• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous photoelectrochemical detection of dual microRNAs by capturing CdS quantum dots and methylene blue based on target-initiated strand displaced amplification

    2021-05-14 09:47:24JifuChngWenxinLvJihuiWuHiyinLiFengLi
    Chinese Chemical Letters 2021年2期

    Jifu Chng,Wenxin Lv,Jihui Wu,Hiyin Li,*,Feng Li,*

    a College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China

    b College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ji'nan 250014, China

    ABSTRACT Herein,we propose a novel photoelectrochemical(PEC)biosensor for dual microRNAs(miRNAs)highly sensitive and simultaneous biosensing based on strand displaced amplification (SDA) reaction.The recognition of HmiR-21and Hlet-7aby microRNA-21 and let-7a leads to their change in hairpin structures,subsequently initiating the immobilization of abundant CdS quantum dots(CdS QDs)and methylene blue(MB) based on SDA reaction.The immobilized CdS QDs and MB produce both high PEC currents under 430 nm light and 627 nm light illumination, respectively, and the generated PEC currents are closely relied on target miRNAs amounts.Thus,highly sensitive and simultaneous detection of microRNA-21 and let-7a was readily achieved with detection limit at 6.6 fmol/L and 15.4 fmol/L based on 3,respectively.Further,this PEC biosensor was applied in simultaneous analysis of miRNA-21 and let-7a in breast cancer patient’s serum with acceptable results.We expect this biosensor will find more useful application in diagnosis of miRNA-related diseases.

    Keywords:PEC CdS QDs Methylene blue Multiple microRNAs Strand displaced amplification Simultaneous biosensing

    With the rapid development of biomedical science, more and more information demonstrates that microRNA(miRNA)has been regarded as a promising biomarker for cancer early screening and therapy due to its higher sensibility than body symptom [1,2].However, sensitive and selective detection of miRNA is always challenged by small size,high similarity,and low expression level[3,4].Motivated by this, flourishing studies have been made to pursue novel sensing strategies[6,7].Nevertheless,some inherent problems still exist and hamper the early and reliable diagnosis of cancers.For example, most biosensors devoted themselves to analysis of a single miRNA and thus easily made a misdiagnosis[5,6].Another intractable obstacle is that these biosensors require bio-enzymes to obtain high sensitivity, whereas the activity of which is easily influenced by environmental factors.Also, bioenzyme is expensive [7,8].The both issues impel us to rethink enzyme-free yet highly sensitive strategy for multiple miRNAs simultaneous biosensing.

    To get accurate identification of cancers, recently, fluorescent and electrochemical biosensors have been invented for simultaneous detection of multiple biomarkers[5,9–12].However,they suffered from an intrinsically isogenetic drawback of input energy and output signal, which causes comparatively high background,further decreasing sensitivity and accuracy.Different from them, photoelectrochemical (PEC) biosensors not only possess the advantages of both fluorescent and electrochemical techniques,but also achieve the complete separation of excitation light and PEC current [13–15].Integrating a photoactive material with a recognizable molecule enables PEC biosensor selective identification of target analyte, providing a probability to effect multiple miRNAs simultaneous biosensing.Unfortunately, the study for multiple miRNAs simultaneous biosensing has been reported rarely due to the high requirement of wavelengthresolution photoactive materials.

    Featured with high photochemistry performance, quantum dots (QDs) widely function as signal sources in development of fluorescent[16,17]and PEC biosensors[18,19].To endow them the capability of multiple assay, QDs were applied as one of signal sources for multiple configurations fabrication based on fluorescence technique.However, to our best knowledge, there was no work reported with the involvement of PEC technique.Meanwhile,it is impracticable for QDs alone to develop multiple miRNAs biosensor.In addition to QDs,organic dyes have also been proven to be high-performance photoactive materials.Among them,methylene blue (MB) was widely applied in development of PEC biosensors due to low cost, mature modification technique with biomolecules, and unique intercalation/diffusion characteristic[20,21].Further,it was reported that MB has absorption range from 550 nm to 700 nm,which is different from QDs.From this context,MB and QDs can convert different wavelength of lights into currents, and their excitation wavelengths do not interfere with each other[20,22].Thus,MB and QDs can be applied as dual signal sources to develop a PEC biosensor for dual miRNAs simultaneous biosensing, whereas, which has not been investigated yet.

