• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Notes on index of quantum integrability

    2021-05-13 07:05:18JiaTianJueHouandBinChen
    Communications in Theoretical Physics 2021年5期

    Jia Tian,Jue Houand Bin Chen,3

    1 School of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,No.5 Yiheyuan Rd,Beijing 100871,China

    2 Center for High Energy Physics,Peking University,No.5 Yiheyuan Rd,Beijing 100871,China

    3 Collaborative Innovation Center of Quantum Matter,No.5 Yiheyuan Rd,Beijing 100871,China

    Abstract A quantum integrability index was proposed in Komatsu et al (2019 SciPost Phys.7 065).It systematizes the Goldschmidt and Witten’s operator counting argument (Goldschmidt and Witten 1980 Phys.Lett.B 91 392)by using the conformal symmetry.In this work we compute the quantum integrability indexes for the symmetric coset modelsandThe indexes of these theories are all non-positive except for the case ofMoreover we extend the analysis to the theories with fermions and consider a concrete theory:the CPN model coupled with a massless Dirac fermion.We find that the indexes for this class of models are non-positive as well.

    Keywords: integrability,quantum index,coset models

    1.Introduction

    The study of integrability has a long history,which can date back to the time of the birth of Classical Mechanics4For a short history of integrability see [4]..However the understanding of integrability is far from completion,particularly in the context of quantum field theories (QFT).The classical aspects of integrable QFT are usually described by the Lax operator formalism,which allows us to construct local or non-local classically conserved charges.The quantum aspects5For reviews of integrable structure in QFT see for example [5].of integrable QFT are dictated by the S-matrix factorization and bootstrap [1].Integrability itself is noble while proving integrability is always involved with sophisticated guesses and conjectures.The seminal works of [2,3] show that the factorization of S-matrix is a consequence of the existence of higherspin quantum conserved currents.Nevertheless,the construction of quantum conserved currents is quite tricky,as the classical conserved currents are often anomalous at the quantum level.

    In [6],Goldschmidt and Witten (GW) proposed a sufficient condition to prove the existence of quantum conserved currents.By enumerating all the possible local operators which can appear in the anomaly of the classical conservation laws one can tell whether there exist quantum conserved currents.Even though the GW argument is clear,the complexity in counting the possible local operators in practice by the brutalforce method goes wild quickly.Recently,Komatsu,Mahajan and Shao(KMS)[7]systematized the counting,and introduced a quantum integrability index I(J) for each spin J,which we call the KMS index,to characterize the existence of the quantum higher-spin conserved currents.It is a lower bound on the number of quantum conserved currents of spin J.If the KMS index I(J) is positive,it implies the existence of the quantum conserved currents of the spin J.One remarkable feature of the KMS index is that it is usually defined at the UV fixed point of the sigma-model,but it is invariant under conformal perturbation around a conformal field theory fixed point.This allows us to use the conformal symmetry to enumerate the gauge invariant operators according to their scaling dimensions in a systematical way such that the computation of the index is feasible.In [7],the indexes of the higher spin currents for the CPNmodel,the O(N)model and the flat sigma modelwere computed.

    In this note,we would like to compute the KMS index for some other quantum integrable coset models,including the SU(N)/SO(N) model,the SO(2N)/SO(N) × SO(N) model and the CPNmodel coupled with a Dirac fermion.We find that the KMS indexes of higher spins in these models are all nonpositive except for I (4) in themodel.

    The organization of the paper is as follows.In section 2,we review the GW argument and the KMS quantum integrable index.For a clear illustration we focus on a concrete example,O(N) model.In section 3,we compute the KMS index for the coset models SU(N)/SO(N)and SO(2N)/SO(N) × SO(N).These two models are conjectured to be quantum integrable.Also in section 3,we consider the models with fermions and show how to generalize the KMS index.We summarize our results in section 4.

    2.GW argument and KMS index

    In this section we briefly review the Goldschmidt and Witten’s arguments for quantum integrability [6] and the quantum integrability index,introduced by Komatsu,Mahajan and Shao[7].We will take the O(N) model to elaborate the analysis.

    GW argument

    In [6],Goldschmidt and Witten proposed a sufficient condition to diagnose the conservation of quantum higherspin currents in two dimensional sigma models.Their criterion is based on an operator counting analysis in sigma models.Consider a two dimensional sigma model with classical conserved current satisfying

    Quantum mechanically,the classical symmetry may be broken such that the conservation equation is modified to

    where the anomalous term A is a local operator with proper conformal dimension.However,if A can be written as a total derivative as

    then one may redefine the current as

    such that the redefined current is conserved quantum mechanically.The GW criterion is that if the number of A-type operators is less than the number of B-type operators then the quantum higher-spin current is conserved.As an example [6]we consider the O(N) σ model whose action is given by

    The theory is classically conformal invariant,and it has conserved currents of even spin building from the stress tensor.The stress tensor of the theory isDue to the fact that?-T++=0,the currentsJn=(T++)nis conserved classically.Let us consider the classical conserved spin-4 currentand then (2.2) reads

