• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alkoxy encapsulation of carbazole-based thermally activated delayed fluorescent dendrimers for highly efficient solution-processed organic light-emitting diodes

    2021-05-14 09:46:50ZhihuYuchunWnWenyueDongZhenjunSiQinDunShiyngSho
    Chinese Chemical Letters 2021年2期

    Zhihu M,Yuchun Wn,Wenyue Dong,Zhenjun Si,*,Qin Dun,Shiyng Sho*

    a School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China

    b State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

    ABSTRACT Two n-butoxy-encapsulated dendritic thermally activated delayed fluorescent(TADF)emitters(namely O-D1 and O-D2)with the first-/second-generation carbazoledendrons are designed and synthesized viacoupling between carbazoledendrons and 2,4,6-tris(4-bromophenyl)-1,3,5-triazine core.It is found that,compared with the commonly-used tert-butyl groups,the use of n-butoxy encapsulation groups can lead to smallersinglet-triplet energy gap for the dendrimers, producing stronger TADF effect together with faster reverse intersystem crossing process.Solution-processed TADF organic light-emitting diodes(OLEDs) utilizingalkoxy-encapsulated dendrimers O-D1 and O-D2 as emitters exhibitstate-of-the-art device efficiency withthe maximum external quantum efficiency up to 16.8% and 20.6%, respectively,which are 1.6 and 2.0 times that of the tert-butyl-encapsulated counterparts.These results suggest that alkoxy encapsulation of the carbazole-based TADF dendrimers can be a promising approach for developing highly efficient emitters for solution-processed OLEDs.

    Keywords:Alkoxy encapsulation Thermally activated delayed fluorescence Dendrimer Organic light-emitting diodes

    Thermally activated delayed fluorescence (TADF) materials have drawn increasing attention in recent years for their ability to utilize 100% excitons in organic light-emitting diodes (OLEDs)through the reverse intersystem crossing (RISC) process from triplet (T1) to singlet (S1) state enabled by small singlet-triplet energy gap(DEST)[1–5].To date,most of the efficient TADF OLEDs are fabricated via vacuum-deposition technology [6–11].While TADF materials suitable for solution processes that are costeffective and compatible with large-area fabrication of devices are relatively scarce [12–30].

    Dendritic luminescent materials, which feature branched structures and good solubility in organic solvents, are a kind of promising solution-processed materials for OLED applications[31].Compared to polymeric materials which may suffer from wide molecular-weight distribution and terminal defects, the unique advantage of dendrimers is that they have absolute molecular weights and well-defined chemical structures.Moreover, the periphery-core structure of dendrimer can prevent concentration quenching of the emitting center, making them suitable for developing high-efficiency solution-processed OLEDs.However,up to now,although many fluorescent and phosphorescent dendrimers are developed [31,32], the categories of TADF dendrimers are relatively rare, and their device efficiency still needs to be improved[33–39].Since Yamamoto et al.first reported the TADF dendrimers with electron-accepting triazine unit as the core and electron-donating 1st- 4thgeneration carbazoledendrons as the periphery[33],several strategies have been demonstrated to improve the device efficiency of TADF dendrimers.For example,by introducing alkyl or aryl groups into carbazoledendrons to enhance the hydrophobicity for lamination of electrontransporting layers, external quantum efficiency (EQE) up to 9.4% is realized for the fully solution-processed OLEDs [34].Yang et al.have reported carbazole-based dendrimers by using diphenyl ketone as the acceptors, exhibit promising EQE of 13.8% for the non-doped solution-processed OLEDs [36].Recently, Jiang et al.have reported TADF dendrimers by using N,N'-dicarbazolyl-3,5-benzene (mCP) as the exciplex-forming dendrons, giving the high maximum EQE of 16.5%for solution-processed OLEDs with 4,6-bis(3,5-di(pyridin-3-yl)phenyl)-2-methylpyrimidine(B3PYMPM)as electron-transporting material [38].Nevertheless, it is noted that highly efficient TADF dendrimers with internal quantum efficiency approaching 100% are still scarce.Design strategy for TADF dendrimers to further improve their device efficiency is still needed.