    Herein, we propose a QDs/MB-based PEC biosensor for simultaneous determination of dual miRNAs based on strand displaced amplification (SDA).Compared with bioenzymes, SDA not only reduces the background and lowers the detection cost,but also avoids the sophisticated design of deoxyribonucleic acid(DNA) sequences [23].In this study, CdS QDs were used as one of the photoactive substances and synthesized through hydrothermal reaction between thioacetamide and CdCl2by using 3-mercaptopropionic acid (MPA) as a stabilizing agent [20].Transmission electron microscopy (TEM) and zeta potential characterizations demonstrated that CdS QDs displayed a uniform globular structure with diameter of 4.0 nm (Fig.1A), and a negative zeta value at21.9 mV, which was ascribed to MPA anchored on CdS QDs’surface (Fig.S1 in Supporting information) and implied the exceptional water stability.Further, CdS QDs’ UV–vis spectrophotometer(UV–vis)property was discussed.As manifested in Fig.1B,CdS QDs show a peak at 423 nm with an absorbance at 0.21 a.u.With the wavelength increasing, the absorbance gradually reduced.When the wavelength was larger than 450 nm, there was no absorbance observed.In this context,it can be deduced that CdS QDs output high PEC current under<450 nm light excitation accompanied by weak current under>450 nm light irradiation.To validate this, PEC behavior of CdS QDs was investigated by using ascorbic acid(AA)as sacrificial electron donors,and the illustration was manifested in Fig.1C.Under light illumination, CdS QDs changed from ground state to excitation state, and then the photoelectrons diffused to indium tin oxide (ITO) electrode and excited holes transferred into system to react with AA.Due to the separation of holes and electrons,the currents produced.As shown in Fig.1D,under 430 nm light(which is proximate to 423 nm light in our laboratory) irradiation, CdS/ITO presented a current at 446 nA, and the current varied slightly under six on-off periods,justifying their high stability.Increasing the lights’wavelength into 440 nm, 450 nm, and 500 nm, PEC current respectively reduced.Besides,PEC current was only 3.5 nA under 627 nm light excitation,which is much lower than that of CdS/ITO under 430 nm light irradiation.In view of this,if there is a photoactive matter that can convert 627 nm light into current without any interference from 430 nm light, it was possible to develop a PEC biosensor for dual analytes simultaneous detection.

    Fig.1.(A)TEM image of CdS QDs.(B)UV–vis spectrum of CdS QDs in solution.(C)Diagram of CdS QDs coating on ITO for converting light to current.(D)PEC currents of CdS/ITO under different wavelength of lights irradiation:(a)430 nm,(b)440 nm,(c) 450 nm, (d) 500 nm, and (e) 627 nm.

    The UV–vis and PEC properties of MB were subsequently studied.Fig.S2A (Supporting information) displayed that the maximum peak was at 663 nm,and there was no absorption when the wavelength was < 540 nm.In addition, MB also has high absorbance at 627 nm (which is proximate to 663 nm in our laboratory),which is much larger than that at 430 nm.As expected,MB displayed a 366 nA current under 627 nm light excitation with strong stability (Fig.S2B in Supporting information).The PEC reaction was inferred as follows:MB adsorbs the energy of light to become into MB*,which produced the photoelectrons and excited holes, transferring to ITO electrode and reaction solution,respectively.Under other lights irradiation (590, 580, 500 nm),PEC current gradually decreased with wavelength reducing.When the wavelength decreased to 430 nm, only a 2.57 nA current was recorded.The above experimental results show that the excitation wavelengths of CdS QDs and MB do not interfere with each other for simultaneous PEC detection.In consideration of the complete separation of excitation wavelengths,we believe that it is feasible to apply CdS QDs and MB to develop a PEC biosensor for dual miRNAs simultaneous biosensing.

    Scheme 1.Diagram illustration of working principle of CdS QDs/MB-based PEC biosensor for simultaneous detection of miRNA-21 and let-7a.

    To realize miRNA-21 and let-7a simultaneous biosensing, DNA functionalized CdS QD (CdS-P) was prepared through amide reaction, and was characterized in Figs.S3 and S4 (Supporting information).By employing CdS-P and DNA functionalized MB(MB-P)as two wavelength-resolution signal sources,we tried our best to develop a PEC biosensor for highly sensitive and simultaneous detection of miRNA-21 and let-7a based on SDA,and the working mechanism was illustrated in Scheme 1.First,ITO electrode was electrochemically treated in HAuCl4solution to obtain Au/ITO electrode.Au/ITO electrode was divided into WA1 and WA2, which were applied to linking with HmiR-21and Hlet-7athrough Au-S bond, respectively.Subsequently, mercaptohexanol(MCH)was employed to assemble on electrode to obtain MCH/Hlet-7a/HmiR-21/Au/ITO.In the absence of target miRNAs, hairpin configurations of HmiR-21and Hlet-7adid not vary, resulting in no immobilization of CdS-P and MB-P.Both PEC currents were ultralow.Once only miRNA-21 or let-7a was added, it recognized and hybridized with HmiR-21or Hlet-7ato form miRNA-21@HmiR-21or let-7a@Hlet-7acomplex via toehold-mediated strand displacement reaction.Meanwhile, the formed miRNA-21@HmiR-21or let-7a@Hlet-7acomplex could acted as a toehold to hybridize with CdSP or MB-P,leading to a successful immobilization of CdS QDs or MB.Along with the strand displacement reaction, miRNA-21 or let-7a was released, and hybridized with unreacted HmiR-21or Hlet-7ato initiate the next strand displacement reaction.Obviously,whether miRNA-21 or let-7a can realize the immobilization of abundant photoactive materials.But what we need to pay attention that only CdS-P or MB-P could be immobilized,thereby resulting in only one higher current.When miRNA-21 and let-7a were added,both CdSP and MB-P were simultaneously immobilized, contributing to both high PEC currents.The increasing PEC currents of CdS QDs and MB upon the addition of miRNA-21 and let-7a showed that our PEC biosensor for dual miRNAs enzyme-free, highly sensitive and simultaneous biosensing is feasible.

