• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Reflexive Selfadjoint Solutions to Some Operator Equations

    2021-05-13 11:08:20WentingLiangandChunyuanDeng

    Wenting Liang and Chunyuan Deng

    1 Department of Mathematics,Taiyuan Normal University,Jinzhong 030619,Shanxi,China.

    2 School of Mathematical Science,South China Normal University,Guangzhou 510631,China.

    Abstract.In this paper,we study the existence of the reflexive,reflexive selfadjoint and reflexive positive solutions to some operator equations with respect to the generalized reflection operator dual(P,Q).We derive necessary and sufficient conditions for the solvability of these equations and provide a detailed description of the solutions in the solvable case by using the Moore-Penrose inverses.

    Key words:(P,Q)reflexive solution,operator equation,positive operator.

    1 Introduction

    Let H and K be separable,infinite dimensional,complex Hilbert spaces.We denote the set of all bounded linear operators from H into K by B(H,K)and by B(H)when H=K.For A∈B(H,K),let A*,R(A)and N(A)be the adjoint,the range and the null space of A,respectively.is the closure of R(A).An operator A∈B(H)is said to be injective if N(A)={0}.A is densely defined if the domain of A is a dense subset of H and the range of A is contained within H.A is said to be positive if(Ax,x)≥0 for all x∈H.Note that the positive operator A has a unique square root A12.Let PMbe the orthogonal projection on closed subspace M?H.IMdenotes the identity onto M or I if there is no confusion.For A,B,P,Q∈B(H),denote by

    We say that P∈B(H)is a reflection operator if P*=P and P2=I.For two reflection operators P and Q,denote by

    The operator X∈BRPQ(H)(resp.Y∈BAPQ(H))is said to be(P,Q)reflexive(resp.(P,Q)anti-reflexive)operator with respect to the reflection operator pair(P,Q)[2,3].By BS(H)and B+(H)we denote the set of all selfadjoint elements and all positive elements in B(H),respectively.Denote by

    The(P,Q)reflexive and anti-reflexive operators have many applications in system and control theory,in engineering,in scientific computations and various other fields[2,3,5,15].The positive solutions to the equation AX=C were studied in[6-8,13,14,19,20]for different setting in Hilbert space or Hilbert C*-module.The equation XA*-AX*=B was studied in[1,9].

    The purpose of this paper is to provide a new approach to the study of(P,Q)reflexive solution and(P,P)reflexive self-adjoint and(P,P)reflexive positive solution respectively to the operator system AX=B.We get the necessary and sufficient conditions for the existence of a solution and obtain the general expression of the solution in the solvable case.

    The paper is organized in the following way.In Section 2,we will recall some results about operators on Hilbert space.In Section 3,we will give the necessary and sufficient conditions for the existence of a(P,Q)reflexive solution to the operator equation AX=B and provide a formula for the general solution to this operator equation.In Section 4,we consider the existence and expressions for the(P,Q)reflexive and anti-reflexive solutions to the operator equation AXB=C.In Section 5,we apply the obtained results to study the(P,Q)reflexive solution and(P,P)reflexive self-adjoint solution to the operator system AX=B and XC=D.A new result concerning the(P,Q)reflexive solution of the operator equation A*X+X*A=B is derived in this section.

    2 Some lemmas

    In this section,we begin with some lemmas which play important roles in the sequel.First,we give the properties of reflection operator.If P2=I,σ(P)k=0,1}={1,-1}by the spectral mapping theorem.Observing that ifλ∈σ(P),thenλ2=1.This shows that eachλ∈σ(P)is a simple root of the equationλ2=1.

    Lemma 2.1.Let P∈B(H).Then P is a reflection operator(P*=P and P2=I)if and only if P=IM⊕-IM⊥,where M=R(I+P).

    Let H1=R(I+Q),H2=R(I-Q),K1=R(I+P)and K2=R(I-P)be nondegenerate subspaces.Then reflection operator P as an operator on K1˙+K2and reflection operator Q as an operator on H1˙+H2have the diagonal matrix forms

    respectively.Let A,B and X∈B(H)be partitioned as

    respectively.It is clear that

    The following lemma is a standard result.

    Lemma 2.2.For A∈B(H),let A=UP0be the polar decomposition of A,where U is unitary fromtoand P0=|A|=λdEλis the spectral decomposition of P0.Let,where

    Then

    Note that A?=(A*A)?A*=A*(AA*)?,R(A)is closed if and only if R(P0)is closed and if and only if 0 is not an accumulation point ofσ(P0).We getand A?=A?if R(A)is closed,where A?∈B(H)is the Moore-Penrose inverse of A.In general,A?is a closed densely defined operator if R(A)is not closed[4,18].Throughout this work the next well-known criterion due to Douglas[10](see also Fillmore-Williams[12])about range inclusions and factorization of operators will be crucial.

    Lemma 2.3([10]).If A,B∈B(H),then the followings are equivalent:

    (i)A=BC for some operator C∈B(H);

    (ii)AA*≤kBB*for some k>0;

    (iii)R(A)?R(B).