    To construct the A-type and B-type local operators,we frist fnid the building blocks,a list of fundamental independent local operators called the letters.The requirement that the operators should be O(N) invariant implies that the vector index of onemust contract with the one of anotherto get a O(N) singlet.Due to the constraint=1,we can claimand·are not in the list.On the other hand,the equation of motion(EOM)of the model is

    which implies that the letters can not have cross derivatives.Therefore the possible letters are

    with conformal dimensions

    Since the conformal dimension of A isthe only possible A-type operators are

    The conformal dimension ofB+andB-areh+=(4 ,0) andh-=(3 ,1) ,respectively.So they can be

    It seems that there are five B-type operators,but that is not true because we have not imposed the EOM.In other words,these Btype operators are not independent,considering the EOM.To remove the redundancy we have to rewrite?±±Bin terms of A:

    Therefore,there are only three independent B-type operators remaining after imposing the EOM.It implies that A can always be written as a total derivative so that the spin-4 current is conserved even at the quantum level.

    KMS index

    Following the GW argument,the authors in[7]proposed the index

    In the brutal-force counting method,we have shown the most cumbersome step is to remove the redundancy in the counting of B-type operators,due to the on-shell equation of motion.Noticing that the difference A - B defines the set

    Here IBP stands for the total derivative terms as known as Integration By Part.The setC can be interpreted as the set of local operators with proper quantum numbers after considering the EOM and IBP.This kind of object has a clear analogue in effective field theory (EFT) known as the operator bases[8].The crucial idea here is that as the index is invariant under conformal deformation,we can study the index at the UV fixed point where we can organize all the local operators with respect to the conformal multiplets schematically denoted as

    As a result,the partition function Z for all the independent local operators (the letters) has an expansion with respect to the conformal group characterslabeled by the conformal dimension Δ and the spin j:

    Applying the orthogonal property of the character,the KMS index (2.14) for the spin6The spin j has to be an integer in order to have an inversion formula.j could be computed by using an inversion formula [7]

    Let us revisit the O(N) model with this approach.The single-letter characters corresponding to the letters (2.8) is

    The multi-letter partition function is given by the plethystic exponential [8]:

    To compute the quantum index I (4) we need the character

    and the measure in the space (q,x)

    Substituting into(2.14),one can find I (4) =1 which matches the results from brutal force method.We conclude this section by listing other KMS indexes for the O(N) model:

    Thus,there also exists a spin-6 quantum conserved current,as predicted in [7].

    3.Coset models

    The sigma models on homogeneous spaces also known as symmetric coset models are important examples of classical integrable field theory7A recent review can be found in [9].For an integrable but not symmetric coset model see [10]..Applying the operator counting techniques developed for EFT [8],KMS proposed a systematic way to compute the integrability index for the coset sigma models,which are not necessary to be symmetric.

    KMS index for cosetsConsider a coset G/H with the associated Lie algebra orthogonal decomposition

    whereh andk represent the elements in subalgebra and coset,respectively.Introducing the left-invariant one-form

    and its decomposition

    the action of the sigma model can be written as

    The coset model has the local symmetry:

    and a global symmetry:

    The local operators can be built fromg,kμ(x) and their covariant derivatives Dμwhich is defined as

    By imposing EOM and the flatness condition of the leftinvariant one-form we can find the complete set of global Gsymmetry invariant letters

    where the light-cone coordinates have been used.All the letters under the H gauge transformation transform ashkh-1.From g andkμ(x)we can built the Noether currents of the global G symmetry

    Using the Noether currents we can find a set of H-symmetry invariant letters

    In order to construct gauge invariant operators,KMS introduced auxiliary parameters which they call fugacities for the representations,and performed the Haar integration over the group H.As a result,the single-letter character is given by

    and the multi-letter partition function is similarly given by the plethystic exponential

    From the KMS index point of view,the quantum integrability is totally determined by the representation R and the measure dμ H.When the representation R is trivial i.e.χR= 1,the KMS index vanishes.It is not hard to verify this fact numerically.For example,the index for the spin-4 current is given by

    It is obviously vanishing for the trivial representation.We can also understand it in an intuitive way.For any high-spin conserved currentthere exist a A-type operatorBecause no cross derivatives can appear there is no B-type operators then the KMS indexes have to vanish.But we want to stress that the vanishing of KMS indexes does not mean the theory is not integrable.Instead we should think that in this situation GW argument fails and in order to examine the quantum integrability we need some other tools or criteria

    Let us revisit the O(N) model which can be viewed as the coset modelThe currents kμform a vector representation ofSO(N- 1) .For simplicity,we assumeN-1 to be even then the character of the vector representation is given by

    and the Haar measure is given by

    Using the formula (2.18),we find the following results:

    The observation is that when N is small the integrability indexes depend on N but they become stable whenN≥ 7 and the stabilized values coincide with results (2.24).Our calculations(2.24)and(3.14)show that the two descriptions(2.5)and(3.4)of the O(N)model are only equivalent for large enough N.The discrepancy between two kinds of counting for small N is subtle.We believe that the counting in the coset description is reliable.The subtlety is that in the description (2.5) after imposing the constraints

    The discrete symmetry plays an important role for the quantum integrability.For example,for the parity-symmetric theories,the existence of only one local higher-spin conserved current will guarantee the quantum integrability.For the models with discrete symmetry,the KMS indexes must be improved by imposing the discrete symmetry.In this case,we can modify the partition function by gauging the discrete symmetry groupas [7]

    Imposing the discrete Z2charge-conjugation symmetry,the KMS indexes of the O(N) model become8In [7],the indexes I (4) ,I (6) and I (8) have been computed.

    independent of N.Comparing with the results without imposing the discrete symmetry,we see that the indexes of spin 4 and 6 are always positive,and the indexes of higher spin are larger than the one without discrete symmetry.

