• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molybdenum-doped titanium dioxide supported low-Pt electrocatalyst for highly efficient and stable hydrogen evolution reaction

    2021-05-14 09:47:20KeChenShaofengDengYunLuMingxingGongYezhouHuTonghuiZhaoTaoShenDeliWang
    Chinese Chemical Letters 2021年2期

    Ke Chen,Shaofeng Deng,Yun Lu,Mingxing Gong,Yezhou Hu,Tonghui Zhao,Tao Shen,Deli Wang*

    Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

    ABSTRACT The Platinum (Pt)-based catalysts exhibit excellent catalytic performance for the hydrogen evolution reaction (HER) while suffering from poor stability due to the weak interaction between the carbon support and Pt.Herein, a molybdenum-doped titanium dioxide (Ti0.9Mo0.1O2) supported low-Pt electrocatalyst with stronger interaction between catalyst and support is applied to tune the electrocatalytic performance of Pt.The Ti0.9Mo0.1O2support can not only tolerate the corrosion environment in the catalytic system,but also generate strong metal-support interaction(SMSI)between the oxide and catalyst.A facile solvothermal method is used to prepare Ti0.9Mo0.1O2as support to anchor Pt nanoparticles.The 5%Pt supported on Ti0.9Mo0.1O2catalyst exhibits 4.4-fold mass activity(MA)at an overpotential of 50 mV and higher stability than 20%Pt/C with only 1/4 Pt loading.The SMSI between the Ti0.9Mo0.1O2and Pt prevents the Pt aggregation to achieve excellent stability, and hydrogen spillover effect in the interface between Pt and support benefits the hydrogen production process.This work presents a novel sight for the fabrication and design of oxide supported catalysts in various catalytic system by reasonably employing support effect.

    Keywords:Low-Pt electrocatalyst Oxide support Strong metal-support interaction Hydrogen spillover effect Hydrogen evolution reaction

    Hydrogen energy has aroused tremendous attention in face of the depletion of fossil fuels because of its cleanness and high energy density [1–4].High purity hydrogen can be produced by electrochemical water splitting,which is constitutive of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The HER process is highly dependent on the electrocatalyst to overcome the inherent thermodynamic overpotential and increase the energy conversion efficiency.Up to now, Platinum (Pt)-based materials have been universally regarded as the most active catalysts for HER.However, the exceeding insufficiency of Pt resources has rapidly elevated its price,which limits its large-scale application.An alternative way to lower the cost of catalysts is to reduce the use of Pt in the catalysts.For example,loading Pt on the support can improve the dispersion and the utilization of particles by exposing more active sites.Nowadays,the most commonly used support of Pt-based catalyst are carbon-based materials, which possess excellent electrical conductivity as well as large specific surface area.Nevertheless, the weak interaction between carbon and Pt easily lead to the agglomeration or shedding of catalyst particles in operating conditions, resulting in reduced catalytic service life[5].A desirable catalyst support not only need excellent conductivity,superior physicochemical stability and low cost, but also requires strong interaction between catalyst and support.Therefore, it is necessary to explore new supports with stronger interaction with catalyst to achieve better stability [6–8].

    Metal oxide is a promising substitute for the carbon-based support owing to its low cost, nontoxicity, excellent mechanical strength and chemical stability.To date, several transition metal oxides (including TiO2[9], CeO2[10], WOx[11], SnO2[12]) have been developed as alternative supports in electrochemical reactions, especially for TiO2, which have attracted enormous attentions.It has been reported that TiO2can generate strong metal to support interaction (SMSI) with the supported metal catalyst[13,14].The SMSI induced charge transfer effect enhances the interaction between the metal and support[15,16].However,there are several obstacles hindering the application of TiO2support in electrocatalytic system.Most importantly, TiO2is a typical semiconductor material with a high band gap [17,18], however,its inherent low conductivity severely limits its application as an electrocatalyst support.To address these issues, there are some traditional methods including metal atom doping, partial reduction of Ti into Magnéli phase[19,20]or composite with conductive materials [21–24].Heteroatom doping is a facile and effective method to improve the conductivity.Researchers have reported such materials including doped elements such as Nb [25,26], Mo[27],W[28],Ru[29],Ta[30],etc.Recently,Tsai[31]and co-workers reported Mo-doped titanium dioxide as the support for Pt nanoparticles which exhibited enhanced mass activity and stability for the oxygen reduction reaction.The electron transfer from the Mo-doped titanium dioxide to Pt induced by SMSI could be explained for the improved catalytic performance.

    The hydrogen spillover effect has also been reported to enhance the HER performance [11,32–34], and it is very common in supported metal nanoparticles where the absorbed H atom migrate from the surface of strong binding sites (metal) to that of weak binding sites (support).A study on single atom Pt supported on WO3-x(Pt SA/WO3-x) showed that the hydrogen spillover effect between the tungsten oxide and Pt enhanced the HER catalytic activity [11].In this case, hydrogen insertion/extraction behavior would be expedited due to the rapid reexposure of the Pt surface.Under the circumstance, we intend to explore the possibility of applying TiO2-based materials as HER catalyst support.Besides, there are rare reports about TiO2-based supports applied in HER [35].