    Here we report a novel strategy for highly efficient TADF dendrimers by alkoxy encapsulation of the dendritic carbazolebased donor-acceptor emitters.The alkoxyl groups are expected to increase the electron-donating ability of carbazoledendron without significantly lowering the triplet state [40], and thus can reduce the energy of S1states while keeping the T1states,leading to smaller DESTand stronger TADF effect.Using this strategy, two dendrimers, namely O-D1 and O-D2 (Fig.1), which contain the first-/second-generation carbazoledendrons bearing n-butoxyen capsulation groups as donor and triphenyltriazine as acceptor are designed and synthesized.It is found that, compared to the commonly-used tert-butyl groups, introduction of alkoxy encapsulating groups into the dendrimers can reduce the DEST,leading to stronger TADF effect together with faster RISC process.Consequently, solution-processed TADF OLEDs using the alkoxyencapsulated dendrimers O-D1 and O-D2 exhibit state-of-theart device efficiency with maximum external quantum efficiency of 16.8%and 20.6%,respectively,which are ~1.6 and ~2.0 folds that of the tert-butyl-encapsulated counterparts.

    The chemical structures of the dendrimers are displayed in Fig.1.The alkoxy-encapsulated dendrimers O-D1 and O-D2 contain the first-/second-generation carbazoledendrons bearing n-butoxyen capsulating groups as the donor and tripenyltriazine core as acceptor.For comparison,the alkyl-encapsulated dendrimer C-D1 consisting of the first-generation carbazoledendron with tert-butyl terminal groups as donor and tripenyltriazine core as acceptor is also provided.All the dendrimers were facilely synthesized via the palladium-catalyzedcoupling of the carbazoledendrons with the 2,4,6-tris(4-bromophenyl)-1,3,5-triazine core in good yields (61%–80%)(Scheme S1 in Supportinginformation).Their chemical structures were confirmed by1H and13C NMR spectra, matrixassisted laser desorption ionization time-of-flight (MALDI-TOF)mass spectrometry and elemental analysis(Figs.S1-S9 in Supporting informaiton).The three dendrimers possess excellent solubility in common solvents such as tetrahydrofuran,chloroform,toluene,chlorobenzeneand so on,indicating theyaresuitableforfabrication of solution-processed OLEDs.

    To get the insight into the electronic structure of the dendrimers, density functional theory (DFT) calculation was carried out to investigate their frontier orbital distributions.Meanwhile, the time dependent density functional theory (TDDFT)analysis are also performed to explore the electron transition and excited energy levels of the lowest singlet and triplet states.As shown in Fig.2,the highest occupied molecular orbital(HOMO)of the dendrimers are mainly distributed on the carbazoledendrons,while the lowest unoccupied molecular orbital (LUMO) are localized on the triphenyltriazine core.The calculated HOMO/LUMO levels are -5.25/-2.00 eV, -4.93/-1.92 eV and -4.73/-2.36 eV for C-D1,O-D1 and O-D2 respectively,which are in the same trend as the experimental values determined by cyclic voltammetry(Table 1 and Fig.S10 in Supporting information).The much higher HOMO level of O-D1 than C-D1 is attributed to the much stronger electron-donating ability of the n-butoxy groups than the tert-butyl ones, while the higher HOMO level of O-D2 compared to O-D1 can be assigned to the more dispersed HOMO distribution in the second-generation carbazoledendrons.The elevated HOMO levels for the n-butoxy-encapsulated dendrimers should be preferable for hole injection from the anode to the dendrimers.Moreover,owing to the separated HOMO and LUMO distributions,the dendrimers exhibit small DESTvalues,indicating their potential as TADF emitters.Importantly,it is found that on going from C-D1 to O-D1 and O-D2, the DESTvalue is gradually decreased from 0.30 eV to 0.23 eV and 0.03 eV, respectively.The lowered D ESTof O-D1 compared with C-D1 indicates that the electron-rich nbutoxy group can lower the S1state(by 0.22 eV)to a greater extent than the T1state(by 0.15 eV).In addition, the lower D ESTof O-D2 than O-D1 is also reasonable considering the more dispersed HOMO distribution along the second-generation carbazoledendrons which leads to smallerelectron cloud overlap between the donor and acceptor.

    Fig.1.Chemical structures of the alkoxy-encapsulated dendrimers and the alkyl-encapsulated control compound.

    Fig.2.HOMO/LUMO distributions and excited energy levels by(TD-)DFT calculation for the dendrimers at B3LYP/6-31 G(d) level.Methoxy groups are used instead of the n-butoxy ones in the calculation.

    Table 1 Physical properties of the TADF dendrimers.

    Fig.3.Absorption(Abs)and PL spectra in toluene(mol/L)(a)and film state(b),phosphorescent spectra(in toluene,77 K),(c)and the transient PL decay curves for films of the dendrimers in Ad-4D2 ( wt%) under N2(d).