    If one of these conditions holds,then there exists a unique solution C0∈B(H)of the equation BX=A such that R(C0)?R(B*)and N(C0)=N(A).This solution is called the Douglas reduced solution.Moreover,‖C0‖2=inf{λ>0:AA*≤λBB*}.In fact,if R(A)?R(B),the Douglas reduced solution is C0=B?A.If R(A)?R(B)and R(B)is closed,then the Douglas reduced solution is C0=B?A.

    The following lemma presents general solutions of the operator equation AX=B(see[5-7,13,15,19]).

    Lemma 2.4.Let A,B be given operators in B(H).Then the operator equation AX=B has a solution if and only if R(B)?R(A)and the general solution is X=A?B+(IA?A)Y,where Y∈B(H)is arbitrary.

    3 The(P,Q)reflexive solution

    In this section we consider the existence and expression for the reflexive,reflexive self-adjoint and reflexive positive solution of the operator equation AX=B,respectively.

    Theorem 3.1.Let A,B be given operators in B(H),P,Q be reflection operators and AP,BQbe defined in(1.1).Then the following statements hold.

    (i)AX=B has a(P,Q)reflexive solution X∈BRPQ(H)if and only if R(BQ)?R(AP).The general(P,Q)reflexive solution is

    where Y∈BRPQ(H)is arbitrary.

    (ii)AX=B has a(P,Q)anti-reflexive solution X∈BAPQ(H)if and only if R(B-Q)? R(AP).The general(P,Q)anti-reflexive solution is

    where Y∈BAPQ(H)is arbitrary.

    Proof.(i)By(1.1),(2.1)and(2.2),AX=B has a solution X∈BRPQ(H),i.e.,

    if and only if

    or else if and only if

    which is equivalent with APX=BQhas a solution X∈BRPQ(H).By Lemma 2.3,we get R(BQ)?R(AP).

    Conversely,if R(BQ)?R(AP),by Lemma 2.2,

    We get

    Since[P,A*A+PA*AP]=0,we get[P,(A*A+PA*AP)?]=0 and

    Note that,for every Y∈BRPQ(H),

    Since R(A*)?R(A*A+PA*AP),we get

    (ii)Note that AX=B has a solution X∈BAPQ(H)if and only if

    has a solution X∈BAPQ(H)or else if and only if

    has a solution X∈BAPQ(H)or else if and only if APX=B-Qhas a solution X∈BAPQ(H).The rest of the proof is similar to item(i).

    Remark 3.1.If A∈B(H)and P is a reflection operator,then

    and

    In Theorem 3.1(i),if R(A*A+PA*AP)is closed,the general reflexive solution reduces as

    for all Y∈BRPQ(H).If R(A)is closed and P=Q=I,then the general reflexive solution reduces as X=A?B+(I-A?A)Y,?Y∈B(H).

    When P=Q we can seek the reflexive selfadjoint solution of AX=B.

    Theorem 3.2.Let A,B be given operators in B(H),P be a reflection operator and AP,BPbe defined in(1.1).Then AX=B has a solution X∈(H)if and only if R(BP)?R(AP)and{AB*,APB*}?BS(H).The general(P,P)reflexive selfadjoint solution is

    where W=(A*A+PA*AP)?,V=A*B+PA*BP and U∈(H)is arbitrary.

    Proof.By the proof of Theorem 3.1,if the equation AX=B has a solution X∈=BRPP(H)∩BS(H),then R(BP)?R(AP).Moreover,

    is selfadjoint.Hence,the operators B(I±P)A*are selfadjoint,which is equivalent to AB*,APB*∈BS(H).The necessity follows.

    For sufficiency,from R(BP)?R(AP)we know there exists X∈B(H)such that APX=BPby Douglas’s theorem.If APis represented by

    where A11is an injective and densely defined operator,then BPcan be written as

    since R(BP)?R(AP).X∈B(H)as the corresponding 2×2 operator matrix can be represented by

    The relation APX=BPimplies that A11X11=B11and A11X12=B12.Since A11is injective and densely defined,we get X11=B11and X12=B12.The general selfadjoint solution of APX=BPis

    From

    we get that AX=B.Hence,(3.4)is the general selfadjoint solution of AX=B.If{AB*,APB*}?BS(H),then AP∈BS(H).Applying(3.1)and(3.2)we get

    The general selfadjoint solution(3.4)can be represented as

    Set W:=(A*A+PA*AP)?and V:=A*B+PA*BP.Then

    The general selfadjoint solution(3.5)can be represented as

    Note that{W,W?,V}?BRPP(H).If U∈(H),we get that X∈(H)is a general reflexive selfadjoint solution of AX=B.

    The general reflexive positive solution of AX=B is given as the following.

    Theorem 3.3.Let A,B be given operators in B(H)and P be a reflection operator.Then AX=B has a solution X∈(H)if and only if

    for someλ>0.A general(P,P)reflexive positive solution of AX=B is

    where W=(A*A+PA*AP)?and U∈(H)is arbitrary.