    Herein, molybdenum-doped titanium oxide (Ti0.9Mo0.1O2) has been prepared as support to anchor Pt nanoparticles with low metal loading of 5 wt%.Spectroscopy characterization confirms the SMSI effect between the catalyst and support.Combining with hydrogen spillover effect, the Pt/Ti0.9Mo0.1O2catalyst exhibits 4.4 times higher mass activity and more excellent durability over 10,000 cycles than 20%Pt/C catalyst.The SMSI between the Pt and the Ti0.9Mo0.1O2enhance the dispersion of the catalyst particles,the hydrogen spillover effect make it faster for the re-exposure of the active surface of Pt,thus improving the utilization of the Pt and achieving excellent stability.

    Fig.1a shows the X-ray diffraction (XRD) patterns of Pt/Ti0.9Mo0.1O2, Ti0.9Mo0.1O2and TiO2.The Ti0.9Mo0.1O2support exhibits amorphous structure while the TiO2prepared with similar methods exhibits the crystal structure of anatase titanium dioxide (PDF card 01-071-1167).No signal corresponding to the phase of Mo metal/oxides were observed due to the low content of Mo.As shown in Fig.S1 (Supporting information), the Pt/TixMo1-xO2with different Mo content and Pt/MoO2exhibits similar crystal structure with amorphous support, demonstrating that the structure transformation of TiO2is possibly due to the Mo doping.After the deposition of Pt, the Pt/Ti0.9Mo0.1O2exhibits typical diffraction peaks centered at 39.6, 46.1, 67.2and 80.9,which are assigned to the(111),(200),(220),(311)plane for facecenter cubic Pt (PDF card 01-087-0640), indicating the successful loading of Pt onto the amorphous Ti0.9Mo0.1O2.

    The morphology of the synthesized Ti0.9Mo0.1O2and Pt/Ti0.9Mo0.1O2was examined by scanning electron microscopy(SEM)in Fig.S2(Supporting information).The Ti0.9Mo0.1O2shows a spherical structure with a diameter of 800 nm approximately,and the structure of Pt/Ti0.9Mo0.1O2was nearly identical to the Ti0.9Mo0.1O2after 5%Pt was loaded on the support(Fig.2a).To get a better view of the dispersion of the Pt particles, the transmission electron microscopy (TEM) in association with energy-dispersive X-ray spectroscopy (EDS) was employed.Fig.2b presents a high resolution TEM (HRTEM) image of Pt/Ti0.9Mo0.1O2, in which Pt nanoparticles about 2-3 nm were well dispersed on the support.The obvious lattice fringe with a spacing of 0.23 nm was measured as shown in the inset of Fig.2b, which was corresponding to the(111) plane of the Pt.The homogeneous distribution of Pt, Ti, Mo and O species further proved the well dispersion of the Pt catalyst as shown by EDS mapping in Figs.2c–h.

    Fig.1.(a) XRD patterns of Pt/Ti0.9Mo0.1O2, Ti0.9Mo0.1O2and TiO2.(b) Raman spectra of Pt/Ti0.9Mo0.1O2, Ti0.9Mo0.1O2and Pt/TiO2composite.Inset:the magnification of the selected area.

    Fig.2.(a)TEM images of Ti0.9Mo0.1O2and(b)HRTEM images of Pt/Ti0.9Mo0.1O2,inset:the magnification of the selected area in yellow circle.(c–h)Elemental mapping of Pt/Ti0.9Mo0.1O2.

    Fig.3.(a) Ti 2p and (b) Pt 4f high-resolution XPS spectra of the Pt/Ti0.9Mo0.1O2catalyst.

    X-ray photoelectron spectroscopy(XPS)was further carried out to evaluate the electronic interaction between Pt and Ti0.9Mo0.1O2.The survey spectrum of Pt/Ti0.9Mo0.1O2was shown in Fig.S3a(Supporting information),which proved the existence of Pt,Ti,Mo,O, and C elements, and this result was consistent with the EDS analysis.The high-resolution Mo 3d spectrum (Fig.S3b in Supporting information) can be deconvoluted into four peaks,which are attributed to Mo4+and Mo6+, respectively.As shown in Fig.3a, the Ti 2p spectrum shows doublet peaks at 458.8 and 464.6 eV,demonstrating the existence state of Ti4+in the catalyst.An obvious positive shift of Ti4+2p3/2orbitals was observed towards higher binding energy relative to that of Ti0.9Mo0.1O2,which is possibly due to the electronic interaction between Pt and Ti0.9Mo0.1O2.Fig.3b presents the Pt 4f core level spectra of Pt/Ti0.9Mo0.1O2and Pt/C.The two main peaks located at binding energy of 71.1 eV and 74.4 eV can be attributed to the 4f7/2and 4f5/2orbitals of Pt0, respectively.Indeed, the existence of Pt2+and Pt4+species in both Pt/Ti0.9Mo0.1O2and Pt/C is due to the inevitable oxidation of Pt when exposed to air.The binding energy for Pt04f7/2exhibits 0.25 eV lower relative to that of Pt/C, indicating electron donation from the Ti0.9Mo0.1O2to Pt.It is suggested that the interaction between the Ti0.9Mo0.1O2support and Pt obviously changed the electronic structure of Pt,which is possibly beneficial to the catalytic performance [35,36].