    In the next section,we will use this strategy to study a few classical integrable models.For coset models,the crucial step is to identify the representation of kμwith respect to the subgroup.That is involved with a representation decomposition problem.Since we only need the character of the representation we solve the problem in the following way.Firstly we separate the normalized generators{TM}of the group into the subgroup part{Ta} and the coset part{Tα}.Then we parameterize the subgroup element as

    so that the representation R is given by

    In the end we express the character of R in terms of the eigenvalues of h which are our auxiliary parameters of fugacities.

    4.Applications

    4.1.Cosets SU(N)/SO(N)

    The exact S-matrices for the sigma models on the spaces SU(N)/SO(N) and SO(2N)/SO(N) × SO(N) were derived in[11] where the author also showed when the θ term equals π the sigma models have stable low-energy fixed points corresponding toSU(N)1andSO(2N)1Wess-Zumino-Witten models.The quantum integrability of these two models relies on the fact that non-local charges survive quantization[12].In this and next sections,we examine the conservation of local higher-spin currents using the KMS index.

    To identify the generators of the subgroups SO(N)for the symmetric cosets SU(N)/SO(N) we can solve the following equations [13]

    where Σ0ia an N × N complex symmetric matrix that satisfiesfor some complex number c.Using the Gell-Mann matrices as the generators of SU(3),one can find that

    where we have normalized the generators as Tr [Tα Tβ]=δαβ.The character of the representation (3.22) is

    Taking a higher dimensional analog of the defining generatorsλi,i= 1,… ,15.we fnid the decomposition of the normalized generators

    The corresponding character of the representation(3.22)is given by

    The observation is that the representation R is the totally symmetric representation[2 ,0...,0].Using the expressions the Haar measures for the groups SO(N) [8],we get

    The negative indexes imply that the GW argument fails.

    We now proceed to take care of the discrete symmetry.Imposing the charge conjugation discrete symmetry extends the gauge group from SO(N) to O(N).The orthogonal group O(N) consists of two connected components:O+(N)=SO(N)and the parity-odd componentO-(N).A general elementg-∈O-(N)is connected to an elementg+∈SO(N)through a parity transformation σ in the formg-=g+σ.For odd N,the parity transformation can be chosen to commute with the rotations due toO(2r+ 1) =SO(2r+ 1) ×Z2so thatσ[1]= -I.Noticingσ[2]= (-1)2Ianddμ-=dμ+we conclude that the Z2symmetry does not change the KMS index for odd N cases.For even N case,because ofthe parity transformation σ does not commute with the rotation anymore.The results9For example,see the appendix of [8].of the representation theory is that the general irreducible representation ofO(2r)are labeled byl= (l1,… ,l r) withl1≥ ...lr≥0,

    with the corresponding characters

    At the same time taking the measuredμ-= dμ Spone can find the KMS index with (2.18).In the example of N = 4,we obtain

    In the end combining the two components with (3.19) gives total KMS indexes

    So the KMS index does not predict the existence of the quantum conserved spin-4 currents or any other higher-spin currents for these coset models.This is actually true for other even N.In short,the high-spin KMS indexes for the cosets SU(N)/SO(N) are all negative for all N,no matter N is odd or even.

    4.2.Cosets SO(2N)/SO(N) × SO(N)

    The symmetric cosets SO(2N)/SO(N) × SO(N)are known as the Grassmannians.We present the details for the low-rank examples,and then conclude for general N.

    Let us start with the lowest rank case

    We will use the defining normalized generators for the orthogonal groups.In this case,the subgroup corresponds to the Cartan subgroup spanned by(T12,T34).The character of the representation Rabare

    and the corresponding measure is

    The product form of the character is due to the fact the coset is in the bi-fundamental representation:R= [ 1]1?[ 1]2.A direct calculation gives the KMS indexes

    However the Grassmannian (4.12) is basically two copies of CP1,so we expect that the KMS indexes can be improved by imposing discrete symmetries.Because locallySO(4)~SU(2)1×SU(2)2,the parity group is

    Apart from this there is anothersymmetry which swaps the two SU(2)'s whose generator is

    Multiplying the elements inZ2×Z2by τ,we can generate more elements:

    Averaging over the full discrete groupwe end up with the final KMS indexes

    Indeed the spin-4 quantum conserved charge is recovered.

    For the higher rank case,the lettersstill transform in the bi-fundamental representation ofSO(N)1×SO(N)2therefore the character is also given by a product of two individual characters:

    We find that all the higher-spin KMS indexes are negative.Imposing the parity groupZ2×Z2will not help.For examples,one can obtain

    WhenN> 4,the subgroups are not Abelian and the representation R is not reducible so that we do not have thesymmetry anymore.Therefore,we conclude that KMS index fails to predict the existences of the quantum conserved higher-spin currents10Here we have not considered the Pfaffian currents which could give a spin-N conserved currents [12].for the coset models SO(2N)/SO(N) ×SO(N) whenN> 2.

