• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ab initio study of the effects of helium on the mechanical properties of different erbium hydrides

    2021-05-13 07:06:22MingwenZhangLiLiZhezhenZhaoJinlanNieXiaotaoZuandHongxiangDeng
    Communications in Theoretical Physics 2021年5期

    Mingwen Zhang,Li Li,Zhezhen Zhao,Jinlan Nie,Xiaotao Zu and Hongxiang Deng

    School of Physics,University of Electronic Science and Technology,Chengdu 610054,China

    Abstract Although rare-earth metals have increasingly received attention for use in the storage and transportation of the tritium used in nuclear fusion reactions,they still face great challenges,such as the effect of helium on the mechanical properties of different erbium hydrides.In this work,first principles are used to study the mechanical properties(elastic constants,Young’s modulus,transverse shear modulus and bulk modulus) of different erbium hydrides exposed to helium.The Young’s modulus,the transverse shear modulus and the bulk modulus are given based on the elastic constants calculated according to first principles.It is found that the mechanical properties of all three erbium hydrides decrease in the presence of helium,and the decline of the mechanical properties of ErH3 is the most serious.To explain the reason for the decrease in the mechanical properties,the densities of the states of erbium hydrides are calculated.During the calculations,helium embrittlement is not found and the ductility of the erbium hydrides improves following the production of helium at the helium concentrations considered in this work.

    Keywords: ab initio calculation,Er hydrides,helium,mechanical properties

    1.Introduction

    Nuclear energy production is perceived as a means of satisfying national energy demands while contributing to a potentially sustainable energy transition.Tritium is used to fuel the neutron tubes in a nuclear fusion reaction and is a reaction product of molten salt reactors.However,tritium is radioactive.It would extremely valuable to solve the problem of safe tritium storage and transportation to support the practical use of nuclear energy [1,2].

    Because of their high tritium storage densities,metals have been widely considered as possible storage materials for tritium.Up until now,depleted uranium is the only metal that has actually been used to store tritium.However,depleted uranium is not only radioactive but also combustible [3].Therefore,the identification of a new suitable tritium storage metal has become an important research direction.

    Rare-earth metals can absorb a lot of hydrogen and hydrogen isotopes.The number of tritium atoms that can be stored in a rare-earth metal can be several times greater than the number of metal atoms.At the same time,the equilibrium pressure in a rareearth metal that has absorbed tritium atoms is very low.Because of the above advantages,rare-earth metals are considered to be excellent tritium storage materials.Among the rare-earth metals,erbium is considered a significant tritium storage material.

    After erbium absorbs tritium,erbium tritides of different phases are formed according to the different ratios of tritium absorption.There are three kinds of stable structure in the Er-T binary system: HCP α - Er,FCC β- ErT2,and triclinic γ-ErT3,as shown in figure 1.Their structures are similar to Mg,CaF2and HoH3,respectively [4].

    Figure 1.Schematic representation of the different erbium hydride configurations (a) Er,(b) ErT2,(c) ErT3.

    In metal tritium storage systems,tritium decays to3He through β decay.Since3He does not react,but accumulates in metals,helium bubbles eventually form.The helium bubbles do not grow in an unrestricted manner;when they break,they cause surface damage.From a macroscopic point of view,helium leads to a decrease in the mechanical properties of materials,and makes materials brittle-helium embrittlement,which affects the lifetime and properties of materials [5-9].

    Over the years,many researchers have studied He behavior in the Er-H system.Wixom et al calculated the migration of H,O,and He in β-ErH2using first principles[10].Snow observed the growth of He bubbles in ErT2thin films using transmission electron microscope(TEM)[11],and Knapp observed the evolution of mechanical properties of ErT2thin films [12].Dai and Schultz studied the mechanical properties of ErH2using first principles [13,14].

    However,since most current studies only focus on ErH2,there is a lack of research into α-Er and γ-ErH3.Also,the effects of He on the mechanical properties of erbium hydrides have not been considered when helium is in different interstitial positions.In particular,there are no reports comparing the three phases (α-Er,β-ErT2and γ-ErT3).Therefore,it is necessary to study the effects of He on the mechanical properties of Er-T in different phases.