    To investigate the electrocatalytic performance of these catalysts towards HER, the electrochemical characterizations were performed in 0.5 mol/L H2SO4.Pt/TiO2, homemade 5% and 20%Pt/C were also performed for comparison.It can be observed in Fig.S4 (Supporting information) that the Pt/TiO2exhibits much lower current density because of its low electric conductivity.However, the Pt/Ti0.9Mo0.1O2shows a greater current density as a result of improved conductivity by Mo doping.The current improvement phenomenon can also be observed when compared with Pt/MoO2in Fig.S5a (Supporting information),which is assigned to weaker interaction between Pt and MoO2.Furthermore, both 5% Pt/Ti0.9Mo0.1O2and 20% Pt/C show small overpotentials (26 mV and 29 mV, respectively) in the polarization curves as shown in Fig.4a, indicating all these catalysts are highly efficient for HER.Normalized to the Pt loading, the calculated mass specific activity was compared at different over-potentials in Fig.4b.The mass activity of 1.72 A/mgPtfor 5% Pt/Ti0.9Mo0.1O2at an overpotential of 50 mV is 4.4-fold higher than that of 20% Pt/C (0.39 A/mgPt).It could be inferred that Pt/Ti0.9Mo0.1O2exhibits a better Pt utilization than Pt/C, which could effectively decrease the catalyst cost.The Tafel slope for the Pt/Ti0.9Mo0.1O2and 20% Pt/C were calculated in Fig.4c with close values (36 mV/dec and 30 mV/dec, respectively), illustrating a similar reaction mechanism.

    Cyclic voltammetry (CV) tests were performed in 0.5 mol/L H2SO4solution.Obvious redox peaks between 0.44 V and 0.62 V can be shown in the CV profiles of Pt/TixMo1-xO2in Fig.S6a(Supporting information).These peaks are attributed to the formation of hydrogen molybdenum bronzes [37,38].It is known to all that MoOycould absorb the hydrogen and forms HxMoOy[19]in the presence of noble metals.The CV of Pt/Ti0.9Mo0.1O2in Fig.S4(Supporting information) did not show these peaks because the Mo content is too low in the catalyst to show this characteristic.This revealed that the Ti0.9Mo0.1O2support is electrochemical inert under the operating condition.This results can be further proved by the comparison in Fig.S6b (Supporting information), the Pt/Ti0.9Mo0.1O2exhibited the best HER performance among the catalyst with different Mo content.

    Fig.4.(a)HER polarization curves for Pt/Ti0.9Mo0.1O2,20%Pt/C and Pt/TiO2in 0.5 mol/L H2SO4.Scan rate:5 mV/s and rotating rate:1600 rpm.(b)Comparison of the mass specific activities of Pt/Ti0.9Mo0.1O2and 20%Pt/C at various overpotentials.(c)Corresponding Tafel plots of polarization curves.(d)The polarization curves for Pt/Ti0.9Mo0.1O2and 20%Pt/C before and after the stability test.Inset:The mass specific activities of Pt/Ti0.9Mo0.1O2and 20%Pt/C before and after the stability test at an overpotential of 50 mV.

    Fig.5.Comparison of(a)TOF and(b)overpotentials at 10 mA/cm2of 20%Pt/C and Pt/Ti0.9Mo0.1O2with several HER electrocatalysts in recent literatures in 0.5 mol/L H2SO4.

    The durability of the Pt/Ti0.9Mo0.1O2catalyst was evaluated via the accelerated degradation tests (ADT) by applying 10,000 continuous cyclic voltammetry cycles between -0.15 V and 0.4 V(vs.RHE) at a scan rate of 100 mV/s.It can be observed in Fig.4d that the polarization curve of Pt/Ti0.9Mo0.1O2after the ADT was almost the same with the fresh catalyst,only 7.8%current density loss was seen compared with the initial value at an overpotential of 50 mV vs.RHE (inset in Fig.4d).However, the Pt/C suffered from 33.8%current density loss,which demonstrated excellent durability of the Pt/Ti0.9Mo0.1O2catalyst.The SMSI between the Ti0.9Mo0.1O2support and Pt attributed to the enhanced stability as the particle migration and agglomeration were inhibited during the cycling test.