    To validate the fabrication of CdS QDs/MB-based PEC biosensor,several electrochemical measurements were conducted.As shown in Fig.S5 (Supporting information), the current under -0.2 V gradually decreased along with the time increasing,and leveled off when the time was extended to 20 s, confirming the effective deposition of Au on ITO surface.Subsequently, electrochemical impedance spectroscopy (EIS) was performed (Fig.S6A in Supporting information).Au/ITO demonstrated a 78 V electron transfer resistance (Ret).When HmiR-21was immobilized, Retincreased due to the fact that immobilized HmiR-21enhances the electrostatic repulsion of electrode toward [K3Fe(CN)6]/[K4Fe(CN)6].In this context, when Hlet-7aand MCH were successively immobilized, Retincreased to 109 V and 148 V,respectively.Upon the addition of miRNA-21 and let-7a,Retfurther increased, implying the efficient recognition and hybridization of MCH/Hlet-7a/HmiR-21/Au/ITO by target miRNAs.When CdS-P and MB-P were successively introduced, abundant CdS-P and MB-P were immobilized based on SDA and resulted in higher Ret,respectively.The gradually increased Retin the presence of miRNA-21 and let-7a suggested that CdS QDs/MB-based PEC biosensor was successfully developed.Moreover,the fabrication process can also be verified by cyclic voltammetry (CV) technique (Fig.S6B in Supporting information).

    Fig.2.(A) PEC curves of CdS QDs/MB-based PEC biosensor under different conditions: (a) no targets, (b) 10 pmol/L miRNA-21, (c) 10 pmol/L let-7a, (d)10 pmol/L miRNA-21+10 pmol/L let-7a.(B) PAGE images of (a) HmiR-210, (b) CdS-P',(c) HmiR-210+ CdS-P', (d) HmiR-210+ miRNA-21, (e) HmiR-210+ CdS-P' + miRNA-21.

    To confirm the feasibility for target miRNAs simultaneous biosensing, PEC curves under different conditions were recorded(Fig.2A).If no target existed, PEC currents were only 3.7 nA and 1.9 nA.With only miRNA-21 being added, PEC current under 430 nm light excitation elevated to 108 nA accompanied by a weak current under 627 nm light excitation.In addition, if only let-7a was introduced, PEC current under 627 nm light irradiation increased to 66 nA accompanied by a weak current under 430 nm light excitation.This is because that efficient immobilization of CdS QDs (MB) is relied on target-switched SDA.Consequently,when both of them were added,PEC currents under 430 nm and 627 nm lights irradiation elevated to 99.7 nA and 56.5 nA,respectively.Both of the increased PEC currents indicated that CdS QDs/MB-based PEC biosensor can simultaneously detect miRNA-21 and let-7a.Furthermore, gel electrophoresis analysis was employed to validate the recognition of HmiR-21(Hlet-7a) by target miRNA and competitive hybridization of HmiR-21(Hlet-7a)with CdS-P(MB-P)(Fig.2B and Fig.S7 in Supporting information).

    Prior to evaluate the ability of CdS QDs/MB-based PEC biosensor for miRNA-21 and let-7a simultaneous biosensing, HmiR-21concentration, Hlet-7aconcentration, CdS-P concentration, MB-P concentration, reaction time, and area ratio of WA1/WA2 that played significant influences in immobilization of photoactive materials were discussed(Figs.S8-S10 in Supporting information).After the optimization (1mmol/L, 2mmol/L, 1mmol/L, 2mmol/L,120 min, and 1/2), we challenged CdS QDs/MB-based PEC biosensor by probing miRNA-21 and let-7a with varying amounts to assess its sensing ability.As displayed in Fig.3A, PEC currents augmented with both of the miRNAs amounts elevating, which were due to working mechanism that more miRNAs initiated more SDA, thereby increasing the immobilization amounts of CdS QDs and MB.To precisely appraise the responsive sensitivity, working curves were made by using ICdSand IMBas vertical coordinates,miRNA-21 concentration(CmiRNA-21)and let-7a concentration(Clet-7a) as horizontal coordinates, respectively.The curves in Fig.3B showed that ICdSmaintained linearly with logarithm of miRNA-21 concentrations from 0.02 pmol/L to 10 pmol/L.The equation was calculated to be ICdS=34.7142lgCmiRNA-21+63.0951 with coefficient of 0.9971 and detection limit of 6.6 fmol/L based on three sigma rule (3s).For let-7a, the information was displayed in Fig.3C,giving the equation of IMB= 22.9681lgClet-7a+33.2531,coefficient of 0.9977 and detection limit of 15.4 fmol/L based on 3s.The comparison of our biosensor and other sensors was summed up in Table S2 (Supporting information), demonstrating that the detection limit was comparable or lower than that of previously reported fluorescent/electrochemical biosensors dedicated to dual miRNAs biosensing whether or not they applied bioenzymes to amplify the signal.