    Proof.As follows from the proof of Theorem 3.1,the equation AX=B has a solution X∈(H)=BRPP(H)∩B+(H)if and only if the equation APX=BPhas a solution X∈(H).

    Let Y be a positive solution of APX=BP.Since R(BP)=R(APY)?R(AP),by Douglas’s theorem,there existsλ>0 such that

    Note that

    Hence,B(I±P)B*≤λB(I±P)A*for someλ>0.Conversely,if the conditions(3.7)are satisfied with someλ>0,thenBy Lemma 2.3,there exists a unique

    Let APand BPbe partitioned as(3.1)and(3.2),respectively.Then X0can be partitioned as

    since R(X0)?Note that the relation N(X0)=N(BP)implies N=From

    and(3.8),we know that

    is a(P,P)reflexive positive solution to APX=BP.It implies thatis a(P,P)positive reflexive solution to AX=B and the general(P,P)positive reflexive solution to AX=B is

    The proof is complete.

    If A is selfadjoint and AX=B has a selfadjoint solution X0,then

    where the bar denotes complex conjugation.The product AX0=B is invertible if and only if the selfadjoint operators A and X0are invertible.

    4 The(P,Q)reflexive(anti-reflexive)solutions to AXB=C

    In this section we study(P,Q)reflexive and anti-reflexive solutions to the operator equation AXB=C.Note that solution X∈B(H)is(P,Q)reflexive(antireflexive)if and only if X*∈B(H)is(Q,P)reflexive(anti-reflexive).

    Theorem 4.1.Let A,B and C be given operators in B(H),P,Q be reflection operators.Then the following statements hold.

    (i)The operator equation AXB=C has a(P,Q)reflexive solution if and only if R(C)?R(A)and there exists Y0∈B(H)such that

    where[A?C+(I-A?A)Y0]Pand BQare defined by(1.1).

    (ii)The operator equation AXB=C has a(P,Q)anti-reflexive solution if and only if R(C)?R(A)and there exists S0∈B(H)such that

    where[A?C+(I-A?A)S0]-Pand BQare defined by(1.1).

    Proof.(i)Necessity.If the operator equation AXB=C has(P,Q)solutions,the Douglas’s Theorem[10]or Lemma 2.3 yields R(C)?R(A).Let X0∈BRPQ(H)be such that AX0B=C.It follows from Lemma 2.4 that there exists Y0∈B(H)such that the operator equation XB=A?C+(I-A?A)Y0has a(P,Q)reflexive solution X0.Therefore,the operator equation B*X*=[A?C+(I-A?A)Y0]*has a(Q,P)reflexive solutionBy Theorem 3.1(i),we obtain that R([A?C+(I-

    For sufficiency,if there exists Y0∈B(H)such that R([A?C+(I-A?A)Y0])?R(),by Theorem 3.1(i)again,then the operator equation B*Y=[A?C+(IA?A)Y0]*has a(Q,P)reflexive solution(i.e.,X0is a(P,Q)reflexive solution).That is,

    Note that R(C)?R(A),it follows that there exists a(P,Q)reflexive solution X0such that AX0B=C.

    (ii)Note that,by Theorem 3.1(ii),the operator equation B*Y=[A?C+(IA?A)Y0]*has a(Q,P)anti-reflexive solution(i.e.,X0is a(P,Q)anti-reflexive solution)if and only if R([A?C+(I-A?A).The rest of the proof is similar to(i).

    Next,we give the expression of(P,Q)reflexive and anti-reflexive solution to operator equation AXB=C.By Theorem 4.1,if there exists Y0∈B(H)such that R([A?C+(I-A?A),then the operator equation

    has a(Q,P)reflexive solution,that is,a(P,Q)reflexive solution X0.Denote by W0=A?C+(I-A?A)Y0.By Theorem 3.1,we obtain that the(Q,P)reflexive solution to B*Y=is

    where Y∈BRPQ(H)is arbitrary.So,we get

    where Y∈BRPQ(H)is arbitrary,is a(P,Q)reflexive solution to the operator equation

    Moreover,note that R(C)?R(A),it is easy to see that AX0B=AW0=C.As a result,the(P,Q)reflexive solution to AXB=C is

    where Y∈BRPQ(H)are arbitrary.

    Therefore,we have the following result.

    Theorem 4.2.Let A,B and C be given operators in B(H),P,Q be reflection operators.Then the following statements hold.

    (i)If there exists Y0∈B(H)such that

    then the operator equation AXB=C has(P,Q)reflexive solution

    where Y∈BRPQ(H)are arbitrary.

    then the operator equation AXB=C has(P,Q)anti-reflexive solution

    where Y′∈BAPQ(H)are arbitrary.