    Note that in [14],it was found with the brutal force method that the cosets SU(N)/SO(N) and SO(2N)/SO(N) ×SO(N) possess the spin-4 quantum conserved currents.They used similar letters as ours in the counting.The crucial difference is that their letters jMare defined in the whole algebra while ourskαonly have the coset components.By lifting the letters with a conjugation11Basically,j M ~ gk αg -1 with g ∈G.into the whole algebra they can construct the gauge invariant operators from the trace operators.As we explained in section 3,this counting is incomplete.

    4.3.CPN coupled with fermions

    In this section,we generalize the KMS index to include fermionic letters.We have seen that the CPNmodels are not quantum integrable.However it has been known for a while that the quantum integrability of the CPNmodels can be restored by adding massless Dirac fermions[15].To illustrate our construction,we focus on this model but our method is generally applicable.

    Without imposing the charge conjugation at the beginning,the KMS index can be computed in the presence of the fermionic letters.The fermions are chiral so the possible letters are

    which give rise to the character

    This character is problematic because in the conformal block the conformal dimension takes half-integer value such that the inversion formula does not work anymore.To cure this we can consider the ‘bosonization’ of the model by gauging the symmetryU(1) ×U(1) .For this gauge group we introduce two more auxiliary parameters and modify the fermionic character as

    Recall the bosonic character is

    Combining these two letters we can define the total partition function as a productZ=ZB ZF

    If we integrate out the auxiliary parametersz i,yiwe end up with the generating function without half-integer conformal block contributions because integrating out the gauge symmetryU(1) ×U(1) guarantees the fermionic letters to group in pairs.

    As argued the generating function will not contain unwanted characters corresponding to half-integer conformal dimensions.Note that we can not use the exponential form of the partition function to do this integral directly because it is not well-defined due to the appearance of the square root in the exponent.Instead we should understand it as an expansion form so we introduce another parameter with respect to which we can do the expansion

    If we want to compute the index up to J = 6,the expansion up to the power u8is enough.The resulted KMS indexes are

    Thus the GW argument fails.Now let us impose the charge conjugation symmetry.In other words,we need consider the charge conjugation invariant letters.The bosonic part can be treated in the same way.Gauging the Z2charge conjugation symmetry means that we should consider the real fermionic letters

    Even though these letters are bosonic,we need to take into account of the Pauli’s exclusive principle

    Therefore the partition function can be computed as

    where the infinite products can be expressed with the qpochhammer symbols.Using this fermionic partition function,one can find that all the indexes are zero.The vanishing of the KMS index is due to the chiral structure.Therefore,the final indexes (3.19) are simply given by

    The negative KMS indexes show that the GW argument fails again.

    In the literature,CPNmodels are not often expressed as a coset model.Instead they are expressed in terms of complex vectors.We can also compute the KMS index in this formalism.The action is a complex version of (2.5):

    The single-letters are

    and the corresponding character is given by

    If we want to impose the charge conjugation symmetry,the real single-letters are

    with the character

    Combining with the ferminonic parts(4.33)we reproduce the exactly the same KMS indexes (4.34) for smallJ< 7.

    5.Summary

    In this note,we elaborated the Komatsu,Mahajan and Shao’s index of quantum integrability which systematized the analysis of Goldschmidt and Witten’s argument.As applications,we revisited some quantum integrable coset modelsand found the following results:

    1.The algebraic structure of the letters is crucial,particularly when it is trivial the KMS index vanishes for coset models.

    2.The KMS indexes of the O(N) model in the coset description depend on N whenN< 7.WhenN≥ 7 the KMS indexes will be stable.After imposing the discrete symmetry,the KMS indexes become independent of N and predict the existences of spin-4 and spin-6 conserved currents.

    3.After imposing the discrete symmetries,the coset modelhas KMS index I (4) =1 suggesting the existence of a spin-4 conserved currents.

    4.The indexes of the coset modelswhenN≥3 andare all non-positive.The results are in conflict with the ones[14].The reason is that in[14]the letters used in the counting are defined in the whole group G instead of the coset G/H.It implies the operators which are built from these letters are not only invariant under H-transformation but also under Gtransformation.Therefore only a subset of the gauge invariant operators can be constructed from the letters used in [14] so the counting there is incomplete.

    We also extended the KMS analysis to the theories with fermions and studied the CPNmodel coupled with massless Dirac fermion.We found that KMS index in this kind of model failed to predict any high-spin conserved currents.Our analysis suggests that in order to have positive KMS index one has to consider coupling the fermions with non-trivial algebraic structure.For example,it would be interesting to consider the KMS index in the supersymmetric theories[16].

    Acknowledgments

    JT would like to thank Shota Komatsu for his inspiring lectures on integrability at the 13th Kavli Asian Winter School.The work was in part supported by NSFC Grant No. 11335012,No. 11325522 and No.11 735 001.