    Fig.3.(A) PEC curves of CdS QDs/MB-based PEC biosensor corresponding to miRNA-21 and let-7a with different concentrations:(a)0+0,(b)0.02+0.05 pmol/L,(c) 0.05+0.1 pmol/L, (d) 0.1+0.2 pmol/L, (e) 0.5+0.5 pmol/L, (f) 1+1 pmol/L, (g)2+2 pmol/L, (h) 5+5 pmol/L, (i) 10+10 pmol/L.(B) PEC currents versus miRNA-21 concentrations.Inset shows the linear curve between ICdSand lgCmiRNA-21.(C) PEC currents versus let-7a concentrations.Inset shows the linear curve between IMBand lgClet-7a.(D) PEC currents of seven freshly prepared MCH/Hlet-7a/HmiR-21/Au/ITO electrodes in the presence of target miRNAs.

    As is well known that selectivity acts an important role in assuring diagnosis accuracy, and thus, was studied through applying miRNA-155, miRNA-16, let-7b, let-7d, alanine aminotransferase (ALT), L-serine, taurine, and glucose as interferences.The information in Fig.S11(Supporting information)demonstrated that when only target miRNAs were present,CdS QDs/MB-based PEC biosensor displayed two high PEC currents.These interferences made little dedication to change in ICdSand IMB.Thus, CdS QDs/MB-based PEC biosensor enjoys exceptional specificity for differencing miRNA-21 and let-7a against other interferences.Besides selectivity,repeatability is also a momentous criterion for a biosensor,and thus was discussed(Fig.3D).Seven freshly prepared MCH/Hlet-7a/HmiR-21/Au/ITO electrodes were utilized to probe 10 pmol/L miRNA-21 and 10 pmol/L let-7a.For miRNA-21 and let-7a, the maximum current changes were 3.3 and 6.0 nA,which are small, justifying the excellent repeatability.

    Breast cancer is the second most common cancer in women.It is of highly important to find effective strategy to achieve breast cancer early accurate diagnosis before it has spread.In this work,CdS QDs/MB-based PEC biosensor was employed to determine miRNA-21 and let-7a in serum from breast cancer patient,and the result was compared with qRT-PCR.Prior to analysis, the serum was diluted by PB buffer.The levels of miRNA-21 and let-7a were calculated to be 24.3 and 21.2 nmol/L by our biosensor,respectively,which were in good agreement with that gotten from qRT-PCR(Fig.S12 in Supporting information) and corresponded well to previously reported value [5].Therefore, CdS QDs/MB-based PEC biosensor provides a significant potential for clinical determination of cancers.

    In summary,a novel CdS QDs/MB-based PEC biosensor based on SDA for highly sensitive and simultaneous determination of miRNA-21 and let-7a has been developed.CdS QDs and MB are applied as photoactive substances, from which PEC currents generated under different lights irradiation.Profiting from target miRNAs-switched SDA, more CdS QDs and MB were immobilized on electrode, further enhancing PEC currents.Consequently, CdS QDs/MB-based PEC biosensor exhibited ultrahigh sensitivity toward miRNA-21 and let-7a with detection limits of 6.6 fmol/L and 15.4 fmol/L, respectively.This PEC biosensor was further employed to simultaneously determine miRNA-21 and let-7a in breast cancer patient’s serum.This work not only exhibited a significant potential for high-performance PEC biosensor development, but also provided a promising tool for early and reliable determination of miRNA-related diseases.

    Declaration of competing interest

    There are no conflicts to declare.

    Acknowledgments

    This work was funded by the National Natural Science Foundation of China(Nos.21605093 and 21775082),the Shandong Province Higher Educational Program for Young Innovation Talents, the Special Foundation for Distinguished Taishan Scholar of Shandong Province (No.ts201511052), and the Major Program of Shandong Province Natural Science Foundation (No.ZR2018ZC0127).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.05.041.