    5 Apply to the operator system

    In this section,we investigate the common reflexive solution of the equations AX=B and X*C=D.For matrices,the necessary and sufficient conditions for the existence of the common hermitian solution of linear matrix equations were studied in[14,Theorem 2.3]and[16,Theorem 4].Let

    The following theorem gives general conditions for the existence of reflexive solutions.

    Theorem 5.1.Let A,B,C and D be given operators in B(H),and P,Q be reflection operators.

    (i)The equations AX=B and X*C=D have a common solution X∈BRPQ(H)if and only if

    The common(P,Q)reflexive solution is

    where Y∈BRPQ(H)is arbitrary.

    (ii)The equations AX=B and XC=D have a common solution X∈(H)if and only if the following conditions hold:

    (a)AD=BC and APD=BPC;

    (b){AB*,APB*,C*D,C*PD}?BS(H);

    (c)R

    The common(P,P)selfadjoint reflexive solution is

    Proof.(i)By the proof of Theorem 3.1,the equations AX=B and X*C=D have a common solution X∈BRPQ(H)if and only if

    has a solution X∈BRPQ(H)or else if and only if

    By Theorem 3.1,for all Y∈BRPQ(H),the general common solution is

    (ii)By Theorem 3.2,the system AX=B and XC=D has a solution X∈(H)if and only if

    and

    is selfadjoint,which is equivalent to AD=BC,APD=BPC and{AB*,APB*,C*D,C*PD}?BS(H).By Theorem 3.2,the general selfadjoint solution is

    The proof is complete.

    The next theorem represents general conditions for the existence of a reflexive solution of the operator equation A*X+X*A=B.

    Theorem 5.2.Let A,B∈B(H).If A,B have the matrix representations(2.2),then A*X+X*A=B has a solution X∈BRPQ(H)if and only if the following system of matrix equations

    is consistent.In this case,the(P,Q)reflexive solution is represented by

    where

    for all Mii,Niisuch that

    Proof.First,by(2.3),there exist X11and X22such that X=X11⊕X22if X∈BRPQ(H).Note that B=B*if A*X+X*A=B.By(2.2),A*X+X*A=B has a solution X∈BRPQ(H)if and only if there exist X11and X22such that

    i.e.,the system of(5.2)has a solution.In order to describe the set of reflexive solutions completely,we divide the proof into several steps.

    Claim 1.For every A0∈B(H),the equation=0 has the general solutionM0for all M0,N0such thatA0=0.

    Proof.As we know,A0as an operator frominto H=has the diagonal matrix formwhere∈is densely defined and injective.Let X0=have the corresponding form with A0.From

    we get

    Claim 2.For every A0,B0∈B(H),if there exists X0∈B(H)such that=B0,then B0is selfadjoint and

    Proof.It is clear that B0is selfadjoint.Since=0 and(I-=0,we get=0.The result follows immediately.

    Claim 3.For every A0,B0∈B(H),the equation=B0has one special solution

    Proof.By Claim 2,

    Hence,by Claims 1-3,the general solution of=Bii,i=1,2 is

    for all Mii,Niisuch that=0.We get the general(P,Q)reflexive solution

    where Miiis arbitrary and Niisatisfies=0.

    6 Concluding remarks

    Using Moore-Penrose inverses,we give the necessary and sufficient conditions for the solvability of some operator equations and provide a detailed description of the solutions if the corresponding equations are consistent.

    In details,we investigate the existence and expressions for the(P,Q)reflexive,the(P,P)reflexive selfadjoint and the(P,P)reflexive positive solutions respectively to the operator system AX=B,the(P,Q)reflexive and anti-reflexive solutions to the operator equation AXB=C.Also,by applying the obtained results,we study the(P,Q)reflexive solution and the(P,P)reflexive self-adjoint solution to the operator system AX=B and XC=D.A new result concerning the(P,Q)reflexive solution of the operator equation A*X+X*A=B is derived.

