 国产免费现黄频在线看| 久久精品久久久久久噜噜老黄| 美女福利国产在线| 久久人人97超碰香蕉20202| 久久久国产精品麻豆| 香蕉国产在线看| 丰满迷人的少妇在线观看| 亚洲专区国产一区二区| avwww免费| 黑丝袜美女国产一区| 午夜老司机福利片| 国精品久久久久久国模美| 老司机在亚洲福利影院| 在线观看一区二区三区激情| 免费观看av网站的网址| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一区二区在线不卡| 久久久久国产精品人妻一区二区| 青春草视频在线免费观看| 电影成人av| 欧美另类一区| 99热全是精品| 高清视频免费观看一区二区| 2018国产大陆天天弄谢| 丝瓜视频免费看黄片| 天天躁夜夜躁狠狠久久av| 亚洲中文日韩欧美视频| 亚洲,欧美,日韩| 精品欧美一区二区三区在线| 丝瓜视频免费看黄片| 超色免费av| 国产精品久久久久成人av| 看免费成人av毛片| 国产高清国产精品国产三级| 免费少妇av软件| 青草久久国产| 欧美国产精品va在线观看不卡| 日本黄色日本黄色录像| 国产高清国产精品国产三级| 青春草视频在线免费观看| 精品国产一区二区久久| 妹子高潮喷水视频| 电影成人av| 一区二区三区乱码不卡18| 亚洲久久久国产精品| 日韩av免费高清视频| 欧美+亚洲+日韩+国产| 嫁个100分男人电影在线观看 | 亚洲av国产av综合av卡| 精品久久久精品久久久| 成人免费观看视频高清| 校园人妻丝袜中文字幕| 午夜免费男女啪啪视频观看| 中文精品一卡2卡3卡4更新| 自线自在国产av| 十八禁人妻一区二区| 老司机亚洲免费影院| 亚洲中文av在线| 精品第一国产精品| 欧美变态另类bdsm刘玥| xxx大片免费视频| 亚洲av成人不卡在线观看播放网 | 黄色a级毛片大全视频| 久久精品熟女亚洲av麻豆精品| 国产一区二区在线观看av| 超碰97精品在线观看| 人成视频在线观看免费观看| 99国产精品一区二区三区| 捣出白浆h1v1| 亚洲av电影在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 深夜精品福利| 首页视频小说图片口味搜索 | 精品欧美一区二区三区在线| 91成人精品电影| 久久精品久久久久久噜噜老黄| 日韩中文字幕欧美一区二区 | 久久久久久久大尺度免费视频| 婷婷色麻豆天堂久久| 欧美精品啪啪一区二区三区 | 伊人亚洲综合成人网| 欧美日韩国产mv在线观看视频| 亚洲久久久国产精品| 色综合欧美亚洲国产小说| 好男人电影高清在线观看| 1024视频免费在线观看| 亚洲午夜精品一区,二区,三区| 成在线人永久免费视频| 免费一级毛片在线播放高清视频 | 日韩欧美一区视频在线观看| 成人三级做爰电影| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产av影院在线观看| 婷婷色av中文字幕| 两性夫妻黄色片| 亚洲欧美一区二区三区国产| 精品福利永久在线观看| a级毛片黄视频| 国产伦人伦偷精品视频| 美国免费a级毛片| 国产精品.久久久| 91老司机精品| 亚洲成av片中文字幕在线观看| 伦理电影免费视频| 午夜免费男女啪啪视频观看| 精品一区在线观看国产| 国产精品国产av在线观看| 一边亲一边摸免费视频| 成年动漫av网址| 久久久久国产一级毛片高清牌| 精品人妻一区二区三区麻豆| 操美女的视频在线观看| 精品人妻一区二区三区麻豆| 99热网站在线观看| av在线app专区| 婷婷色综合大香蕉| 欧美日韩亚洲高清精品| 操出白浆在线播放| 中文字幕制服av| 亚洲美女黄色视频免费看| 亚洲中文字幕日韩| 青草久久国产| 黄色 视频免费看| 国产精品偷伦视频观看了| 精品少妇一区二区三区视频日本电影| 国产成人精品无人区| 不卡av一区二区三区| 欧美日韩综合久久久久久| 午夜日韩欧美国产| 99精国产麻豆久久婷婷| 亚洲欧美一区二区三区久久| 