    ORCID iDs

    一级毛片 在线播放| 成人毛片a级毛片在线播放| 在线天堂中文资源库| 国产伦理片在线播放av一区| 老汉色av国产亚洲站长工具| 女人久久www免费人成看片| 黄色配什么色好看| 人体艺术视频欧美日本| 亚洲精品aⅴ在线观看| 日韩一本色道免费dvd| 日本色播在线视频| 亚洲国产av新网站| 午夜激情久久久久久久| 搡老乐熟女国产| 亚洲综合色惰| 黄色怎么调成土黄色| 国产精品嫩草影院av在线观看| 女人被躁到高潮嗷嗷叫费观| www.av在线官网国产| 日韩av不卡免费在线播放| 成人国语在线视频| 国产精品熟女久久久久浪| 精品亚洲成国产av| 中文字幕人妻丝袜制服| 又粗又硬又长又爽又黄的视频| 午夜福利影视在线免费观看| 新久久久久国产一级毛片| 国产精品二区激情视频| 中文字幕人妻熟女乱码| 91精品伊人久久大香线蕉| 丝袜在线中文字幕| 岛国毛片在线播放| 99热国产这里只有精品6| 我的亚洲天堂| 亚洲精品在线美女| 日韩,欧美,国产一区二区三区| 国产精品偷伦视频观看了| √禁漫天堂资源中文www| 国产精品熟女久久久久浪| 波多野结衣av一区二区av| 久久国产精品大桥未久av| 亚洲av成人精品一二三区| 亚洲色图综合在线观看| 欧美 日韩 精品 国产| 欧美+日韩+精品| 超色免费av| 精品一区在线观看国产| 国产无遮挡羞羞视频在线观看| 18+在线观看网站| 久久久亚洲精品成人影院| 黑人猛操日本美女一级片| 9热在线视频观看99| 欧美在线黄色| 亚洲国产精品一区二区三区在线| 国产男人的电影天堂91| 欧美精品亚洲一区二区| 深夜精品福利| 亚洲欧美成人综合另类久久久| 啦啦啦在线免费观看视频4| 丝袜在线中文字幕| 精品国产一区二区三区久久久樱花| 久久久精品国产亚洲av高清涩受| 亚洲欧美清纯卡通| tube8黄色片| 一级毛片黄色毛片免费观看视频| 精品久久蜜臀av无| 久久精品夜色国产| 国产伦理片在线播放av一区| 香蕉国产在线看| 欧美日韩视频高清一区二区三区二| 黄网站色视频无遮挡免费观看| 成年动漫av网址| 亚洲一码二码三码区别大吗| 日本猛色少妇xxxxx猛交久久| 黄色视频在线播放观看不卡| 欧美黄色片欧美黄色片| 最新中文字幕久久久久| 又黄又粗又硬又大视频| 人妻 亚洲 视频| 日韩人妻精品一区2区三区| 国产亚洲午夜精品一区二区久久| 久久精品久久久久久久性| 欧美黄色片欧美黄色片| 亚洲欧洲国产日韩| 欧美人与性动交α欧美软件| 日韩电影二区| 国产精品 国内视频| 日本猛色少妇xxxxx猛交久久| 97人妻天天添夜夜摸| 午夜福利一区二区在线看| 午夜日本视频在线| 久久ye,这里只有精品| 欧美成人午夜精品| 精品人妻在线不人妻| 中文天堂在线官网| 日韩av免费高清视频| 女性被躁到高潮视频| 国产免费又黄又爽又色| 亚洲av国产av综合av卡| 看免费av毛片| 91成人精品电影| 国产av精品麻豆| 成人国产av品久久久| 亚洲精品国产av成人精品| 亚洲国产毛片av蜜桃av| 91午夜精品亚洲一区二区三区| 久久ye,这里只有精品| 另类精品久久| 老司机影院毛片| 亚洲一级一片aⅴ在线观看| 亚洲精品日本国产第一区| 赤兔流量卡办理| 大香蕉久久成人网| 久久韩国三级中文字幕| 极品少妇高潮喷水抽搐| 久久精品国产亚洲av高清一级| www.精华液| 日韩中文字幕欧美一区二区 | 国产精品久久久av美女十八| 亚洲激情五月婷婷啪啪| 国产日韩一区二区三区精品不卡| 亚洲精品中文字幕在线视频| 五月开心婷婷网| 色婷婷av一区二区三区视频| 欧美 亚洲 国产 日韩一| 青春草视频在线免费观看| 亚洲激情五月婷婷啪啪| 在线观看免费高清a一片| 精品人妻一区二区三区麻豆| 欧美精品人与动牲交sv欧美| 成人18禁高潮啪啪吃奶动态图| 啦啦啦啦在线视频资源| 香蕉丝袜av| 又粗又硬又长又爽又黄的视频| 精品少妇一区二区三区视频日本电影 | 免费日韩欧美在线观看| 国产精品不卡视频一区二区| 制服诱惑二区| 亚洲四区av| 午夜福利一区二区在线看| 欧美精品一区二区免费开放| 免费在线观看视频国产中文字幕亚洲 | av福利片在线| 精品午夜福利在线看| av不卡在线播放| 久久精品aⅴ一区二区三区四区 | 久久久久网色| 国产精品二区激情视频| 亚洲精品aⅴ在线观看| 激情五月婷婷亚洲| 黑人巨大精品欧美一区二区蜜桃| 满18在线观看网站| 黄色怎么调成土黄色| 久久精品国产亚洲av天美| 日本免费在线观看一区| 