    To better understand the performance of the catalysts,the turn over frequency (TOF) were also calculated, which is particular illustrated in Supporting information.Fig.5a shows the TOF values of 5% Pt/Ti0.9Mo0.1O2and 20% Pt/C along with other recently reported HER catalysts.The TOF values of Pt/Ti0.9Mo0.1O2at 50 mV and 100 mV were 1.70 H2/s and 3.98 H2/s.It is obvious that Pt/Ti0.9Mo0.1O2exhibited greater TOF values than Pt/C and most of other catalyst at various overpotential.Moreover,the overpotential at 10 mA/cm2of 5% Pt/Ti0.9Mo0.1O2, 20% Pt/C, 5% Pt/C and other recently reported noble metal HER catalyst were summarized in Table S1 (Supporting information).To achieve 10 mA/cm2current density, the 5% Pt/Ti0.9Mo0.1O2requires only 26 mV overpotential as shown in Fig.5b.These results imply the excellent performance of Pt/Ti0.9Mo0.1O2with smaller overpotential compared with majority of the reported noble metal based HER catalyst.

    Fig.6.The schematic illustration of the HER mechanism on Pt/Ti0.9Mo0.1O2catalyst.

    To understand the improvement of catalytic performance, we proposed a reaction mechanism based on the hydrogen spillover effect[33](Fig.6),where the adsorbed H atom on the surface of Pt may easily migrate to Ti0.9Mo0.1O2.It consists of three steps: (i) A hydronium ion adsorbs on the Pt surface combines an electron to form an adsorbed H atom; (ii) the neutral adsorbed-H atom migrates to the Ti0.9Mo0.1O2surface due to the spillover effect;and(iii)such H atom combines another hydronium ion and an electron to release hydrogen gas.The whole HER process may be described as following equation.It was reported that hydrogen insertion/extraction behavior is likely to be accelerated through the hydrogen spillover effect [11], the adsorption of H atom is completed on Pt surface with stronger adsorption capacity while desorption process is achieved on Ti0.9Mo0.1O2surface with stronger desorption capacity, which is beneficial for the HER process (reactions 1–3).

    In summary, we have synthesized Mo-doped titanium oxide(Ti0.9Mo0.1O2)as support for Pt nanoparticles.It is convincing that the Ti0.9Mo0.1O2support effectively improves the durability of the catalyst owing to the strong interaction between support and Pt.As expected,such catalyst delivers remarkable HER activity with only 26 mV overpotential, moreover, it shows 4.4 times higher mass activity than Pt/C at an overpotential of 50 mV.The excellent performance of Pt/Ti0.9Mo0.1O2is ascribed to the SMSI effect and the hydrogen spillover effect.The SMSI effect regulates the electronic structure of the Pt and the hydrogen spillover effect accelerates the hydrogen evolution process.This work is anticipated to provide a new idea to apply this support effect to electrocatalytic systems.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (No.91963109) and the Innovation Research Funds of Huazhong University of Science and Technology (No.2017KFYXJJ164).The authors thank the Analytical and Testing Center of HUST for its help and allowing the use of facilities for XRD, SEM and TEM.

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.05.030.