    少妇人妻久久综合中文| 日日爽夜夜爽网站| av在线观看视频网站免费| 国产在线视频一区二区| 亚洲专区中文字幕在线 | 国产成人av激情在线播放| 日韩大码丰满熟妇| 免费在线观看完整版高清| 嫩草影视91久久| 老司机亚洲免费影院| 欧美少妇被猛烈插入视频| 男女边摸边吃奶| 九草在线视频观看| 国产一区亚洲一区在线观看| 亚洲精品第二区| 熟女少妇亚洲综合色aaa.| 亚洲精品久久久久久婷婷小说| 99久久人妻综合| 欧美国产精品va在线观看不卡| 亚洲一级一片aⅴ在线观看| 久久99一区二区三区| 亚洲男人天堂网一区| 天天躁夜夜躁狠狠躁躁| av电影中文网址| 少妇人妻精品综合一区二区| 街头女战士在线观看网站| 在线精品无人区一区二区三| 亚洲av在线观看美女高潮| 国产精品嫩草影院av在线观看| 日韩中文字幕视频在线看片| 视频在线观看一区二区三区| 久久久欧美国产精品| 九九爱精品视频在线观看| 黄色视频在线播放观看不卡| 啦啦啦视频在线资源免费观看| 亚洲欧洲国产日韩| 欧美精品一区二区大全| 不卡视频在线观看欧美| 天天躁狠狠躁夜夜躁狠狠躁| 丰满饥渴人妻一区二区三| 欧美 亚洲 国产 日韩一| 久久人人爽av亚洲精品天堂| 久久久精品国产亚洲av高清涩受| 精品少妇黑人巨大在线播放| 欧美久久黑人一区二区| 亚洲欧美色中文字幕在线| 久久久久国产精品人妻一区二区| 午夜久久久在线观看| 国产熟女午夜一区二区三区| 中文字幕精品免费在线观看视频| 日韩av不卡免费在线播放| 看免费成人av毛片| 国产精品香港三级国产av潘金莲 | 久久99热这里只频精品6学生| 少妇被粗大猛烈的视频| 91国产中文字幕| 久久天堂一区二区三区四区| 丝瓜视频免费看黄片| 欧美精品亚洲一区二区| 亚洲婷婷狠狠爱综合网| 激情五月婷婷亚洲| 亚洲国产最新在线播放| 777米奇影视久久| 操出白浆在线播放| 老鸭窝网址在线观看| 日韩熟女老妇一区二区性免费视频| 国产野战对白在线观看| 婷婷色av中文字幕| 在现免费观看毛片| 国产av国产精品国产| 欧美中文综合在线视频| 精品一区二区三卡| 国产高清国产精品国产三级| 一区二区av电影网| 只有这里有精品99| 亚洲一码二码三码区别大吗| 色94色欧美一区二区| 亚洲精品一二三| 国产日韩欧美亚洲二区| 激情视频va一区二区三区| 在现免费观看毛片| 亚洲国产欧美网| 色视频在线一区二区三区| 国产精品三级大全| 天美传媒精品一区二区| 亚洲国产av影院在线观看| 在线观看免费日韩欧美大片| 久久99一区二区三区| 成人亚洲欧美一区二区av| 精品少妇黑人巨大在线播放| 日韩欧美一区视频在线观看| 一个人免费看片子| 免费黄网站久久成人精品| 在线观看www视频免费| 9热在线视频观看99| 亚洲欧美清纯卡通| 国产成人免费无遮挡视频| 人人澡人人妻人| 丰满乱子伦码专区| 国产一区二区在线观看av| 成人手机av| 亚洲精品日韩在线中文字幕| 在线看a的网站| 性高湖久久久久久久久免费观看| av在线app专区| 国产免费又黄又爽又色| av不卡在线播放| 看免费av毛片| 欧美另类一区| 中文精品一卡2卡3卡4更新| 日日撸夜夜添| 少妇人妻 视频| 久久精品久久久久久噜噜老黄| 老鸭窝网址在线观看| 人成视频在线观看免费观看| 90打野战视频偷拍视频| 九草在线视频观看| 国产探花极品一区二区| 尾随美女入室| 亚洲精品一二三| 精品第一国产精品| 香蕉丝袜av| 亚洲成人av在线免费| 性高湖久久久久久久久免费观看| 久久国产精品男人的天堂亚洲| 亚洲av综合色区一区| 伦理电影免费视频| 亚洲美女视频黄频| 欧美精品人与动牲交sv欧美| 国产成人精品久久久久久| 天天添夜夜摸| 亚洲国产av影院在线观看| 中文字幕另类日韩欧美亚洲嫩草| 黄色怎么调成土黄色| 国产视频首页在线观看| 欧美中文综合在线视频| 免费久久久久久久精品成人欧美视频| 亚洲伊人久久精品综合| e午夜精品久久久久久久| 国产成人免费观看mmmm| 日日撸夜夜添| 中文字幕色久视频| 午夜激情久久久久久久| 欧美日韩福利视频一区二区| 人人妻人人澡人人爽人人夜夜| av视频免费观看在线观看| 成人午夜精彩视频在线观看| 国产淫语在线视频| 欧美黑人精品巨大| 一区福利在线观看| 国产淫语在线视频| 秋霞伦理黄片| 80岁老熟妇乱子伦牲交| 在线观看免费视频网站a站| 午夜福利乱码中文字幕| 综合色丁香网| 观看av在线不卡| 你懂的网址亚洲精品在线观看| 