    The absorption and photoluminescence (PL) spectra of the dendrimers are presented in Figs.3a and b.All the dendrimers exhibit strong p-p* transition bands below 320 nm in toluene,together with broad absoptions at 350-450 nm which mainly belong to the intramolecular charge transfer transition.The PL spectra of the dendrimers in toluene exhibit broad and unstructured emission bands with the peaks located at 444-509 nm attributed to thecharge transfer emission.Compared with C-D1,O-D1 show red-shifted emission by 51 nm,in linewith the stronger electron-donating ability of the n-butoxy groups than that of tertbutyl ones.From O-D1 to O-D2,the emissoin is further red-shifted by 14 nm because of the extended conjugation of the secondgeneration carbazole dendron.PL spectra of the dendrimers in neat film show similar charge transfer emission as in solution,with the emission peaks red-shifted in the trend of C-D1 (452 nm), O-D1(515 nm) and O-D2 (541 nm).PL spectra of the dendrimers in doped films(10 wt%in host material Ad-4D2[41],whose chemical structure is shown in Fig.4a),however,exhibit hypochromic shift for the emission bands relative to the neatfilms, indicating the weaker intermolecular interaction of the dendrimers in this case(Fig.S11 in Supporting information).To determine the T1state,phosphorescence spectra of the dendrimers are measured in toluene at 77 K (Fig.3c).The T1energy levels calculated from the highest peaks of the phosphorescence spectra are 2.87 eV,2.83 eV and 2.81 eV for C-D1, O-D1 and O-D2, respectively.Consequently,the experimental DESTvalues determined from the difference between S1and T1energy levels are 0.21 eV for C-D1, 0.09 eV for O-D1 and 0.02 eV for O-D2(Table 1).Compared to C-D1,O-D1 and O-D2 exhibit much smaller DESTvalues, which is in consistence with the TD-DFT calculations.Such small DESTvalues make them promising TADF candidates.To confirm the TADF property,transient PL decay characteristics of the dendrimers are measured.As shown in Fig.3d, all the dendrimers show decay curves consisting of a prompt component and a delayed component.The lifetimes of the delayed components (td) are in the range of 0.71–1.43 ms,with the contribution of 12%,33%and 64%for C-D1,O-D1 and O-D2,respectively.The RISC rate constants(kRISC)of the dendrimers are calculated to beandfor C-D1, O-D1 and O-D2, respectively, suggesting the favorable RISC processes from the T1state to S1state.Importantly, the faster RISC processes of O-D1 and O-D2 than C-D1 indicate the more effective conversion of triplet excitons into the singlet ones in the alkoxy-encapsulated dendrimers [42].The photoluminescent quantum yield (PLQY) of the O-D1 and O-D2 doped films are 65%and 74%respectively,which is higher than that of C-D1 film (53%),consistent with the slower non-radiative decay and faster RISC processes (Table S1 in Supporting information) in the n-butoxy-substituted dendrimers.

    Fig.4.Device configuration,energy levels and structures of the materials(a),current density-voltage-luminance(J-V-L)curves and EL spectra(b),and EQE-L curves(c)for devices with EML of 10 wt% dendrimers doped in Ad-4D2 host.

    Table 2 Device performance of solution-processed OLEDs with EML of 10 wt% dendrimers doped in Ad-4D2.

    To investigate the EL performance, two kinds of solutionprocessed OLEDs were fabricated with the configuration of ITO/PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid), 30 nm)/Emissive layer (40 nm)/TSPO1 (diphenyl(4-(triphenylsilyl)phenyl)phosphine oxide [43], 8 nm)/TmPyPB(1,3,5-tri(m-pyrid-3-ylphenyl)benzene [44], 42 nm)/LiF(1 nm)/Al(100 nm).One is the non-doped devices using the dendrimer neat films as emissive layers(EML),the other is the doped devices with EMLs of dendrimers doped in the adamantane-cored dendritic host material Ad-4D2 at concentration of 5 wt%and 10 wt%.In both non-doped and doped devices, the dendrimers show typical EL spectra from the charge transfer emissions (Fig.4b and Figs.S14 and S15 in Supporting information), with the emission peaks moving toward longer wavelength in the order of C-D1,O-D1 and O-D2.The emission from the host is not observed in the doped devices, implying that the energy transfer from Ad-4D2 to the dendrimers is efficient in the EML.