    91字幕亚洲| 国产人妻一区二区三区在| 成人亚洲精品av一区二区| 国产麻豆成人av免费视频| 一边摸一边抽搐一进一小说| av女优亚洲男人天堂| 精品人妻熟女av久视频| 少妇人妻精品综合一区二区 | 老司机午夜十八禁免费视频| 国产精华一区二区三区| 亚洲精华国产精华精| 日本一二三区视频观看| 国模一区二区三区四区视频| 午夜精品久久久久久毛片777| 欧美成人a在线观看| 97热精品久久久久久| 日韩欧美精品免费久久 | 国产激情偷乱视频一区二区| 最近最新中文字幕大全电影3| 免费看日本二区| 国产成人影院久久av| 岛国在线免费视频观看| 狠狠狠狠99中文字幕| 69av精品久久久久久| 一区二区三区四区激情视频 | 舔av片在线| 国产黄色小视频在线观看| 91久久精品国产一区二区成人| 天堂动漫精品| 亚洲自偷自拍三级| 日韩欧美三级三区| 亚洲熟妇熟女久久| 亚洲狠狠婷婷综合久久图片| 噜噜噜噜噜久久久久久91| 欧美性猛交╳xxx乱大交人| 久久久久久大精品| 亚洲欧美日韩卡通动漫| a在线观看视频网站| 欧美色视频一区免费| 别揉我奶头~嗯~啊~动态视频| a在线观看视频网站| 欧美xxxx性猛交bbbb| 极品教师在线视频| 亚洲美女搞黄在线观看 | 神马国产精品三级电影在线观看| 久久热精品热| 精品人妻视频免费看| 国产男靠女视频免费网站| 小说图片视频综合网站| 国产精品1区2区在线观看.| 在线观看免费视频日本深夜| 精品一区二区三区视频在线观看免费| 亚洲精品在线美女| 欧美bdsm另类| 亚洲性夜色夜夜综合| 欧美色视频一区免费| 国产大屁股一区二区在线视频| 搡老熟女国产l中国老女人| 三级国产精品欧美在线观看| 我的女老师完整版在线观看| 亚洲国产精品成人综合色| 夜夜夜夜夜久久久久| 赤兔流量卡办理| 午夜福利在线观看免费完整高清在 | 亚洲精品一卡2卡三卡4卡5卡| 在线观看av片永久免费下载| 美女黄网站色视频| 有码 亚洲区| 性色avwww在线观看| 午夜福利成人在线免费观看| 久久久久免费精品人妻一区二区| 九九在线视频观看精品| 最新中文字幕久久久久| 国内毛片毛片毛片毛片毛片| 免费大片18禁| 日本免费a在线| 久久午夜福利片| 非洲黑人性xxxx精品又粗又长| 亚洲成a人片在线一区二区| 校园春色视频在线观看| 亚洲人成网站在线播| 亚洲avbb在线观看| 高清在线国产一区| 欧美潮喷喷水| 免费无遮挡裸体视频| 三级男女做爰猛烈吃奶摸视频| 在线天堂最新版资源| 精品一区二区三区人妻视频| ponron亚洲| 亚洲乱码一区二区免费版| 亚洲欧美日韩高清专用| 性色av乱码一区二区三区2| 中文字幕熟女人妻在线| av在线天堂中文字幕| 欧美性感艳星| 最近中文字幕高清免费大全6 | 国产视频一区二区在线看| 日本成人三级电影网站| 人妻夜夜爽99麻豆av| 我的老师免费观看完整版| 欧美日韩黄片免| 中文亚洲av片在线观看爽| 亚洲 欧美 日韩 在线 免费| ponron亚洲| 欧美黄色片欧美黄色片| a级毛片a级免费在线| 制服丝袜大香蕉在线| 97热精品久久久久久| 日本黄色片子视频| 亚洲欧美日韩高清在线视频| 又黄又爽又免费观看的视频| 国产精品久久久久久久电影| 久久久久久九九精品二区国产| 国内精品美女久久久久久| 欧美bdsm另类| 国产欧美日韩精品亚洲av| or卡值多少钱| 精品久久久久久久末码| 麻豆国产av国片精品| 亚洲av不卡在线观看| 看片在线看免费视频| 内射极品少妇av片p| 亚洲经典国产精华液单 | 我要看日韩黄色一级片| 男人的好看免费观看在线视频| 国产精品美女特级片免费视频播放器| 一进一出抽搐动态| 久久精品国产99精品国产亚洲性色| 成年免费大片在线观看| 国产综合懂色| 亚洲欧美日韩东京热| 一区二区三区激情视频| 亚洲精品亚洲一区二区| 欧美午夜高清在线| 淫秽高清视频在线观看| 男人的好看免费观看在线视频| 午夜精品在线福利| 日韩人妻高清精品专区| 最好的美女福利视频网| 亚洲av成人av| 在线观看午夜福利视频| 免费在线观看成人毛片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 在线观看舔阴道视频| 99久久久亚洲精品蜜臀av| 九九久久精品国产亚洲av麻豆| 久久国产乱子免费精品| 色综合亚洲欧美另类图片| 国产精品精品国产色婷婷| 精品一区二区三区视频在线| 别揉我奶头 嗯啊视频| 天堂av国产一区二区熟女人妻| 一本综合久久免费| 