    久久精品成人免费网站| 一区二区日韩欧美中文字幕| a 毛片基地| 一区二区三区乱码不卡18| 国产高清国产精品国产三级| 高清视频免费观看一区二区| 亚洲国产精品999| 啦啦啦 在线观看视频| 欧美激情极品国产一区二区三区| 亚洲,欧美精品.| 国产欧美日韩精品亚洲av| videosex国产| 男女无遮挡免费网站观看| 午夜福利一区二区在线看| 欧美黑人欧美精品刺激| 成年人免费黄色播放视频| 午夜福利免费观看在线| 国产精品一区二区在线观看99| 大陆偷拍与自拍| 中文字幕另类日韩欧美亚洲嫩草| 天堂中文最新版在线下载| 天天躁夜夜躁狠狠久久av| 男女边摸边吃奶| 午夜av观看不卡| 黄色片一级片一级黄色片| 99久久精品国产亚洲精品| 亚洲综合色网址| 制服人妻中文乱码| 黄色怎么调成土黄色| 天堂8中文在线网| 黄色毛片三级朝国网站| 老司机深夜福利视频在线观看 | 久久ye,这里只有精品| 在线精品无人区一区二区三| 欧美黑人欧美精品刺激| 亚洲av电影在线进入| 国产女主播在线喷水免费视频网站| 久久久亚洲精品成人影院| 日韩大码丰满熟妇| 亚洲国产av新网站| 久久99一区二区三区| 国产在线免费精品| 99国产综合亚洲精品| 欧美激情高清一区二区三区| 国产精品 国内视频| 18在线观看网站| 免费观看a级毛片全部| 精品欧美一区二区三区在线| 丰满迷人的少妇在线观看| 天天躁日日躁夜夜躁夜夜| 国产精品一区二区精品视频观看| 亚洲欧美激情在线| 女人高潮潮喷娇喘18禁视频| 天天躁夜夜躁狠狠躁躁| 久久久久久久精品精品| 免费在线观看视频国产中文字幕亚洲 | 婷婷色综合大香蕉| 欧美黄色淫秽网站| 中文字幕最新亚洲高清| 精品少妇内射三级| 一级毛片女人18水好多 | 日韩视频在线欧美| 精品少妇黑人巨大在线播放| 国产伦人伦偷精品视频| 精品国产乱码久久久久久男人| 亚洲人成电影观看| 欧美成人精品欧美一级黄| 免费在线观看黄色视频的| 久久精品亚洲熟妇少妇任你| 在线观看www视频免费| 秋霞在线观看毛片| 老汉色∧v一级毛片| 久久久久久久国产电影| avwww免费| 国产一区二区激情短视频 | 9色porny在线观看| 久9热在线精品视频| 久久久久久亚洲精品国产蜜桃av| 婷婷丁香在线五月| 久久午夜综合久久蜜桃| 亚洲 欧美一区二区三区| 国语对白做爰xxxⅹ性视频网站| 水蜜桃什么品种好| 美女视频免费永久观看网站| 天天躁夜夜躁狠狠躁躁| 搡老岳熟女国产| 亚洲成人国产一区在线观看 | 久久热在线av| 少妇猛男粗大的猛烈进出视频| 久久99一区二区三区| 91国产中文字幕| 欧美日韩视频精品一区| e午夜精品久久久久久久| 成人三级做爰电影| 久久99热这里只频精品6学生| 精品高清国产在线一区| 亚洲精品国产色婷婷电影| 各种免费的搞黄视频| av一本久久久久| 日日夜夜操网爽| 免费日韩欧美在线观看| 超碰97精品在线观看| 涩涩av久久男人的天堂| 久久狼人影院| 国产在线视频一区二区| 国产亚洲精品久久久久5区| 免费高清在线观看视频在线观看| 中文欧美无线码| av片东京热男人的天堂| 久久99热这里只频精品6学生| 在线观看www视频免费| 日本五十路高清| 赤兔流量卡办理| 国产免费现黄频在线看| 久久99一区二区三区| 欧美精品一区二区免费开放| 爱豆传媒免费全集在线观看| 一级毛片女人18水好多 | 免费高清在线观看日韩| 亚洲国产欧美一区二区综合| 少妇人妻 视频| 欧美中文综合在线视频| 久久 成人 亚洲| 亚洲欧美精品综合一区二区三区| 国产成人精品无人区| 在线天堂中文资源库| 国产有黄有色有爽视频| 麻豆av在线久日| 制服诱惑二区| 日韩中文字幕视频在线看片| 啦啦啦中文免费视频观看日本| 无限看片的www在线观看| 亚洲欧美精品综合一区二区三区| www.