    The current density (J)–voltage (V)-luminance (L) characteristics, as well as the luminance dependence of external quantum efficiency (EQE) for the devices is shown in Figs.4b and c and Figs.S14 and S15.The device performances are summarized in Table 2 and Table S1.The non-doped devices show maximum luminous efficiency(LE)of 2.2 cd/A,10.4 cd/A and 24.3 cd/A as well as maximum EQEs of 1.6%,3.2%and 7.9%for C-D1,O-D1 and O-D2,respectively.In comparison,the doped devices show much higher device performance with the maximum LEs increased to 24.9 cd/A,50.0 cd/A and 63.3 cd/A, corresponding to the maximum EQEs of 10.1%, 16.8% and 20.6% for C-D1, O-D1 and O-D2, respectively.Compared to those for C-D1, efficiencies of both the doped and non-doped devices for O-D1 and O-D2 are greatly improved.Especially, for the 10 wt% doped devices, the maximum EQEs of O-D1 and O-D2 are ~1.6 and ~2.0 times that of C-D1.The enhanced device efficiency is reasonable considering that O-D1 and O-D2 exhibit much faster RISC processthan C-D1 doesleading to more effective utilization of triplet excitons in the devices.It is noted that the devices based on O-D2 also show gentle efficiency roll-off.For example,EQE of the doped device containing 10 wt%O-D2 can be kept at 20.5% at 100 cd/m2and 18.2% at 1000 cd/m2, which is remarkable for TADF OLEDs through solution processes.The small efficiency roll-off can be attributed to the large size of 2ndgeneration carbazoledendrons of O-D2 which protect the emitting core from unwanted intermolecular interactions, leading to inhibited triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA) at high luminance.

    In summary, we have demonstrated a new strategy for highly efficient TADF dendrimers by alkoxy encapsulation of the dendritic donor-acceptor emitters consisting of carbazoledendrons and triazine cores.Compared to the tert-butyl counterpart,the alkoxy encapsulating groups can reduce the singlet-triplet energy gap from 0.21 eV to 0.02 eV, which accelerates the RISC rate constant fromConsequently, solutionprocessed OLEDs based on the dendrimers bearing alkoxyencapsulated second-generation carbazoledendrons exhibit state-of-the-art device efficiency with the maximum EQE up to 20.6%.These results indicate that alkoxy encapsulation of the carbazole-based TADF dendrimers is a promising approach for developing highly efficient emitters for solution-processed OLEDs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We gratefully acknowledge the financial support from the Science and Technology Development Plan Project of Jilin Province(No.20180520003JH), the Natural Science Fund Project of Changchun University of Science and Technology (No.XQNJJ-2017-14) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (No.2015180).

    Appendix A.Supplementary data

    Supplementarymaterialrelatedtothisarticlecanbefound,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.06.025.