    It should be noted that tritium is an isotope of hydrogen and has the same electronic number as hydrogen.Relevant studies have shown that erbium tritide and erbium hydride have similar properties [15].Therefore,tritium is replaced by hydrogen in the calculations of this paper.

    2.Simulation method

    The calculation is based on density functional theory (DFT)theory,and the Vienna ab initio simulation package (VASP) is employed in our calculation.The projector augmented wave method is used to determine the interaction between ions and electrons,while the exchange and correlation interactions are described by the generalized gradient approximation (GGA)proposed by Perdew and Wang[16].The pseudo-potentials used in the calculations are all derived from the pseudo-potential library of the VASP software package.Brillouin zone sample points are generated using the Monkhorst-Pack method.First,the unit cell size and atomic positions are both optimized.The pseudo-potentials and the cutoff energy are all tested,and the cutoff energy is set to 500 eV.The accuracy and convergence of the calculation results are relatively good.Based on the unit cell,a super cell is built to calculate the physical parameters.

    To compare the effect of He on different erbium hydrides,supercells are built for three erbium hydrides with the same number of atoms(24).For α-Er,the cell used in the calculation is 3 × 2 × 2 and 5 × 5 × 5 k-points are used;for β-ErH2,the cell used in the calculation is 2 × 2 × 1,and 7 × 7 × 7 k-points are used;for γ-ErH3,the cell used in the calculation is 1 × 1 × 1,and 7 × 7 × 7 k-points are used.

    There are tetrahedral vacancies (T) and octahedral vacancies (O) in α-Er.Therefore,a He atom is put in the tetrahedral vacancy or the octahedral vacancy for α-Er to calculate the elastic constants and the density of state.ErH2has an face center cubic (fcc) metallic sub-structure and all the tetrahedral positions are occupied by H atoms.Two conditions are considered for ErH2,the first condition is that the H atom at a T position is replaced by a He atom,and the second condition is that H is deleted at the T position and a He atom is placed at the O position.ErH3has an hexagonal close packed (hcp) substructure whereby all the tetrahedral positions and octahedral positions are occupied by H atoms.Two conditions are considered for ErH3.The first condition is that a H atom at a T position is replaced by a He atom,and the second condition that a H atom at an O position is replaced by a He atom.

    The number of independent elastic constants are different for different crystal systems.α-Er belongs to the hexagonal system and there are five independent elastic constants,which are(C11,C12,C13,C33,C44).β-ErH2belongs to the cubic system with the highest symmetry and there are only three independent elastic constants,which are(C11,C12,C44).γ-ErH3belongs to the trigonal system and there are six independent elastic constants,which are (C11,C12,C13,C14,C33,C44).

    3.Results and discussion

    In this section,a VASP calculation is employed to obtain the elastic constants and the densities of state of erbium hydrides.The elastic constant calculation is based on the stress-strain method which is embedded in VASP[17].The elastic moduli are obtained based on the calculated elastic constants according the equation for elastic constants and elastic modulus.The effects of He on the mechanical properties are analyzed and compared in detail for the three erbium hydrides.

    Table 1.The calculated lattice constants (?) of three erbium hydrides.

    3.1.Lattice constants

    First,both the lattice sizes and internal atomic coordinates of the three phases are fully relaxed.The lattice constants obtained are listed in table 1.From the data listed in the table,it can be seen that the results in this work are agreement with both the calculated and experimental results in the literature[18,19],indicating that our calculation methods and calculation parameter settings are all reasonable.

    3.2.Elastic constants

    The data in brackets in table 2 are from published results[14,20].It can be seen from table 2 that the errors between the calculation results in this paper and the results from the literature are within 3%,which shows that our calculation results are reasonable and reliable.It also can be seen that the elastic constant changed after He was produced.Further analysis according our calculation results shows that the production of He inevitably leads to a certain degree of lattice distortion.However,the lattice distortion is less than 0.05%,as the doping concentration of He in this work is relatively low.So the small change of the elastic constant matrix caused by lattice distortion is ignored in this work.

    We now calculate the elastic modulus using the elastic constants and the effect of He on the mechanical parameters is analyzed.