成人午夜精彩视频在线观看| avwww免费| 青春草视频在线免费观看| 一区二区日韩欧美中文字幕| av视频免费观看在线观看| 午夜福利一区二区在线看| 欧美老熟妇乱子伦牲交| 中文天堂在线官网| 久久精品国产亚洲av高清一级| 色94色欧美一区二区| 国产精品一区二区在线观看99| 国产成人一区二区在线| 亚洲精华国产精华液的使用体验| 国产色婷婷99| 天天躁狠狠躁夜夜躁狠狠躁| 午夜福利视频在线观看免费| 欧美精品高潮呻吟av久久| 精品国产一区二区三区四区第35| 久久人人97超碰香蕉20202| 欧美 日韩 精品 国产| 精品国产超薄肉色丝袜足j| 久久精品熟女亚洲av麻豆精品| 99久久99久久久精品蜜桃| 欧美日韩国产mv在线观看视频| 高清不卡的av网站| av卡一久久| 午夜91福利影院| 老司机影院成人| 一级毛片电影观看| 成年女人毛片免费观看观看9 | 少妇人妻 视频| 久久这里只有精品19| 又大又黄又爽视频免费| 亚洲熟女精品中文字幕| 少妇被粗大猛烈的视频| av片东京热男人的天堂| 高清av免费在线| 亚洲欧洲精品一区二区精品久久久 | 新久久久久国产一级毛片| 精品亚洲成国产av| 男人添女人高潮全过程视频| 成人亚洲精品一区在线观看| 国产精品麻豆人妻色哟哟久久| 天天躁夜夜躁狠狠躁躁| 日日啪夜夜爽| 国产免费又黄又爽又色| 日韩一区二区视频免费看| 午夜福利,免费看| 90打野战视频偷拍视频| 亚洲国产精品一区二区三区在线| 亚洲七黄色美女视频| 亚洲一区二区三区欧美精品| 亚洲av国产av综合av卡| 99香蕉大伊视频| 电影成人av| 天天躁夜夜躁狠狠久久av| av有码第一页| 美女脱内裤让男人舔精品视频| 免费高清在线观看日韩| 熟女少妇亚洲综合色aaa.| 成人三级做爰电影| 久久鲁丝午夜福利片| 少妇被粗大的猛进出69影院| 在线精品无人区一区二区三| 国产成人精品福利久久| 成年美女黄网站色视频大全免费| 成年美女黄网站色视频大全免费| 狠狠婷婷综合久久久久久88av| 亚洲av电影在线进入| 交换朋友夫妻互换小说| 男人舔女人的私密视频| 国产日韩一区二区三区精品不卡| 亚洲av福利一区| 99九九在线精品视频| 免费一级毛片在线播放高清视频 | 丁香欧美五月| 久久精品国产清高在天天线| 国产精品爽爽va在线观看网站 | 纯流量卡能插随身wifi吗| 亚洲熟妇中文字幕五十中出| 深夜精品福利| 一个人免费在线观看的高清视频| 天天添夜夜摸| 日本 欧美在线| bbb黄色大片| 法律面前人人平等表现在哪些方面| 亚洲第一电影网av| 啦啦啦观看免费观看视频高清 | 午夜a级毛片| 亚洲熟妇熟女久久| 亚洲七黄色美女视频| 久久久国产成人精品二区| 亚洲人成伊人成综合网2020| 法律面前人人平等表现在哪些方面| 日本在线视频免费播放| 啦啦啦韩国在线观看视频| 老司机深夜福利视频在线观看| 欧美精品亚洲一区二区| 少妇粗大呻吟视频| 午夜福利欧美成人| 免费一级毛片在线播放高清视频 | 国产亚洲av高清不卡| 欧美日韩黄片免| 久久狼人影院| 国产亚洲欧美在线一区二区| 欧美在线一区亚洲| 国产成人一区二区三区免费视频网站| 首页视频小说图片口味搜索| 最近最新中文字幕大全电影3 | 91国产中文字幕| e午夜精品久久久久久久| www日本在线高清视频| 咕卡用的链子| 亚洲国产高清在线一区二区三 | 色尼玛亚洲综合影院| 日日摸夜夜添夜夜添小说| 国产精品国产高清国产av| 嫩草影视91久久| 97人妻精品一区二区三区麻豆 | 咕卡用的链子| 一二三四在线观看免费中文在| 亚洲精品国产区一区二| 免费少妇av软件| 亚洲熟妇熟女久久| 18美女黄网站色大片免费观看| 国产色视频综合| 精品午夜福利视频在线观看一区| 成人18禁在线播放| 久久精品国产综合久久久| 亚洲国产欧美日韩在线播放| 久久精品aⅴ一区二区三区四区| 91精品三级在线观看| 男女下面插进去视频免费观看| 制服诱惑二区| 日韩视频一区二区在线观看| 国产又爽黄色视频| 老汉色av国产亚洲站长工具| 啪啪无遮挡十八禁网站| 久久久久久亚洲精品国产蜜桃av| 成人亚洲精品av一区二区| 91老司机精品| 国产精品免费视频内射| 成人免费观看视频高清| 免费搜索国产男女视频| 极品人妻少妇av视频| 91老司机精品| 一级a爱视频在线免费观看| 欧美av亚洲av综合av国产av| 亚洲av日韩精品久久久久久密| 大陆偷拍与自拍| 香蕉国产在线看| 日韩欧美在线二视频| 一本综合久久免费| 