大陆偷拍与自拍| 99国产精品99久久久久| 老司机影院毛片| 91精品伊人久久大香线蕉| 国产一区二区激情短视频 | 久久久久久人人人人人| 最黄视频免费看| 国产成人欧美| 精品国产乱码久久久久久小说| 欧美成人精品欧美一级黄| 午夜av观看不卡| 亚洲av综合色区一区| 国产成人影院久久av| 国产亚洲av高清不卡| 免费看十八禁软件| 一级黄片播放器| 亚洲av国产av综合av卡| 久久久精品区二区三区| 国产熟女午夜一区二区三区| 亚洲精品国产av蜜桃| 国产熟女午夜一区二区三区| 久久人人97超碰香蕉20202| 又大又黄又爽视频免费| 女人高潮潮喷娇喘18禁视频| 狂野欧美激情性xxxx| 国产精品久久久av美女十八| 国产亚洲欧美精品永久| 赤兔流量卡办理| 国产高清videossex| 国产一卡二卡三卡精品| 欧美日韩视频高清一区二区三区二| 午夜福利,免费看| 青青草视频在线视频观看| 亚洲久久久国产精品| 一级毛片女人18水好多 | 亚洲自偷自拍图片 自拍| 亚洲av电影在线进入| 亚洲国产欧美网| 午夜福利在线免费观看网站| 中文字幕精品免费在线观看视频| 天天操日日干夜夜撸| 成年人午夜在线观看视频| 纵有疾风起免费观看全集完整版| 亚洲欧美日韩另类电影网站| 国产黄频视频在线观看| 午夜精品国产一区二区电影| 国产麻豆69| 国产野战对白在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 日韩视频在线欧美| 黑人猛操日本美女一级片| 蜜桃在线观看..| 亚洲av电影在线观看一区二区三区| 欧美黄色片欧美黄色片| 啦啦啦中文免费视频观看日本| 国产三级黄色录像| 99九九在线精品视频| 你懂的网址亚洲精品在线观看| 欧美性长视频在线观看| 母亲3免费完整高清在线观看| 久久国产精品影院| 波多野结衣一区麻豆| 狠狠精品人妻久久久久久综合| 国产欧美日韩综合在线一区二区| 国产日韩欧美亚洲二区| 亚洲精品国产一区二区精华液| 成人午夜精彩视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 看十八女毛片水多多多| 我要看黄色一级片免费的| 亚洲一码二码三码区别大吗| 又紧又爽又黄一区二区| 国产熟女午夜一区二区三区| 亚洲少妇的诱惑av| 一边亲一边摸免费视频| 亚洲av美国av| 精品高清国产在线一区| 亚洲欧美精品自产自拍| 国产亚洲av高清不卡| 国产精品一国产av| 午夜免费成人在线视频| 熟女少妇亚洲综合色aaa.| 两个人免费观看高清视频| 欧美久久黑人一区二区| 久久精品人人爽人人爽视色| 精品高清国产在线一区| 亚洲国产日韩一区二区| 欧美精品av麻豆av| 日本午夜av视频| 亚洲精品日本国产第一区| 美女高潮到喷水免费观看| 国产97色在线日韩免费| 久久人人爽人人片av| 99国产综合亚洲精品| 丰满迷人的少妇在线观看| 久久精品熟女亚洲av麻豆精品| 久久人妻熟女aⅴ| 亚洲精品av麻豆狂野| 黄片小视频在线播放| √禁漫天堂资源中文www| 国产真人三级小视频在线观看| 国产成人一区二区三区免费视频网站 | 日本色播在线视频| 国产精品久久久久成人av| 久久av网站| 熟女少妇亚洲综合色aaa.| 91字幕亚洲| 国产一区二区三区av在线| 亚洲精品日本国产第一区| 精品国产乱码久久久久久男人| 一边摸一边抽搐一进一出视频| 国产成人影院久久av| 欧美日韩亚洲高清精品| 各种免费的搞黄视频| 精品人妻在线不人妻| 色视频在线一区二区三区| 性高湖久久久久久久久免费观看| 热99国产精品久久久久久7| 免费看十八禁软件| 18禁观看日本| 大片电影免费在线观看免费| 男女床上黄色一级片免费看| 女人爽到高潮嗷嗷叫在线视频| av网站免费在线观看视频| 免费看av在线观看网站| 一级毛片 在线播放| 国产淫语在线视频| 久久久久久久精品精品| 亚洲九九香蕉| 国产视频一区二区在线看| 免费在线观看黄色视频的| 