    五月开心婷婷网| 又粗又硬又长又爽又黄的视频| 午夜福利网站1000一区二区三区| 国产成人精品福利久久| 亚洲免费av在线视频| 美女视频免费永久观看网站| 久久精品国产综合久久久| 色视频在线一区二区三区| 啦啦啦在线观看免费高清www| 制服诱惑二区| 一级片免费观看大全| 夫妻性生交免费视频一级片| 高清视频免费观看一区二区| av视频免费观看在线观看| 亚洲伊人色综图| 国产亚洲av高清不卡| 女人爽到高潮嗷嗷叫在线视频| 亚洲色图综合在线观看| 最近最新中文字幕免费大全7| 欧美精品一区二区免费开放| 国产极品粉嫩免费观看在线| 国产一区二区三区av在线| 操出白浆在线播放| 汤姆久久久久久久影院中文字幕| 最近中文字幕2019免费版| 国产一卡二卡三卡精品 | 在线观看www视频免费| 中文字幕另类日韩欧美亚洲嫩草| av国产久精品久网站免费入址| 在线观看国产h片| 在线观看三级黄色| 精品一区二区三区四区五区乱码 | 黑人巨大精品欧美一区二区蜜桃| 最近的中文字幕免费完整| 国产在视频线精品| 高清不卡的av网站| 丰满迷人的少妇在线观看| 777米奇影视久久| 七月丁香在线播放| 欧美日韩一级在线毛片| 超色免费av| 日韩人妻精品一区2区三区| 亚洲成人av在线免费| 亚洲国产日韩一区二区| 欧美老熟妇乱子伦牲交| 人妻 亚洲 视频| 国产色婷婷99| 亚洲av在线观看美女高潮| 美女视频免费永久观看网站| 免费看av在线观看网站| 侵犯人妻中文字幕一二三四区| 亚洲精品国产av成人精品| 一本久久精品| 人妻人人澡人人爽人人| 精品卡一卡二卡四卡免费| 女性生殖器流出的白浆| av电影中文网址| 中文字幕av电影在线播放| 成人影院久久| 一边亲一边摸免费视频| 中文字幕色久视频| 日本wwww免费看| 哪个播放器可以免费观看大片| 免费在线观看视频国产中文字幕亚洲 | 免费av中文字幕在线| av片东京热男人的天堂| 亚洲国产av影院在线观看| 美女主播在线视频| 18在线观看网站| 日韩人妻精品一区2区三区| 久久99一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 人体艺术视频欧美日本| 五月开心婷婷网| 黄色一级大片看看| 日本黄色日本黄色录像| 欧美激情 高清一区二区三区| 欧美老熟妇乱子伦牲交| 黄片小视频在线播放| 国产精品久久久人人做人人爽| 国产xxxxx性猛交| 久久国产精品男人的天堂亚洲| 欧美精品高潮呻吟av久久| 国产亚洲精品第一综合不卡| 99久久人妻综合| 黑人猛操日本美女一级片| 午夜免费男女啪啪视频观看| 久久婷婷青草| 久久精品aⅴ一区二区三区四区| 亚洲欧美色中文字幕在线| 欧美精品高潮呻吟av久久| 午夜影院在线不卡| 80岁老熟妇乱子伦牲交| 亚洲第一青青草原| 国产毛片在线视频| 熟女av电影| 高清视频免费观看一区二区| 久久精品国产亚洲av涩爱| 99国产精品免费福利视频| 高清视频免费观看一区二区| a级片在线免费高清观看视频| 欧美黄色片欧美黄色片| 亚洲人成网站在线观看播放| 亚洲精品久久成人aⅴ小说| 国产精品香港三级国产av潘金莲 | 亚洲国产欧美日韩在线播放| 蜜桃国产av成人99| 婷婷色av中文字幕| 欧美成人精品欧美一级黄| 飞空精品影院首页| 中文字幕亚洲精品专区| 性色av一级| 老司机靠b影院| videos熟女内射| 纵有疾风起免费观看全集完整版| 飞空精品影院首页| 久久 成人 亚洲| 国产麻豆69| 中文字幕另类日韩欧美亚洲嫩草| 美女午夜性视频免费| 一级黄片播放器| 国产免费视频播放在线视频| 七月丁香在线播放| 美女大奶头黄色视频| 国产成人午夜福利电影在线观看| 亚洲精品国产区一区二| 亚洲成人一二三区av| 免费黄网站久久成人精品| 丁香六月天网| 精品视频人人做人人爽| 久久久欧美国产精品| www.av在线官网国产| 国产精品一区二区在线观看99| 国产有黄有色有爽视频| a级毛片在线看网站| 国产黄频视频在线观看| 中文字幕人妻熟女乱码| 色婷婷av一区二区三区视频| 又粗又硬又长又爽又黄的视频| av一本久久久久| 久久韩国三级中文字幕| 中文字幕高清在线视频| 女人爽到高潮嗷嗷叫在线视频| 2021少妇久久久久久久久久久| 国产 精品1| 久久久久久免费高清国产稀缺| 国产深夜福利视频在线观看| 青春草亚洲视频在线观看| 亚洲人成电影观看| 免费在线观看黄色视频的| xxx大片免费视频| 搡老乐熟女国产| 