日本熟妇午夜| 日韩人妻高清精品专区| 亚州av有码| 免费搜索国产男女视频| 直男gayav资源| 国产亚洲精品久久久久久毛片| 日本 av在线| 日韩欧美精品免费久久 | 亚洲综合色惰| 亚洲五月婷婷丁香| 亚洲av成人精品一区久久| 1000部很黄的大片| 亚洲av日韩精品久久久久久密| 熟女人妻精品中文字幕| 国产精品人妻久久久久久| 亚洲欧美日韩无卡精品| 久久6这里有精品| 精品日产1卡2卡| h日本视频在线播放| 少妇被粗大猛烈的视频| 中亚洲国语对白在线视频| 午夜久久久久精精品| 成人特级黄色片久久久久久久| 高清日韩中文字幕在线| 俺也久久电影网| 亚洲不卡免费看| 老司机深夜福利视频在线观看| 动漫黄色视频在线观看| 少妇丰满av| 欧美一区二区亚洲| 国产中年淑女户外野战色| 中文字幕av在线有码专区| 日韩精品青青久久久久久| 国产精品一区二区三区四区久久| 超碰av人人做人人爽久久| 亚洲人成伊人成综合网2020| 天堂网av新在线| 精品国产亚洲在线| 国产私拍福利视频在线观看| 69av精品久久久久久| 夜夜夜夜夜久久久久| 色5月婷婷丁香| 97人妻精品一区二区三区麻豆| 国产一区二区在线av高清观看| 最近中文字幕高清免费大全6 | 国产一区二区激情短视频| 丝袜美腿在线中文| 极品教师在线视频| 在线国产一区二区在线| 又粗又爽又猛毛片免费看| 日韩欧美免费精品| 成人鲁丝片一二三区免费| 日日夜夜操网爽| 国产免费一级a男人的天堂| 久久99热这里只有精品18| 免费搜索国产男女视频| 乱码一卡2卡4卡精品| 国产一级毛片七仙女欲春2| 91麻豆精品激情在线观看国产| 亚洲自偷自拍三级| www.www免费av| 在线播放国产精品三级| 国产毛片a区久久久久| 午夜福利欧美成人| 精品久久久久久久末码| 级片在线观看| av福利片在线观看| 亚洲精品日韩av片在线观看| 我要看日韩黄色一级片| 99精品久久久久人妻精品| 国产色婷婷99| 又粗又爽又猛毛片免费看| 国产精品精品国产色婷婷| 一级黄片播放器| 十八禁国产超污无遮挡网站| 搡老熟女国产l中国老女人| 亚洲av成人不卡在线观看播放网| 日韩欧美精品v在线| 99国产精品一区二区蜜桃av| 内地一区二区视频在线| 757午夜福利合集在线观看| 久久人人精品亚洲av| 亚洲无线在线观看| 熟女人妻精品中文字幕| 色5月婷婷丁香| 国产蜜桃级精品一区二区三区| 乱人视频在线观看| 国产人妻一区二区三区在| 天堂影院成人在线观看| 国内精品一区二区在线观看| 婷婷精品国产亚洲av在线| 99国产综合亚洲精品| 亚洲av不卡在线观看| 欧美激情国产日韩精品一区| 亚洲国产精品sss在线观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美精品国产亚洲| 久久精品综合一区二区三区| 一边摸一边抽搐一进一小说| 久久久久久久亚洲中文字幕 | 99国产综合亚洲精品| 一级黄片播放器| 在线十欧美十亚洲十日本专区| 国产黄片美女视频| 久久人人精品亚洲av| 嫩草影院精品99| 一级av片app| 欧美激情久久久久久爽电影| 精品人妻1区二区| 欧美一区二区亚洲| 亚洲成人久久爱视频| 免费av观看视频| 国产午夜精品久久久久久一区二区三区 | 久久精品夜夜夜夜夜久久蜜豆| 久久婷婷人人爽人人干人人爱| 国产精品日韩av在线免费观看| 麻豆成人午夜福利视频| 亚洲午夜理论影院| 最新中文字幕久久久久| 桃红色精品国产亚洲av| 啦啦啦韩国在线观看视频| 国产午夜精品久久久久久一区二区三区 | 国产真实乱freesex| 欧美乱色亚洲激情| 午夜福利高清视频| a级毛片免费高清观看在线播放| 18美女黄网站色大片免费观看| 夜夜夜夜夜久久久久| 国产精品野战在线观看| 日韩人妻高清精品专区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产色片| 日韩欧美在线乱码| 五月伊人婷婷丁香| 欧美zozozo另类| 亚洲天堂国产精品一区在线| 身体一侧抽搐| 我要看日韩黄色一级片| 性欧美人与动物交配| 少妇高潮的动态图| 久久久久久大精品| 尤物成人国产欧美一区二区三区| 国产精品久久久久久久电影| 亚洲最大成人av| 亚洲天堂国产精品一区在线| av天堂在线播放| 欧美成人a在线观看| 在线播放无遮挡| 久久亚洲精品不卡| 欧美日韩福利视频一区二区| 麻豆一二三区av精品| 婷婷色综合大香蕉| 日韩 亚洲 