欧美日韩视频高清一区二区三区二| 亚洲美女搞黄在线观看| 男的添女的下面高潮视频| 国产日韩一区二区三区精品不卡| 午夜精品国产一区二区电影| av视频免费观看在线观看| 成人午夜精彩视频在线观看| 99久久精品国产国产毛片| 在线免费观看不下载黄p国产| 亚洲欧美一区二区三区国产| 久久人人97超碰香蕉20202| 在线观看人妻少妇| 亚洲人成77777在线视频| 免费不卡的大黄色大毛片视频在线观看| 一二三四在线观看免费中文在| 久久av网站| 欧美日韩视频精品一区| 99九九在线精品视频| 国产又爽黄色视频| 日韩一本色道免费dvd| 日本av手机在线免费观看| 九九爱精品视频在线观看| 熟女电影av网| 亚洲情色 制服丝袜| 九九爱精品视频在线观看| 黑丝袜美女国产一区| 有码 亚洲区| 丝袜在线中文字幕| 亚洲精品aⅴ在线观看| 人人澡人人妻人| 久久精品国产a三级三级三级| 久久人妻熟女aⅴ| 两个人看的免费小视频| 亚洲国产毛片av蜜桃av| 少妇被粗大猛烈的视频| 欧美人与性动交α欧美软件| a级片在线免费高清观看视频| 免费在线观看黄色视频的| 99久久精品国产国产毛片| 国产午夜精品一二区理论片| 精品久久久久久电影网| 建设人人有责人人尽责人人享有的| 国产探花极品一区二区| 亚洲一级一片aⅴ在线观看| 免费黄色在线免费观看| 免费高清在线观看日韩| 国产精品三级大全| 亚洲av在线观看美女高潮| 国产成人精品无人区| 中国国产av一级| 精品99又大又爽又粗少妇毛片| 日本-黄色视频高清免费观看| 国产精品欧美亚洲77777| 国产精品蜜桃在线观看| 老鸭窝网址在线观看| 日本av手机在线免费观看| 国产野战对白在线观看| 久久精品亚洲av国产电影网| 欧美人与性动交α欧美软件| 久久久久国产网址| 777米奇影视久久| 99热全是精品| 一级毛片黄色毛片免费观看视频| 久久久久人妻精品一区果冻| av在线app专区| 麻豆av在线久日| 国产1区2区3区精品| 国产日韩欧美在线精品| 欧美日韩精品成人综合77777| 热99国产精品久久久久久7| 熟女av电影| 精品一区二区免费观看| 蜜桃国产av成人99| 天天操日日干夜夜撸| 色视频在线一区二区三区| 精品人妻一区二区三区麻豆| 一级,二级,三级黄色视频| 中文字幕av电影在线播放| 一级爰片在线观看| 免费在线观看黄色视频的| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av涩爱| 久久久久国产一级毛片高清牌| 美女国产高潮福利片在线看| 欧美97在线视频| 国产av一区二区精品久久| 人妻 亚洲 视频| 免费高清在线观看日韩| 黄片无遮挡物在线观看| 久久精品人人爽人人爽视色| 满18在线观看网站| 99久久中文字幕三级久久日本| 卡戴珊不雅视频在线播放| 在线观看www视频免费| 国产精品不卡视频一区二区| 婷婷色麻豆天堂久久| www.熟女人妻精品国产| 一级黄片播放器| 欧美黄色片欧美黄色片| 亚洲熟女精品中文字幕| 9色porny在线观看| 激情视频va一区二区三区| 深夜精品福利| 五月伊人婷婷丁香| 久久韩国三级中文字幕| 成年av动漫网址| 精品国产一区二区三区久久久樱花| 欧美中文综合在线视频| 一个人免费看片子| 国产精品秋霞免费鲁丝片| 亚洲五月色婷婷综合| 人体艺术视频欧美日本| 毛片一级片免费看久久久久| 熟女av电影| 少妇的丰满在线观看| 亚洲精品中文字幕在线视频| 亚洲一码二码三码区别大吗| 天天躁日日躁夜夜躁夜夜| 亚洲男人天堂网一区| 99久久中文字幕三级久久日本| 丰满饥渴人妻一区二区三| 久久99一区二区三区| 啦啦啦中文免费视频观看日本| 欧美97在线视频| 日韩精品有码人妻一区| 一二三四在线观看免费中文在| 欧美激情极品国产一区二区三区| 丰满迷人的少妇在线观看| 国产又爽黄色视频| 国产精品嫩草影院av在线观看| a级片在线免费高清观看视频| 色吧在线观看| 久久精品国产a三级三级三级| 久久免费观看电影| 日韩欧美精品免费久久| 色94色欧美一区二区| 成人漫画全彩无遮挡| 成年动漫av网址| 国产国语露脸激情在线看| 99热全是精品| 五月开心婷婷网| 极品人妻少妇av视频| 青春草国产在线视频| 99国产精品免费福利视频| 最新中文字幕久久久久| 天堂俺去俺来也www色官网| 最近最新中文字幕大全免费视频 | 国产精品一国产av| 一边摸一边做爽爽视频免费| 亚洲精品自拍成人| 国产老妇伦熟女老妇高清| 成人免费观看视频高清| 