久久 成人 亚洲| 最近中文字幕高清免费大全6| 99久久99久久久精品蜜桃| 国产片特级美女逼逼视频| 美女视频免费永久观看网站| 午夜影院在线不卡| 人妻一区二区av| 精品国产露脸久久av麻豆| 男女边摸边吃奶| 日韩伦理黄色片| 亚洲免费av在线视频| 久久久久人妻精品一区果冻| 免费不卡黄色视频| 香蕉国产在线看| 成人毛片60女人毛片免费| 岛国毛片在线播放| 国产又爽黄色视频| 日韩一区二区三区影片| 啦啦啦视频在线资源免费观看| 桃花免费在线播放| 欧美日韩成人在线一区二区| 欧美日韩一区二区视频在线观看视频在线| 两个人免费观看高清视频| 久久人人97超碰香蕉20202| 日韩 亚洲 欧美在线| av卡一久久| 熟女少妇亚洲综合色aaa.| 99精品久久久久人妻精品| 交换朋友夫妻互换小说| 久久精品久久久久久久性| 香蕉国产在线看| 性高湖久久久久久久久免费观看| 中文字幕人妻丝袜制服| 肉色欧美久久久久久久蜜桃| 成年美女黄网站色视频大全免费| 狠狠婷婷综合久久久久久88av| 日韩大码丰满熟妇| 亚洲精品,欧美精品| 国产 一区精品| 欧美人与性动交α欧美精品济南到| 国产精品一国产av| 街头女战士在线观看网站| 91aial.com中文字幕在线观看| 黄片无遮挡物在线观看| av福利片在线| 中文字幕色久视频| 熟女少妇亚洲综合色aaa.| 国产精品欧美亚洲77777| 青春草亚洲视频在线观看| 日日摸夜夜添夜夜爱| 国产av国产精品国产| 国产97色在线日韩免费| 日韩中文字幕视频在线看片| 男女高潮啪啪啪动态图| 国产视频首页在线观看| 黄片播放在线免费| 免费观看性生交大片5| 卡戴珊不雅视频在线播放| 欧美日韩国产mv在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 欧美 亚洲 国产 日韩一| 国产老妇伦熟女老妇高清| 黄色视频在线播放观看不卡| 日韩 亚洲 欧美在线| 飞空精品影院首页| 男女无遮挡免费网站观看| 国产又色又爽无遮挡免| 亚洲男人天堂网一区| 日韩,欧美,国产一区二区三区| 亚洲人成77777在线视频| 国产成人精品久久久久久| av在线观看视频网站免费| 桃花免费在线播放| 国产成人av激情在线播放| 国产老妇伦熟女老妇高清| 天堂俺去俺来也www色官网| 欧美 日韩 精品 国产| 丁香六月天网| 亚洲欧美成人精品一区二区| 在线天堂最新版资源| 高清黄色对白视频在线免费看| 婷婷色麻豆天堂久久| 亚洲美女视频黄频| 国产男人的电影天堂91| 在线观看国产h片| 亚洲色图综合在线观看| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久精品电影小说| 天天躁夜夜躁狠狠躁躁| 欧美av亚洲av综合av国产av | 51午夜福利影视在线观看| 电影成人av| 国产熟女午夜一区二区三区| 波多野结衣一区麻豆| 精品国产露脸久久av麻豆| 80岁老熟妇乱子伦牲交| 涩涩av久久男人的天堂| 亚洲欧美一区二区三区国产| 国产成人免费无遮挡视频| 久久久久久人妻| 悠悠久久av| 久久久久国产精品人妻一区二区| 人妻人人澡人人爽人人| 综合色丁香网| 我的亚洲天堂| 国产精品三级大全| 最新在线观看一区二区三区 | 欧美av亚洲av综合av国产av | bbb黄色大片| 国产精品人妻久久久影院| 在线观看国产h片| 国产老妇伦熟女老妇高清| 精品国产超薄肉色丝袜足j| 高清在线视频一区二区三区| 日韩欧美一区视频在线观看| 国产又爽黄色视频| 女性生殖器流出的白浆| 母亲3免费完整高清在线观看| 少妇人妻久久综合中文| 国产精品女同一区二区软件| 久久精品国产综合久久久| 亚洲欧美激情在线| 亚洲图色成人| kizo精华| 丝袜美腿诱惑在线| 国产国语露脸激情在线看| 高清av免费在线| 我的亚洲天堂| 我要看黄色一级片免费的| 亚洲熟女毛片儿| 日日啪夜夜爽| 亚洲少妇的诱惑av| 国产成人精品在线电影| 国产一区二区三区av在线| 青青草视频在线视频观看| 欧美成人精品欧美一级黄| 赤兔流量卡办理| 国产精品成人在线| 国产成人av激情在线播放| 亚洲精品在线美女| 成年人免费黄色播放视频| 国产一区二区在线观看av| 国产成人a∨麻豆精品| 精品国产超薄肉色丝袜足j| 天天影视国产精品| 精品国产乱码久久久久久男人| 99热国产这里只有精品6| 丁香六月欧美| 亚洲国产成人一精品久久久| 国产成人午夜福利电影在线观看| 女性生殖器流出的白浆| 亚洲精品日韩在线中文字幕| 久久这里只有精品19| 男女国产视频网站| 99久久综合免费| 在线免费观看不下载黄p国产| 欧美成人午夜精品| av女优亚洲男人天堂| 亚洲av综合色区一区| 亚洲国产毛片av蜜桃av| 久久久久精品人妻al黑| 肉色欧美久久久久久久蜜桃| 日韩大码丰满熟妇| 日韩大片免费观看网站| 成人影院久久| 一本久久精品| 久久久久久人人人人人| 99国产精品免费福利视频| 天堂中文最新版在线下载| 日本一区二区免费在线视频| www.