欧美在线| h日本视频在线播放| 国产精品日韩av在线免费观看| 一级作爱视频免费观看| 免费黄网站久久成人精品 | 国产精品免费一区二区三区在线| 欧美一区二区亚洲| 日韩欧美在线二视频| ponron亚洲| 嫩草影院新地址| 中文在线观看免费www的网站| 欧美日本视频| 婷婷色综合大香蕉| 午夜老司机福利剧场| 一本精品99久久精品77| 国产乱人视频| 一个人观看的视频www高清免费观看| 乱码一卡2卡4卡精品| 五月伊人婷婷丁香| 欧美日韩福利视频一区二区| 精品福利观看| 天堂动漫精品| 国产亚洲欧美98| 国产av不卡久久| 两人在一起打扑克的视频| 国产视频一区二区在线看| 琪琪午夜伦伦电影理论片6080| 欧美成狂野欧美在线观看| 天堂av国产一区二区熟女人妻| 亚洲专区中文字幕在线| 成年女人永久免费观看视频| 亚洲人与动物交配视频| 国产探花极品一区二区| 香蕉av资源在线| 久久久久性生活片| 在线观看66精品国产| 国产成人福利小说| 欧美色欧美亚洲另类二区| 国产在线男女| 亚洲自拍偷在线| 99久久无色码亚洲精品果冻| 欧美最黄视频在线播放免费| av在线观看视频网站免费| av在线天堂中文字幕| 特大巨黑吊av在线直播| 国产熟女xx| 久久精品国产亚洲av香蕉五月| 欧美在线一区亚洲| 十八禁国产超污无遮挡网站| 男人舔奶头视频| 我要搜黄色片| 乱码一卡2卡4卡精品| 国产免费一级a男人的天堂| 哪里可以看免费的av片| 成年免费大片在线观看| av天堂中文字幕网| 精品久久久久久久久av| 亚洲一区高清亚洲精品| 看十八女毛片水多多多| 97超视频在线观看视频| 免费观看的影片在线观看| a级一级毛片免费在线观看| www日本黄色视频网| 毛片女人毛片| 日本熟妇午夜| 淫秽高清视频在线观看| 99热这里只有是精品50| 在线观看一区二区三区| 热99re8久久精品国产| 国产精品久久久久久久电影| 日日干狠狠操夜夜爽| 小蜜桃在线观看免费完整版高清| 亚洲国产精品sss在线观看| 久久久久久久精品吃奶| 亚洲人成网站在线播| 亚洲专区中文字幕在线| 免费搜索国产男女视频| 在线十欧美十亚洲十日本专区| 97超视频在线观看视频| 国产单亲对白刺激| 免费在线观看影片大全网站| 欧美日韩乱码在线| 啦啦啦韩国在线观看视频| 午夜免费成人在线视频| 亚洲精华国产精华精| av在线老鸭窝| 村上凉子中文字幕在线| 美女cb高潮喷水在线观看| 亚洲最大成人中文| 亚洲av电影在线进入| 亚洲不卡免费看| 国产三级在线视频| 亚洲av免费高清在线观看| 亚洲经典国产精华液单 | 午夜激情欧美在线| 欧美最新免费一区二区三区 | 亚洲成av人片免费观看| 在线播放无遮挡| 亚洲av美国av| 国产v大片淫在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 男人的好看免费观看在线视频| 观看免费一级毛片| 亚洲av成人不卡在线观看播放网| 女生性感内裤真人,穿戴方法视频| 99在线视频只有这里精品首页| 天堂av国产一区二区熟女人妻| 国产三级在线视频| 给我免费播放毛片高清在线观看| 少妇的逼水好多| 国产精品久久久久久精品电影| 在线观看午夜福利视频| 搡老熟女国产l中国老女人| 日本 av在线| 欧美成狂野欧美在线观看| 国产伦一二天堂av在线观看| 一二三四社区在线视频社区8| 熟女人妻精品中文字幕| 亚洲中文字幕日韩| 国产一区二区三区在线臀色熟女| 一本精品99久久精品77| 3wmmmm亚洲av在线观看| 桃色一区二区三区在线观看| 精品人妻偷拍中文字幕| 久久九九热精品免费| 白带黄色成豆腐渣| 18禁在线播放成人免费| 国产亚洲精品综合一区在线观看| 日韩欧美三级三区| 久久草成人影院| 亚洲av成人不卡在线观看播放网| 日韩高清综合在线| 日本熟妇午夜| 深爱激情五月婷婷| 中文字幕高清在线视频| 成人特级av手机在线观看| 99热精品在线国产| 国产91精品成人一区二区三区| 热99re8久久精品国产| 999久久久精品免费观看国产| 欧美日韩乱码在线| 18+在线观看网站| 久久久成人免费电影| 亚洲精品456在线播放app | 免费看a级黄色片| 别揉我奶头~嗯~啊~动态视频| av黄色大香蕉| 欧美潮喷喷水| 搡女人真爽免费视频火全软件 | 老司机福利观看| 老熟妇仑乱视频hdxx| 一区福利在线观看| 久久久色成人| 成人国产综合亚洲| 亚洲性夜色夜夜综合| 成人一区二区视频在线观看| avwww免费| 少妇人妻精品综合一区二区 | 免费一级毛片在线播放高清视频| 免费无遮挡裸体视频| 十八禁网站免费在线| 午夜福利成人在线免费观看| 久久久久亚洲av毛片大全| 国产亚洲精品久久久com| 永久网站在线| 99riav亚洲国产免费| 婷婷精品国产亚洲av| 欧美zozozo另类| 757午夜福利合集在线观看| 性色av乱码一区二区三区2| 久久久久免费精品人妻一区二区| 亚洲,欧美精品.