自偷自拍.com| 18禁国产床啪视频网站| 肉色欧美久久久久久久蜜桃| a级毛片在线看网站| 视频区图区小说| 青春草视频在线免费观看| 两个人免费观看高清视频| 亚洲精品一二三| 五月开心婷婷网| 麻豆av在线久日| 极品人妻少妇av视频| 国产视频首页在线观看| 国语对白做爰xxxⅹ性视频网站| 精品人妻1区二区| 国产精品久久久久久精品古装| 亚洲精品一区蜜桃| 老汉色av国产亚洲站长工具| 男的添女的下面高潮视频| 亚洲免费av在线视频| 亚洲情色 制服丝袜| 在现免费观看毛片| 涩涩av久久男人的天堂| 久久av网站| 纵有疾风起免费观看全集完整版| 欧美黄色淫秽网站| 精品少妇内射三级| 欧美 日韩 精品 国产| 国产伦理片在线播放av一区| 久久天躁狠狠躁夜夜2o2o | 黄色 视频免费看| 日韩 欧美 亚洲 中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 美女主播在线视频| 亚洲av欧美aⅴ国产| 日韩欧美一区视频在线观看| 1024香蕉在线观看| 国产伦人伦偷精品视频| 69精品国产乱码久久久| 色视频在线一区二区三区| 亚洲欧美激情在线| 赤兔流量卡办理| 中文字幕人妻丝袜制服| 亚洲伊人久久精品综合| 久久久久久亚洲精品国产蜜桃av| 啦啦啦在线免费观看视频4| 777久久人妻少妇嫩草av网站| 亚洲av在线观看美女高潮| 黄片小视频在线播放| 在线看a的网站| 视频区图区小说| 国产精品一区二区免费欧美 | av电影中文网址| 亚洲精品一卡2卡三卡4卡5卡 | 欧美大码av| 欧美日韩亚洲国产一区二区在线观看 | 精品福利观看| 欧美亚洲日本最大视频资源| 日韩精品免费视频一区二区三区| 免费观看av网站的网址| 日本wwww免费看| 91精品国产国语对白视频| 飞空精品影院首页| 日韩中文字幕视频在线看片| 王馨瑶露胸无遮挡在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲,欧美,日韩| 美女大奶头黄色视频| 欧美中文综合在线视频| 99国产精品一区二区三区| 在线观看人妻少妇| 久久久国产精品麻豆| 99re6热这里在线精品视频| 亚洲九九香蕉| 久久女婷五月综合色啪小说| 久久99精品国语久久久| av网站在线播放免费| 欧美性长视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲中文av在线| 久久性视频一级片| 亚洲精品久久久久久婷婷小说| 欧美黄色淫秽网站| 咕卡用的链子| 亚洲专区中文字幕在线| 亚洲av美国av| 亚洲av欧美aⅴ国产| 国产成人欧美在线观看 | 亚洲精品一卡2卡三卡4卡5卡 | 亚洲伊人久久精品综合| 国产男人的电影天堂91| 一区二区三区乱码不卡18| 国产深夜福利视频在线观看| a级片在线免费高清观看视频| 51午夜福利影视在线观看| 黄色片一级片一级黄色片| 久久青草综合色| 超碰97精品在线观看| 亚洲视频免费观看视频| 高清黄色对白视频在线免费看| 日本vs欧美在线观看视频| 国产1区2区3区精品| 久久久久久久久免费视频了| 又黄又粗又硬又大视频| 国产日韩欧美亚洲二区| 午夜福利在线免费观看网站| 人人妻人人澡人人看| 真人做人爱边吃奶动态| 久久久久久久国产电影| 亚洲成av片中文字幕在线观看| 日韩一卡2卡3卡4卡2021年| 欧美中文综合在线视频| 一区二区三区乱码不卡18| 精品人妻1区二区| 涩涩av久久男人的天堂| 亚洲国产日韩一区二区| 观看av在线不卡| 好男人视频免费观看在线| 亚洲国产毛片av蜜桃av| 大话2 男鬼变身卡| 亚洲国产中文字幕在线视频| 一边摸一边抽搐一进一出视频| 午夜影院在线不卡| 99精国产麻豆久久婷婷| 成年人免费黄色播放视频| 一区在线观看完整版| 久久99热这里只频精品6学生| 女人被躁到高潮嗷嗷叫费观| 男女床上黄色一级片免费看| 欧美精品一区二区免费开放| 亚洲色图综合在线观看| 97人妻天天添夜夜摸| 老汉色∧v一级毛片| 国产一区二区激情短视频 | 成年人黄色毛片网站| 亚洲情色 制服丝袜| 妹子高潮喷水视频| 欧美老熟妇乱子伦牲交| 国产精品久久久久久人妻精品电影 | 最近手机中文字幕大全| av线在线观看网站| 看十八女毛片水多多多| 成人黄色视频免费在线看| 男女边摸边吃奶| 亚洲精品国产一区二区精华液| 久久精品亚洲熟妇少妇任你| 精品人妻一区二区三区麻豆| 国产高清不卡午夜福利| 国产成人av教育| 国产成人a∨麻豆精品| 日韩电影二区| 亚洲,欧美,日韩| 国产黄频视频在线观看| 国产精品一区二区在线不卡| 一级黄片播放器| 亚洲国产精品999| 久9热在线精品视频| 黄色毛片三级朝国网站| www.