中国国产av一级| 巨乳人妻的诱惑在线观看| 国产极品粉嫩免费观看在线| 性色av一级| 久久国产精品大桥未久av| 色视频在线一区二区三区| 80岁老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 久久久a久久爽久久v久久| 日韩精品有码人妻一区| 亚洲美女搞黄在线观看| 欧美bdsm另类| 国产成人欧美| 国产黄频视频在线观看| 亚洲国产精品成人久久小说| 欧美xxⅹ黑人| 丰满少妇做爰视频| 伦理电影大哥的女人| 亚洲精品国产色婷婷电影| 国产成人精品一,二区| 国产麻豆69| 飞空精品影院首页| 街头女战士在线观看网站| 国产精品免费视频内射| 日韩av不卡免费在线播放| 曰老女人黄片| 亚洲av欧美aⅴ国产| 在线 av 中文字幕| av网站免费在线观看视频| 99久国产av精品国产电影| 国产精品av久久久久免费| 色播在线永久视频| 波野结衣二区三区在线| 99九九在线精品视频| 90打野战视频偷拍视频| 久久午夜福利片| 女人久久www免费人成看片| 91在线精品国自产拍蜜月| 伦精品一区二区三区| 丰满迷人的少妇在线观看| kizo精华| 精品第一国产精品| 国产探花极品一区二区| 久久 成人 亚洲| 在线天堂中文资源库| 久久久久久久精品精品| 久久鲁丝午夜福利片| 精品少妇久久久久久888优播| 亚洲男人天堂网一区| 成人漫画全彩无遮挡| 宅男免费午夜| av一本久久久久| 狠狠精品人妻久久久久久综合| av.在线天堂| 一级毛片电影观看| 欧美 日韩 精品 国产| 中文字幕另类日韩欧美亚洲嫩草| av一本久久久久| 国产无遮挡羞羞视频在线观看| 熟女电影av网| 亚洲综合精品二区| 成年美女黄网站色视频大全免费| 中文乱码字字幕精品一区二区三区| 国产有黄有色有爽视频| 大片免费播放器 马上看| 国产精品不卡视频一区二区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品成人av观看孕妇| 永久网站在线| 黑人欧美特级aaaaaa片| 国产爽快片一区二区三区| 亚洲经典国产精华液单| 国产男人的电影天堂91| 99久国产av精品国产电影| 亚洲国产精品999| 亚洲国产av影院在线观看| 亚洲欧美日韩另类电影网站| 国产一区二区三区综合在线观看| 中文精品一卡2卡3卡4更新| 亚洲国产欧美日韩在线播放| 制服丝袜香蕉在线| 黄色毛片三级朝国网站| 国产精品国产av在线观看| 日本vs欧美在线观看视频| 一区二区三区激情视频| 午夜福利在线观看免费完整高清在| 国产成人av激情在线播放| 亚洲国产看品久久| 国产极品粉嫩免费观看在线| 免费黄色在线免费观看| 老司机影院毛片| 欧美日韩视频高清一区二区三区二| 宅男免费午夜| 啦啦啦中文免费视频观看日本| 亚洲中文av在线| 国产免费一区二区三区四区乱码| 制服丝袜香蕉在线| 一级a爱视频在线免费观看| 国产极品天堂在线| 婷婷成人精品国产| 日韩不卡一区二区三区视频在线| 国产日韩欧美亚洲二区| 日韩中文字幕视频在线看片| 亚洲精品久久成人aⅴ小说| 欧美少妇被猛烈插入视频| 国产成人午夜福利电影在线观看| 亚洲精品久久午夜乱码| 黑丝袜美女国产一区| 高清欧美精品videossex| 久久99一区二区三区| 97人妻天天添夜夜摸| 2022亚洲国产成人精品| 黄色 视频免费看| 看非洲黑人一级黄片| 乱人伦中国视频| 亚洲av.av天堂| 天天影视国产精品| 欧美中文综合在线视频| 伦精品一区二区三区| 亚洲精品av麻豆狂野| 国产免费现黄频在线看| 春色校园在线视频观看| 男女下面插进去视频免费观看| 久久久久国产精品人妻一区二区| 一区在线观看完整版| 欧美成人午夜免费资源| 在线观看三级黄色| 考比视频在线观看| 久久99热这里只频精品6学生| 国产一区二区激情短视频 | 亚洲欧美精品自产自拍| 最近2019中文字幕mv第一页| 成人手机av| 久久久久久人妻| 一本—道久久a久久精品蜜桃钙片| 日韩电影二区| 欧美日韩视频高清一区二区三区二| 一区二区三区乱码不卡18| 成年动漫av网址| 午夜激情久久久久久久| 精品一区二区三卡| 国产精品 国内视频| 18禁裸乳无遮挡动漫免费视频| 少妇猛男粗大的猛烈进出视频| 久久鲁丝午夜福利片| 亚洲国产精品一区三区| 欧美变态另类bdsm刘玥| 黑人猛操日本美女一级片| 国产乱人偷精品视频| 成人毛片a级毛片在线播放| 黄色怎么调成土黄色| 人妻一区二区av| 又粗又硬又长又爽又黄的视频| 在线亚洲精品国产二区图片欧美| 久久久久精品久久久久真实原创| 欧美成人午夜精品| 亚洲一码二码三码区别大吗| 久久热在线av| 亚洲第一av免费看| 中文欧美无线码| av电影中文网址| 国产午夜精品一二区理论片| 可以免费在线观看a视频的电影网站 | av又黄又爽大尺度在线免费看| 成年av动漫网址| 日本av免费视频播放| 成年人午夜在线观看视频| 男女下面插进去视频免费观看| 国产精品久久久久久精品电影小说| 欧美97在线视频| 中文字幕人妻熟女乱码| 国产黄色视频一区二区在线观看| av有码第一页| 国产成人精品婷婷| www.