熟女人妻精品国产| 我要看黄色一级片免费的| 精品国产超薄肉色丝袜足j| 国产毛片在线视频| 在线看a的网站| 亚洲美女视频黄频| 青青草视频在线视频观看| 国产 精品1| 一个人免费看片子| 精品人妻熟女毛片av久久网站| 亚洲精品自拍成人| 一级片'在线观看视频| 老司机影院成人| 国产深夜福利视频在线观看| 国产精品二区激情视频| 欧美日韩成人在线一区二区| 亚洲精品国产一区二区精华液| 一区二区三区乱码不卡18| 久久久精品区二区三区| avwww免费| 色网站视频免费| 最近最新中文字幕大全免费视频 | 久久精品国产亚洲av涩爱| 人成视频在线观看免费观看| 国产国语露脸激情在线看| 色视频在线一区二区三区| 欧美成人精品欧美一级黄| 在线观看免费视频网站a站| 叶爱在线成人免费视频播放| 免费高清在线观看视频在线观看| 2018国产大陆天天弄谢| 毛片一级片免费看久久久久| 欧美亚洲日本最大视频资源| 亚洲视频免费观看视频| av有码第一页| 欧美亚洲 丝袜 人妻 在线| 国产麻豆69| 国产99久久九九免费精品| 久久精品久久久久久久性| 一区二区日韩欧美中文字幕| 男女之事视频高清在线观看 | 免费人妻精品一区二区三区视频| 国产精品亚洲av一区麻豆 | 18禁观看日本| 亚洲精品久久成人aⅴ小说| 色网站视频免费| 操出白浆在线播放| 免费av中文字幕在线| 免费在线观看视频国产中文字幕亚洲 | 日韩成人av中文字幕在线观看| 国产精品久久久久久精品电影小说| www.自偷自拍.com| 1024香蕉在线观看| 国产成人精品无人区| 美女主播在线视频| 青春草亚洲视频在线观看| a级毛片黄视频| 97在线人人人人妻| 亚洲精品美女久久av网站| 汤姆久久久久久久影院中文字幕| 在线观看三级黄色| 欧美人与性动交α欧美软件| 国产爽快片一区二区三区| 国产男女超爽视频在线观看| 免费不卡黄色视频| 色婷婷久久久亚洲欧美| 免费黄频网站在线观看国产| av.在线天堂| 成人国产麻豆网| 我的亚洲天堂| 亚洲精品在线美女| 亚洲精品美女久久久久99蜜臀 | 夫妻性生交免费视频一级片| 免费不卡黄色视频| 水蜜桃什么品种好| 成人午夜精彩视频在线观看| 美女大奶头黄色视频| 国产成人啪精品午夜网站| 成年人午夜在线观看视频| 丝袜喷水一区| 永久免费av网站大全| 男女边吃奶边做爰视频| 男人爽女人下面视频在线观看| 成年av动漫网址| 国产伦人伦偷精品视频| 可以免费在线观看a视频的电影网站 | 亚洲三区欧美一区| 90打野战视频偷拍视频| 久久这里只有精品19| 国产视频首页在线观看| 狂野欧美激情性bbbbbb| 久久精品熟女亚洲av麻豆精品| 国产精品一区二区在线观看99| 日本午夜av视频| 在线观看免费高清a一片| 18禁动态无遮挡网站| 国产在线免费精品| 一级毛片 在线播放| 老司机深夜福利视频在线观看 | 国产欧美亚洲国产| 久久久久精品久久久久真实原创| 亚洲欧美一区二区三区久久| 精品亚洲成a人片在线观看| 国产熟女欧美一区二区| 女人精品久久久久毛片| 欧美人与性动交α欧美软件| 欧美精品高潮呻吟av久久| 国产熟女欧美一区二区| 国产精品亚洲av一区麻豆 | 巨乳人妻的诱惑在线观看| 亚洲七黄色美女视频| 激情五月婷婷亚洲| 久久久久久免费高清国产稀缺| 亚洲在久久综合| 欧美日韩一级在线毛片| 99久久99久久久精品蜜桃| 亚洲少妇的诱惑av| 精品国产露脸久久av麻豆| 国产成人欧美在线观看 | 国产精品一区二区精品视频观看| 欧美黑人精品巨大| 国产精品国产三级专区第一集| 国精品久久久久久国模美| 国产乱人偷精品视频| 纵有疾风起免费观看全集完整版| 激情视频va一区二区三区| 人妻一区二区av| 99香蕉大伊视频| 99久久综合免费| 久久久久久人人人人人| 国产精品.