久久性视频一级片| 一卡2卡三卡四卡精品乱码亚洲| 国产成人av激情在线播放| 人人妻人人澡欧美一区二区 | 亚洲av熟女| av片东京热男人的天堂| 久久 成人 亚洲| 国产一区二区三区视频了| 免费av毛片视频| 大型av网站在线播放| 老司机午夜十八禁免费视频| 国产激情欧美一区二区| 欧美成人午夜精品| 黄色女人牲交| 男女下面插进去视频免费观看| 欧美日韩一级在线毛片| 人人澡人人妻人| 亚洲三区欧美一区| 91麻豆精品激情在线观看国产| 俄罗斯特黄特色一大片| 国产欧美日韩一区二区精品| 久久影院123| 少妇 在线观看| cao死你这个sao货| 十八禁人妻一区二区| svipshipincom国产片| 在线十欧美十亚洲十日本专区| 日本黄色视频三级网站网址| 午夜a级毛片| 亚洲一码二码三码区别大吗| 在线av久久热| 国产精品亚洲美女久久久| 男女午夜视频在线观看| 亚洲狠狠婷婷综合久久图片| 精品欧美国产一区二区三| 欧美大码av| 午夜两性在线视频| 黑丝袜美女国产一区| 一夜夜www| 夜夜夜夜夜久久久久| 91在线观看av| 国产av在哪里看| 嫩草影院精品99| e午夜精品久久久久久久| 国产亚洲精品av在线| 午夜免费成人在线视频| 精品久久久久久久毛片微露脸| 1024视频免费在线观看| 亚洲精品国产一区二区精华液| 91九色精品人成在线观看| 国产男靠女视频免费网站| 嫩草影院精品99| 国产亚洲欧美98| 又黄又粗又硬又大视频| 亚洲国产精品999在线| 久久精品国产亚洲av高清一级| x7x7x7水蜜桃| 韩国av一区二区三区四区| 国产精品久久久av美女十八| 免费高清在线观看日韩| 日韩有码中文字幕| 激情在线观看视频在线高清| 日韩欧美一区视频在线观看| 日本vs欧美在线观看视频| 一边摸一边做爽爽视频免费| 亚洲精品中文字幕一二三四区| √禁漫天堂资源中文www| 午夜福利高清视频| 18美女黄网站色大片免费观看| 脱女人内裤的视频| 国产一区在线观看成人免费| 99精品久久久久人妻精品| 亚洲人成网站在线播放欧美日韩| 黑丝袜美女国产一区| 一级毛片女人18水好多| 精品人妻在线不人妻| 99在线人妻在线中文字幕| 高清黄色对白视频在线免费看| 亚洲人成电影观看| 正在播放国产对白刺激| 在线观看www视频免费| 欧美黑人欧美精品刺激| 如日韩欧美国产精品一区二区三区| 精品第一国产精品| 妹子高潮喷水视频| 精品熟女少妇八av免费久了| 亚洲国产欧美网| 精品久久久久久,| av网站免费在线观看视频| 最新美女视频免费是黄的| 黄色 视频免费看| 久久久久久大精品| 久久草成人影院| 侵犯人妻中文字幕一二三四区| 他把我摸到了高潮在线观看| 久久久国产成人精品二区| 99久久久亚洲精品蜜臀av| 亚洲欧美一区二区三区黑人| 中文字幕最新亚洲高清| 91字幕亚洲| 国产高清有码在线观看视频 | 中文字幕色久视频| 黄色成人免费大全| 免费看美女性在线毛片视频| 欧美最黄视频在线播放免费| 在线免费观看的www视频| 成人18禁在线播放| 国产一区在线观看成人免费| 亚洲免费av在线视频| 午夜福利高清视频| 久久久久国内视频| 老司机在亚洲福利影院| 久久中文字幕一级| 色播在线永久视频| 美女高潮喷水抽搐中文字幕| 中文字幕最新亚洲高清| 国产亚洲精品第一综合不卡| 国产亚洲av高清不卡| 成人欧美大片| 在线永久观看黄色视频| 老司机午夜福利在线观看视频| 国产一区二区在线av高清观看| 成熟少妇高潮喷水视频| av中文乱码字幕在线| 后天国语完整版免费观看| 午夜两性在线视频| 大型av网站在线播放| 久久久久久久久中文| www.999成人在线观看| 久久久久精品国产欧美久久久| 欧美亚洲日本最大视频资源| 色综合站精品国产| 精品日产1卡2卡| 免费在线观看影片大全网站| 俄罗斯特黄特色一大片| 香蕉丝袜av| 欧美激情高清一区二区三区| www.