自偷自拍.com| 肉色欧美久久久久久久蜜桃| 午夜激情久久久久久久| 又黄又粗又硬又大视频| 久久久精品免费免费高清| 波多野结衣一区麻豆| 免费一级毛片在线播放高清视频 | 中文字幕精品免费在线观看视频| 看免费av毛片| 嫩草影视91久久| 久久精品国产亚洲av高清一级| 国产精品三级大全| 国产日韩欧美视频二区| www.999成人在线观看| 亚洲成国产人片在线观看| 老司机影院成人| 国产成人一区二区在线| 免费av中文字幕在线| 午夜福利影视在线免费观看| 男女无遮挡免费网站观看| 大香蕉久久成人网| 亚洲精品久久午夜乱码| 国产日韩欧美亚洲二区| 亚洲精品日韩在线中文字幕| av在线播放精品| tube8黄色片| 亚洲国产欧美一区二区综合| 亚洲欧美日韩高清在线视频 | 免费久久久久久久精品成人欧美视频| 久久久久国产精品人妻一区二区| 在线精品无人区一区二区三| 极品人妻少妇av视频| 九色亚洲精品在线播放| 18禁国产床啪视频网站| 亚洲欧洲国产日韩| 久久精品亚洲熟妇少妇任你| h视频一区二区三区| 亚洲精品久久久久久婷婷小说| 我的亚洲天堂| 久久久久久久大尺度免费视频| 国产免费现黄频在线看| 国产亚洲欧美精品永久| 一区二区三区激情视频| 看十八女毛片水多多多| 精品久久蜜臀av无| 亚洲中文字幕日韩| 九草在线视频观看| 七月丁香在线播放| 又紧又爽又黄一区二区| 性高湖久久久久久久久免费观看| 大码成人一级视频| 午夜两性在线视频| 国产高清不卡午夜福利| 国产精品免费大片| 少妇粗大呻吟视频| 性色av乱码一区二区三区2| 黑人猛操日本美女一级片| 国产日韩欧美亚洲二区| 这个男人来自地球电影免费观看| 久久青草综合色| 2021少妇久久久久久久久久久| 国产精品一二三区在线看| 大陆偷拍与自拍| 人人澡人人妻人| av在线老鸭窝| 亚洲五月婷婷丁香| 精品高清国产在线一区| av视频免费观看在线观看| 99久久99久久久精品蜜桃| 热re99久久国产66热| 女人高潮潮喷娇喘18禁视频| 日韩av不卡免费在线播放| 精品高清国产在线一区| av视频免费观看在线观看| 又大又黄又爽视频免费| 欧美国产精品va在线观看不卡| 亚洲,欧美精品.| 中文字幕色久视频| 久久精品久久久久久久性| 国产高清不卡午夜福利| 久久午夜综合久久蜜桃| 亚洲伊人色综图| 亚洲一区二区三区欧美精品| 啦啦啦中文免费视频观看日本| 精品亚洲成a人片在线观看| 亚洲精品自拍成人| 午夜91福利影院| 欧美黄色片欧美黄色片| 十分钟在线观看高清视频www| 欧美成人午夜精品| 人妻一区二区av| 亚洲伊人久久精品综合| 久久久久国产精品人妻一区二区| 欧美精品一区二区免费开放| 亚洲国产最新在线播放| 国产主播在线观看一区二区 | 久热爱精品视频在线9| 久久鲁丝午夜福利片| 免费久久久久久久精品成人欧美视频| 黄色 视频免费看| 亚洲一码二码三码区别大吗| 91精品伊人久久大香线蕉| 日本黄色日本黄色录像| 女警被强在线播放| 国产片特级美女逼逼视频| 亚洲精品一二三| 美女主播在线视频| 亚洲国产精品成人久久小说| 国产一区二区激情短视频 | 多毛熟女@视频| 午夜视频精品福利| 天天操日日干夜夜撸| 9色porny在线观看| 亚洲国产看品久久| 欧美日韩福利视频一区二区| 丝袜脚勾引网站| 啦啦啦 在线观看视频| 国产精品 欧美亚洲| 人人妻,人人澡人人爽秒播 | 人人澡人人妻人| 国产真人三级小视频在线观看| 婷婷色综合大香蕉| 久久久久国产精品人妻一区二区| 国产成人精品在线电影| 国产视频首页在线观看| 波多野结衣av一区二区av| 麻豆国产av国片精品| 一二三四在线观看免费中文在| 国产有黄有色有爽视频| 亚洲色图综合在线观看| 赤兔流量卡办理| 狂野欧美激情性xxxx| 国产欧美日韩一区二区三区在线| 久久免费观看电影| 色播在线永久视频| 亚洲男人天堂网一区| 最新在线观看一区二区三区 | 性高湖久久久久久久久免费观看| 2018国产大陆天天弄谢| 精品亚洲乱码少妇综合久久| 国产色视频综合| 国产精品一区二区精品视频观看| 人体艺术视频欧美日本| 亚洲国产精品一区三区| 男人添女人高潮全过程视频| 又大又黄又爽视频免费| 国产视频一区二区在线看| 免费女性裸体啪啪无遮挡网站| 在线观看免费高清a一片| 免费在线观看完整版高清| 国产成人一区二区三区免费视频网站 | 免费在线观看视频国产中文字幕亚洲 | 欧美亚洲 丝袜 人妻 在线| 少妇的丰满在线观看| 久久久久久人人人人人| 国产成人影院久久av| 热99国产精品久久久久久7| 国产一卡二卡三卡精品| 十分钟在线观看高清视频www| 久久久久久免费高清国产稀缺| 国产女主播在线喷水免费视频网站| 丝袜美足系列| 中文字幕人妻丝袜一区二区| 黑人猛操日本美女一级片| 国产真人三级小视频在线观看| 色婷婷av一区二区三区视频| 亚洲熟女毛片儿| 母亲3免费完整高清在线观看| 