亚洲国产毛片av蜜桃av| 中国国产av一级| 久久久国产精品麻豆| 老司机影院成人| 久久精品亚洲av国产电影网| 极品少妇高潮喷水抽搐| 久久久久精品国产欧美久久久 | 国产伦人伦偷精品视频| 欧美成人午夜精品| 日本wwww免费看| 国产又爽黄色视频| 久久国产精品人妻蜜桃| 90打野战视频偷拍视频| 黄色视频在线播放观看不卡| 中文字幕人妻熟女乱码| 精品国产一区二区三区四区第35| 精品一区二区三区av网在线观看 | tube8黄色片| 亚洲欧洲精品一区二区精品久久久| 岛国毛片在线播放| 亚洲精品日本国产第一区| 成年人黄色毛片网站| 国产日韩欧美亚洲二区| 欧美国产精品一级二级三级| 成人免费观看视频高清| 老司机在亚洲福利影院| 亚洲人成电影免费在线| 国产淫语在线视频| 一区二区三区四区激情视频| 久久精品国产亚洲av高清一级| 精品国产超薄肉色丝袜足j| 女警被强在线播放| 午夜免费观看性视频| 国产av国产精品国产| 久久精品国产亚洲av高清一级| 韩国高清视频一区二区三区| 亚洲av男天堂| 91麻豆精品激情在线观看国产 | videos熟女内射| 亚洲精品国产色婷婷电影| 五月开心婷婷网| 亚洲欧美中文字幕日韩二区| 男人操女人黄网站| 搡老岳熟女国产| 青青草视频在线视频观看| 精品国产一区二区三区久久久樱花| 亚洲五月色婷婷综合| 亚洲国产av影院在线观看| 午夜免费观看性视频| av在线播放精品| 99国产精品一区二区蜜桃av | 色综合欧美亚洲国产小说| 亚洲久久久国产精品| 高清欧美精品videossex| 亚洲人成电影观看| 国产亚洲av片在线观看秒播厂| 亚洲av电影在线观看一区二区三区| 黑丝袜美女国产一区| 久久人人爽人人片av| 国产麻豆69| 午夜免费男女啪啪视频观看| 中文字幕高清在线视频| a级毛片在线看网站| 亚洲 国产 在线| 可以免费在线观看a视频的电影网站| 尾随美女入室| av不卡在线播放| 亚洲美女黄色视频免费看| av在线老鸭窝| 亚洲精品久久午夜乱码| 国产女主播在线喷水免费视频网站| 欧美日韩亚洲高清精品| 国产成人啪精品午夜网站| videosex国产| 99热全是精品| 亚洲精品乱久久久久久| 老汉色av国产亚洲站长工具| 手机成人av网站| 在线观看免费午夜福利视频| 午夜福利一区二区在线看| av国产久精品久网站免费入址| 免费高清在线观看视频在线观看| 免费黄频网站在线观看国产| 久久久久久久精品精品| 交换朋友夫妻互换小说| 成人国产一区最新在线观看 | 人人妻人人澡人人爽人人夜夜| 久热爱精品视频在线9| 日本vs欧美在线观看视频| 亚洲国产精品999| 欧美性长视频在线观看| 精品国产乱码久久久久久小说| 人妻 亚洲 视频| 亚洲欧美一区二区三区久久| 两性夫妻黄色片| 美女中出高潮动态图| 日日摸夜夜添夜夜爱| 日韩av在线免费看完整版不卡| av在线app专区| 午夜免费鲁丝| 美女大奶头黄色视频| 午夜免费成人在线视频| 青青草视频在线视频观看| 日韩熟女老妇一区二区性免费视频| 国产在视频线精品| 久久免费观看电影| 蜜桃国产av成人99| 久久这里只有精品19| 久久狼人影院| 国产高清国产精品国产三级| 国产一区二区激情短视频 | 午夜激情av网站| 91国产中文字幕| 午夜精品国产一区二区电影| 亚洲av男天堂| h视频一区二区三区| 亚洲情色 制服丝袜| 国产免费现黄频在线看| 超碰成人久久| 最新的欧美精品一区二区| 三上悠亚av全集在线观看| 十分钟在线观看高清视频www| 亚洲精品久久成人aⅴ小说| 黄色怎么调成土黄色| 成在线人永久免费视频| 亚洲欧美中文字幕日韩二区| 国产精品成人在线| 亚洲图色成人| 日韩av免费高清视频| 中文字幕人妻丝袜一区二区| 在线观看免费高清a一片| 男女下面插进去视频免费观看| 欧美成人午夜精品| 日韩伦理黄色片| 国产免费又黄又爽又色| www.熟女人妻精品国产| 黄色视频不卡| 超碰成人久久| av网站免费在线观看视频| 精品亚洲乱码少妇综合久久|