熟女人妻精品国产| 午夜影院日韩av| 美女 人体艺术 gogo| 亚洲中文字幕一区二区三区有码在线看 | avwww免费| 黄频高清免费视频| 中文字幕高清在线视频| 亚洲精品久久成人aⅴ小说| 久久婷婷成人综合色麻豆| 久久久久国产精品人妻aⅴ院| 精品人妻1区二区| 一个人观看的视频www高清免费观看 | 欧美黑人精品巨大| 黄片大片在线免费观看| 一区二区三区国产精品乱码| 国产又色又爽无遮挡免费看| 久久午夜亚洲精品久久| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜一区二区| e午夜精品久久久久久久| av免费在线观看网站| 美女高潮到喷水免费观看| 国产单亲对白刺激| 日本黄色视频三级网站网址| 日韩视频一区二区在线观看| svipshipincom国产片| 老熟妇仑乱视频hdxx| 老鸭窝网址在线观看| 久久久久久久久中文| 满18在线观看网站| 亚洲一区高清亚洲精品| 一边摸一边做爽爽视频免费| 精品久久久久久久毛片微露脸| 性欧美人与动物交配| 999精品在线视频| 狠狠狠狠99中文字幕| 精品国内亚洲2022精品成人| 国产精品香港三级国产av潘金莲| a在线观看视频网站| 精品国产国语对白av| 宅男免费午夜| 少妇的丰满在线观看| 18禁观看日本| 午夜福利在线观看吧| 国产亚洲精品av在线| 日韩欧美三级三区| 精品欧美一区二区三区在线| 纯流量卡能插随身wifi吗| 久久天躁狠狠躁夜夜2o2o| 韩国av一区二区三区四区| 精品熟女少妇八av免费久了| 午夜福利影视在线免费观看| 亚洲男人天堂网一区| 熟女少妇亚洲综合色aaa.| 乱人伦中国视频| 欧美成狂野欧美在线观看| 757午夜福利合集在线观看| 国产一区二区激情短视频| 黄色丝袜av网址大全| 日韩成人在线观看一区二区三区| cao死你这个sao货| 精品国产国语对白av| 欧美黑人欧美精品刺激| 欧美另类亚洲清纯唯美| 最好的美女福利视频网| 欧美人与性动交α欧美精品济南到| 国产免费男女视频| av有码第一页| 成人18禁高潮啪啪吃奶动态图| 午夜福利一区二区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇熟女aⅴ在线视频| 亚洲精品国产精品久久久不卡| 久久久久国产一级毛片高清牌| 久久久久久免费高清国产稀缺| 欧美激情高清一区二区三区| 成人欧美大片| 日韩欧美三级三区| √禁漫天堂资源中文www| 亚洲美女黄片视频| bbb黄色大片| 亚洲一区二区三区色噜噜| 久久精品91无色码中文字幕| 色婷婷久久久亚洲欧美| 国产精品自产拍在线观看55亚洲| 欧美久久黑人一区二区| 亚洲精品中文字幕在线视频| av网站免费在线观看视频| 欧美绝顶高潮抽搐喷水| 免费高清在线观看日韩| 亚洲精品av麻豆狂野| 欧美老熟妇乱子伦牲交| www.精华液| 国产真人三级小视频在线观看| 99香蕉大伊视频| 亚洲国产高清在线一区二区三 | 波多野结衣巨乳人妻| 成人三级黄色视频| 免费在线观看日本一区| 免费在线观看完整版高清| 熟女少妇亚洲综合色aaa.| 欧美日本亚洲视频在线播放| 一进一出抽搐动态| 99久久久亚洲精品蜜臀av| 一区二区三区精品91| 一级黄色大片毛片| 老鸭窝网址在线观看| 超碰成人久久| 国产一级毛片七仙女欲春2 | 国产亚洲精品久久久久久毛片| 极品教师在线免费播放| 黄色毛片三级朝国网站| 天堂动漫精品| 国产成人av激情在线播放| 亚洲成人国产一区在线观看| 欧美日韩瑟瑟在线播放| 免费少妇av软件| 狂野欧美激情性xxxx| 自线自在国产av| 日韩有码中文字幕| 纯流量卡能插随身wifi吗| 久9热在线精品视频| 悠悠久久av| 久久久国产成人免费| 12—13女人毛片做爰片一| 久久午夜亚洲精品久久| 国产一级毛片七仙女欲春2 | 亚洲人成伊人成综合网2020| 不卡一级毛片| tocl精华| 老汉色∧v一级毛片| 麻豆国产av国片精品| 不卡一级毛片| 好男人在线观看高清免费视频 | 欧美精品亚洲一区二区| 国产成人精品久久二区二区91| 国产亚洲精品av在线| 俄罗斯特黄特色一大片| 成人永久免费在线观看视频| 免费观看人在逋| 国产免费男女视频| 亚洲欧美一区二区三区黑人| www日本在线高清视频| 最近最新中文字幕大全免费视频| 香蕉久久夜色| 香蕉丝袜av| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精华一区二区三区| 妹子高潮喷水视频| 制服诱惑二区| 欧美一区二区精品小视频在线| 久久久久九九精品影院| 满18在线观看网站| 国产亚洲精品一区二区www| 久久人妻熟女aⅴ| 久久久久国产精品人妻aⅴ院| 极品教师在线免费播放| 好看av亚洲va欧美ⅴa在| 久久中文字幕人妻熟女| 两性午夜刺激爽爽歪歪视频在线观看 | 黄片大片在线免费观看| 亚洲 欧美 日韩 在线 免费| 久久午夜亚洲精品久久| 天堂√8在线中文| 最近最新中文字幕大全电影3 | 欧美性长视频在线观看| 日本a在线网址|