自偷自拍.com| 婷婷色麻豆天堂久久| 午夜日韩欧美国产| 看十八女毛片水多多多| 成人18禁高潮啪啪吃奶动态图| 日日啪夜夜爽| 欧美日韩一级在线毛片| 香蕉精品网在线| 欧美日韩视频精品一区| 亚洲成人一二三区av| 香蕉国产在线看| 久久久精品区二区三区| 免费观看在线日韩| videossex国产| 一区福利在线观看| 又大又黄又爽视频免费| 国产日韩欧美视频二区| 亚洲精品日韩在线中文字幕| 亚洲欧美清纯卡通| 香蕉丝袜av| 少妇猛男粗大的猛烈进出视频| 九草在线视频观看| 在线观看美女被高潮喷水网站| 欧美+日韩+精品| 有码 亚洲区| 丝瓜视频免费看黄片| 亚洲av.av天堂| 精品人妻一区二区三区麻豆| 亚洲色图 男人天堂 中文字幕| 欧美成人午夜精品| 街头女战士在线观看网站| 少妇熟女欧美另类| 日韩av在线免费看完整版不卡| 国产片特级美女逼逼视频| 亚洲成色77777| 久久 成人 亚洲| 不卡视频在线观看欧美| 91在线精品国自产拍蜜月| 久久亚洲国产成人精品v| 国产亚洲欧美精品永久| 欧美成人精品欧美一级黄| 青草久久国产| 狂野欧美激情性bbbbbb| 人人妻人人澡人人爽人人夜夜| 成人18禁高潮啪啪吃奶动态图| 国产精品国产av在线观看| 国产片内射在线| 少妇的逼水好多| 各种免费的搞黄视频| 免费黄网站久久成人精品| 街头女战士在线观看网站| 亚洲成人一二三区av| 日韩伦理黄色片| 日韩一区二区三区影片| 午夜福利网站1000一区二区三区| 不卡av一区二区三区| 午夜福利在线观看免费完整高清在| 2021少妇久久久久久久久久久| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美清纯卡通| 亚洲国产精品一区二区三区在线| 久久久久网色| 日韩人妻精品一区2区三区| 一二三四在线观看免费中文在| 国产极品天堂在线| 老汉色∧v一级毛片| av福利片在线| 老熟女久久久| 免费不卡的大黄色大毛片视频在线观看| 巨乳人妻的诱惑在线观看| www.精华液| a级片在线免费高清观看视频| 久久人人爽av亚洲精品天堂| 老汉色av国产亚洲站长工具| 男男h啪啪无遮挡| 黑丝袜美女国产一区| 亚洲四区av| 一级,二级,三级黄色视频| 黄网站色视频无遮挡免费观看| 亚洲色图 男人天堂 中文字幕| 在线亚洲精品国产二区图片欧美| 男女边吃奶边做爰视频| 亚洲经典国产精华液单| 日韩一区二区三区影片| 久久久久视频综合| 免费大片黄手机在线观看| 九色亚洲精品在线播放| 国产精品秋霞免费鲁丝片| 18禁国产床啪视频网站| 亚洲精品国产av成人精品| 日本色播在线视频| 午夜免费观看性视频| 丝袜美足系列| 久久精品亚洲av国产电影网| 久久国产精品男人的天堂亚洲| 一二三四中文在线观看免费高清| 91午夜精品亚洲一区二区三区| 国产日韩欧美亚洲二区| 黄色怎么调成土黄色| 欧美精品人与动牲交sv欧美| 乱人伦中国视频| 久久人人爽av亚洲精品天堂| 国产女主播在线喷水免费视频网站| 999久久久国产精品视频| 欧美精品av麻豆av| 免费观看在线日韩| 亚洲精品国产av蜜桃| www.熟女人妻精品国产| 欧美激情高清一区二区三区 | 亚洲精品美女久久久久99蜜臀 | 天天躁日日躁夜夜躁夜夜| 制服诱惑二区| 在线观看免费视频网站a站| 午夜91福利影院| 国产精品无大码| 日韩一区二区视频免费看| 日韩欧美精品免费久久| 日本色播在线视频| av视频免费观看在线观看| 日韩免费高清中文字幕av| 日韩中字成人| 免费看不卡的av| 亚洲av免费高清在线观看| 99热国产这里只有精品6| 国产精品不卡视频一区二区| 女性被躁到高潮视频| 极品人妻少妇av视频| 十八禁网站网址无遮挡| 一级a爱视频在线免费观看| 亚洲成国产人片在线观看| 国产精品.久久久| 亚洲三区欧美一区| 七月丁香在线播放| 精品人妻在线不人妻|