| 蜜桃久久精品国产亚洲av| 精华霜和精华液先用哪个| 国产精品久久电影中文字幕| 18禁黄网站禁片免费观看直播| 熟女人妻精品中文字幕| 欧美三级亚洲精品| 十八禁人妻一区二区| 亚洲中文字幕日韩| 给我免费播放毛片高清在线观看| .国产精品久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲av成人精品一区久久| 久久精品国产亚洲av香蕉五月| 久9热在线精品视频| 一个人看的www免费观看视频| 亚洲av电影在线进入| 国产精品一区二区免费欧美| 亚洲,欧美精品.| 极品教师在线视频| 国产毛片a区久久久久| 18禁在线播放成人免费| 亚洲在线观看片| 18禁黄网站禁片免费观看直播| 免费搜索国产男女视频| 免费av观看视频| 日本精品一区二区三区蜜桃| 亚洲美女搞黄在线观看 | 中亚洲国语对白在线视频| 久久久久久久久中文| 国产欧美日韩精品亚洲av| 色尼玛亚洲综合影院| 美女大奶头视频| 亚洲人成伊人成综合网2020| 不卡一级毛片| 欧美成人a在线观看| 亚洲成av人片在线播放无| 久久中文看片网| 亚洲精品乱码久久久v下载方式| 日韩中文字幕欧美一区二区| 我要搜黄色片| 人人妻人人看人人澡| 我的女老师完整版在线观看| 特大巨黑吊av在线直播| 每晚都被弄得嗷嗷叫到高潮| 男人的好看免费观看在线视频| 国产熟女xx| 国产一区二区激情短视频| 欧美一级a爱片免费观看看| 美女黄网站色视频| 亚洲久久久久久中文字幕| 国产男靠女视频免费网站| 熟女人妻精品中文字幕| 99久久久亚洲精品蜜臀av| 精品欧美国产一区二区三| 午夜两性在线视频| 中国美女看黄片| 国产精品1区2区在线观看.| 天天躁日日操中文字幕| 黄色一级大片看看| 97热精品久久久久久| 在线a可以看的网站| 俺也久久电影网| 国产视频一区二区在线看| 一本久久中文字幕| 欧美最新免费一区二区三区 | 欧美3d第一页| 人人妻,人人澡人人爽秒播| 在线免费观看不下载黄p国产 | 午夜影院日韩av| 欧美另类亚洲清纯唯美| 亚洲成人中文字幕在线播放| 99精品久久久久人妻精品| 国产三级中文精品| 午夜激情福利司机影院| 成人国产一区最新在线观看| 非洲黑人性xxxx精品又粗又长| 国产一区二区三区视频了| 欧美色视频一区免费| 又粗又爽又猛毛片免费看| 久久久久性生活片| 亚洲欧美日韩无卡精品| 色综合欧美亚洲国产小说| 中文字幕人成人乱码亚洲影| 欧美中文日本在线观看视频| 五月伊人婷婷丁香| 欧美中文日本在线观看视频| 美女免费视频网站| 色综合欧美亚洲国产小说| 美女大奶头视频| 校园春色视频在线观看| 男人舔女人下体高潮全视频| 国产69精品久久久久777片| 美女大奶头视频| 直男gayav资源| 黄色女人牲交| 极品教师在线视频| 欧美日本亚洲视频在线播放| 桃色一区二区三区在线观看| 日本免费一区二区三区高清不卡| 欧美成人一区二区免费高清观看| 国产精品一区二区三区四区免费观看 | 99久久精品国产亚洲精品| 亚洲自拍偷在线| 亚洲男人的天堂狠狠| 五月玫瑰六月丁香| 丁香六月欧美| 舔av片在线| 一级黄色大片毛片| 熟女人妻精品中文字幕| 人人妻,人人澡人人爽秒播| 精品99又大又爽又粗少妇毛片 | 国产成年人精品一区二区| 淫妇啪啪啪对白视频| 国产一区二区亚洲精品在线观看| 十八禁国产超污无遮挡网站| 久久99热这里只有精品18| 99热这里只有是精品50| 亚洲av日韩精品久久久久久密| 麻豆一二三区av精品| 最近中文字幕高清免费大全6 | 精品久久久久久久久久免费视频| 色综合亚洲欧美另类图片| 看免费av毛片| 俄罗斯特黄特色一大片| 亚洲一区二区三区不卡视频| 我要搜黄色片| 国产精品乱码一区二三区的特点| 欧美性猛交黑人性爽| 亚洲国产日韩欧美精品在线观看| 国产成人福利小说| 国产亚洲精品综合一区在线观看| 成人特级av手机在线观看| 国产亚洲精品av在线| 99国产精品一区二区蜜桃av| av福利片在线观看| 高清毛片免费观看视频网站| 身体一侧抽搐| 一进一出抽搐动态|