热99国产精品久久久久久7| 国产精品九九99| 久久热在线av| 久久精品aⅴ一区二区三区四区| 女人精品久久久久毛片| 亚洲专区中文字幕在线| 91国产中文字幕| 水蜜桃什么品种好| 久久99一区二区三区| 一级毛片我不卡| 亚洲中文av在线| 亚洲精品久久午夜乱码| 宅男免费午夜| 久久久精品94久久精品| 日韩视频在线欧美| 在线av久久热| 精品亚洲成国产av| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久国产电影| 两性夫妻黄色片| 日韩中文字幕欧美一区二区 | 亚洲一区中文字幕在线| 香蕉丝袜av| 精品卡一卡二卡四卡免费| 欧美激情极品国产一区二区三区| 成人影院久久| 精品一品国产午夜福利视频| 成人国语在线视频| a级毛片在线看网站| 高清不卡的av网站| 亚洲av美国av| 多毛熟女@视频| 男人添女人高潮全过程视频| 久久久久久亚洲精品国产蜜桃av| 午夜精品国产一区二区电影| 午夜av观看不卡| 亚洲精品在线美女| 亚洲精品久久久久久婷婷小说| 97人妻天天添夜夜摸| 国产成人精品无人区| a 毛片基地| a级毛片在线看网站| 水蜜桃什么品种好| 天天操日日干夜夜撸| 色婷婷久久久亚洲欧美| 精品国产乱码久久久久久男人| 国产成人a∨麻豆精品| 大香蕉久久网| 日本av手机在线免费观看| 国产精品二区激情视频| 久久热在线av| 欧美老熟妇乱子伦牲交| 国产精品 欧美亚洲| 午夜福利乱码中文字幕| 美女扒开内裤让男人捅视频| 国产xxxxx性猛交| 色综合欧美亚洲国产小说| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91| 波多野结衣av一区二区av| 两人在一起打扑克的视频| 亚洲图色成人| 国产一区二区在线观看av| 伊人久久大香线蕉亚洲五| 女警被强在线播放| 天天躁夜夜躁狠狠躁躁| 视频区图区小说| 欧美+亚洲+日韩+国产| 免费在线观看黄色视频的| 午夜视频精品福利| 别揉我奶头~嗯~啊~动态视频 | 久久久精品区二区三区| 国产精品国产三级专区第一集| 一级黄色大片毛片| 丝袜人妻中文字幕| 日韩 亚洲 欧美在线| 男女边摸边吃奶| 午夜两性在线视频| 一区二区三区精品91| 国产精品免费视频内射| 男女边摸边吃奶| 性色av一级| 免费观看a级毛片全部| 亚洲精品国产av蜜桃| 人人妻人人澡人人看| 极品少妇高潮喷水抽搐| 国产成人免费观看mmmm| 亚洲欧美色中文字幕在线| 色综合欧美亚洲国产小说| 午夜免费观看性视频| 亚洲欧洲日产国产| 国产精品国产av在线观看| 丰满迷人的少妇在线观看| 亚洲精品美女久久久久99蜜臀 | 国产在线免费精品| 亚洲欧美一区二区三区久久| 黑丝袜美女国产一区| 精品久久久精品久久久| 国产亚洲精品久久久久5区| 久久精品亚洲熟妇少妇任你| 久久99一区二区三区| 国产黄色视频一区二区在线观看| 亚洲黑人精品在线| 一二三四在线观看免费中文在| 国产精品国产三级专区第一集| 在线观看www视频免费| 香蕉国产在线看| 18禁观看日本| 七月丁香在线播放| 国产真人三级小视频在线观看| 国产男人的电影天堂91| 久久天堂一区二区三区四区| 国产精品一区二区免费欧美 | 大陆偷拍与自拍| 久久精品亚洲熟妇少妇任你| 母亲3免费完整高清在线观看| 久久国产精品影院| 国产色视频综合| 亚洲专区中文字幕在线| 日韩一卡2卡3卡4卡2021年| 国产一区有黄有色的免费视频| 熟女少妇亚洲综合色aaa.| 免费在线观看完整版高清| 国产免费视频播放在线视频| 看十八女毛片水多多多| 中文字幕精品免费在线观看视频| 精品福利永久在线观看| 亚洲中文字幕日韩| 最黄视频免费看| av在线app专区| 美女扒开内裤让男人捅视频| 亚洲精品一二三| 啦啦啦在线免费观看视频4| 久久中文字幕一级| 久久精品亚洲熟妇少妇任你| 大型av网站在线播放| 99热全是精品| 成年人黄色毛片网站| 国产亚洲av高清不卡| 男女边摸边吃奶| 丝袜在线中文字幕| 日本午夜av视频| 久久久精品区二区三区| 91国产中文字幕| 99久久人妻综合| 国产男女内射视频| 九色亚洲精品在线播放| 亚洲成人免费av在线播放| 亚洲国产欧美在线一区| 精品国产一区二区三区四区第35| 久久久精品94久久精品| 精品少妇黑人巨大在线播放| 午夜日韩欧美国产| 亚洲国产精品一区二区三区在线| 日韩一区二区三区影片| 国产国语露脸激情在线看| 免费少妇av软件|