久久久| 精品一区二区免费观看| 99久国产av精品国产电影| 日韩一区二区视频免费看| 最新的欧美精品一区二区| 日韩成人av中文字幕在线观看| 国产欧美日韩一区二区三区在线| 老司机影院毛片| 最近最新中文字幕免费大全7| 色婷婷久久久亚洲欧美| h视频一区二区三区| 天天躁夜夜躁狠狠久久av| 国产日韩一区二区三区精品不卡| 99热全是精品| 国产淫语在线视频| 一级,二级,三级黄色视频| 国产片内射在线| 如何舔出高潮| 久热这里只有精品99| 欧美xxⅹ黑人| 亚洲 欧美一区二区三区| 国产黄色视频一区二区在线观看| 亚洲国产精品国产精品| 午夜福利乱码中文字幕| 日韩人妻精品一区2区三区| 一级毛片电影观看| 一区二区三区激情视频| 岛国毛片在线播放| 又大又黄又爽视频免费| 精品国产国语对白av| 涩涩av久久男人的天堂| 亚洲第一区二区三区不卡| 又粗又硬又长又爽又黄的视频| 韩国av在线不卡| a级片在线免费高清观看视频| 免费在线观看黄色视频的| 丰满少妇做爰视频| 精品一区二区三卡| 18在线观看网站| 久久综合国产亚洲精品| 男人舔女人的私密视频| 男女之事视频高清在线观看 | 777久久人妻少妇嫩草av网站| 国产精品国产av在线观看| 亚洲色图 男人天堂 中文字幕| 男男h啪啪无遮挡| 日本欧美国产在线视频| 精品国产一区二区三区四区第35| av在线观看视频网站免费| 久久韩国三级中文字幕| 国产又爽黄色视频| 大香蕉久久成人网| 国产1区2区3区精品| 国产日韩欧美亚洲二区| 国产成人精品久久二区二区91 | 精品午夜福利在线看| 侵犯人妻中文字幕一二三四区| 日本黄色日本黄色录像| e午夜精品久久久久久久| 国产精品99久久99久久久不卡 | 亚洲第一区二区三区不卡| 亚洲精品国产一区二区精华液| 妹子高潮喷水视频| 老司机影院毛片| 国产精品免费大片| 国产精品久久久久成人av| 免费看不卡的av| 精品福利永久在线观看| 亚洲av电影在线观看一区二区三区| 亚洲精品中文字幕在线视频| 大陆偷拍与自拍| 多毛熟女@视频| 欧美亚洲日本最大视频资源| 国产有黄有色有爽视频| 免费av中文字幕在线| 妹子高潮喷水视频| 亚洲欧美成人精品一区二区| 日本色播在线视频| av电影中文网址| 国产成人午夜福利电影在线观看| 久久久久精品久久久久真实原创| 免费在线观看视频国产中文字幕亚洲 | 亚洲自偷自拍图片 自拍| 国产伦理片在线播放av一区| 午夜av观看不卡| 夜夜骑夜夜射夜夜干| 午夜免费男女啪啪视频观看| 日本午夜av视频| 婷婷色综合www| 高清视频免费观看一区二区| 一级毛片 在线播放| 亚洲欧美日韩另类电影网站| 国产精品.久久久| 一本色道久久久久久精品综合| 卡戴珊不雅视频在线播放| 午夜影院在线不卡| 这个男人来自地球电影免费观看 | 韩国高清视频一区二区三区| 老司机影院毛片| 亚洲精品国产色婷婷电影| 亚洲图色成人| 亚洲精品自拍成人| 少妇猛男粗大的猛烈进出视频| 精品一品国产午夜福利视频| 美女主播在线视频| 国产精品久久久久成人av| 美女中出高潮动态图| av免费观看日本| 久久精品亚洲熟妇少妇任你| 不卡视频在线观看欧美| 成人国语在线视频| 另类精品久久| 亚洲一码二码三码区别大吗| 青青草视频在线视频观看| tube8黄色片| 成人毛片60女人毛片免费| 国产av国产精品国产| 欧美在线黄色| 亚洲天堂av无毛| a级毛片黄视频| 久久鲁丝午夜福利片| 欧美日韩亚洲国产一区二区在线观看 | 捣出白浆h1v1| 多毛熟女@视频| 国产野战对白在线观看| 国产熟女欧美一区二区| 一本久久精品| 啦啦啦 在线观看视频| 欧美中文综合在线视频| 91成人精品电影| 天天躁夜夜躁狠狠久久av| 99久久综合免费| 亚洲成av片中文字幕在线观看| 少妇的丰满在线观看| 嫩草影视91久久| 成人免费观看视频高清| 一级毛片电影观看| 午夜福利乱码中文字幕| 国产一区二区在线观看av| 久久久久久免费高清国产稀缺| 免费观看人在逋| 国产成人a∨麻豆精品| 熟女av电影| 成人国语在线视频| 悠悠久久av| 1024视频免费在线观看| 欧美成人午夜精品| 久久性视频一级片| 不卡av一区二区三区| 制服丝袜香蕉在线| 啦啦啦中文免费视频观看日本| 亚洲人成网站在线观看播放| 国产成人免费观看mmmm| 999精品在线视频| 叶爱在线成人免费视频播放| 啦啦啦在线观看免费高清www| 精品亚洲成国产av| 91aial.com中文字幕在线观看| 一本久久精品| 香蕉丝袜av| 欧美人与性动交α欧美软件| 色94色欧美一区二区| 欧美久久黑人一区二区|