    3.3.Elastic modulus

    Elastic moduli are physical quantities that describe the elasticity of materials,which include Young’s modulus (Y),the shear modulus(G),the bulk modulus(B),etc.They represent the changes of stress with strain in the elastic deformation stage.The elastic modulus is an important performance parameter of engineering materials.From the macroscopic point of view,the elastic modulus measures the ability of materials to resist elastic deformation.From the microscopic point of view,the elastic modulus reflects the bonding strengths between atoms,ions,or molecules.

    Using the elastic constants in section 3.2 and the Voigt-Reuss-Hill approximation [21],Young’s modulus,the shear modulus,the bulk modulus,and the value of B/G can be calculated.

    It can be seen from table 3 that the Y,G,and B of Er are smaller than those of ErH2and ErH3,which indicates that Er has the weakest deformation resistance.The mechanical properties are closely related to the bonding strength.On the one hand,the distance between atoms of Er is large and the interaction distance is long.On the other hand,the Er-H bond is absent in Er,compared with the ErH2and ErH3which contain hydrogen.This could be the reason for the weak deformation resistance of Er.

    Also,it can be observed from table 3 that all the elastic moduli of the three phases decrease after He is produced.This is consistent with the experiment described in[22].For α-Er,the maximum reduction rate of the elastic modulus is from 2.66% to 5.50%.For β-ErH2,the maximum reduction rate is from 3.19% to 8.29%.For γ-ErH3,the maximum reduction rate is from 22.72%to 26.44%.Therefore,the influence of He is the greatest on the mechanical properties of ErH3.This result means that the damage of He to different phases is different and the damage to ErH3is the most serious.

    It can be seen from table 3 that with the generation of He,the value of B/G increases.The ductility and brittleness of materials can be judged by their B/G value [23].In general,the larger the value of B/G,the better the ductility of the material.The critical value of B/G for brittleness and ductility is 1.75.From table 3,it can be noticed that when there is no He,the ratio of B/G is less than 1.75,showing that the materials are brittle.With the generation of He,the ductility of the material increases.However,the value of B/G is still less than 1.75,which means that the materials are still brittle.

    While the ductility of the material increases with the generation of He,no helium embrittlement appears under the condition described in this work.It can be inferred that helium embrittlement is produced only when the helium concentration reaches a certain level.

    3.4.Electronic structural analysis

    The mechanical strength of the material can be reflected by the elastic modulus from the macroscopic point of view,andit can be reflected by the bonding strength from the microscopic point of view.The bonding strength can be a reflection of the electronic structure.To further investigate the effect of He on metal hydrides,the density of states of each phase of erbium hydrides are calculated.

    Table 2.Calculated and reference values (Gpa) of elastic constants.

    Table 3.Calculated values (Gpa) for the elastic modulus.

    Figure 2.Density of states diagram of the d orbital of an Er atom.

    3.4.1.The effect of He on α-Er.Figure 2 is a density of states diagram of the d orbital of the Er atom nearest to He.In figure 2,the black curve is the density of states diagram of the d orbital of the Er atom,as there is no He introduced into the Er.The red curve is the density of states diagram of the d orbital of the Er atom when the He atom is in a tetrahedral site.It should be mentioned that the density of states of the Er atom is the average of the four Er atoms nearest to the He.The blue curve is the density of states diagram of the d orbital of an Er atom when the He atom is in an octahedral site.Here,the density of states of the Er atom is the average of the six Er atoms nearest the He.

    From figure 2,it can be seen that the density of states changes greatly following He generation.The change is expected to be caused by the production of an Er-He bond.When He is in the octahedral position,the change to the density of states is larger.This indicates that the interaction between the He and Er atoms is stronger when the He is in the octahedral position.Because He is a closed-shell atom,the stronger the interaction with the surrounding atoms,the more unstable the material.In other words,α-Er is more unstable when He is in the tetrahedral position than when He is in the octahedral position.This conclusion is consistent with table 3.

    3.4.2.The effect of He on β-ErH2.It can be seen from figure 3(a) that the density of states of ErH2is mainly contributed by the s orbitals of H and the d orbitals of Er at low energy levels.In the range of -5.5 eV ~ -4.5 eV,the density of states of H-s and Er-d overlap and hybrid peaks appear,showing that the H-Er bond is strong.At high energy levels,the density of states is mainly contributed by the d orbitals of Er.

    From figure 3(b),it can be observed that the total density of states at the Fermi level increases slightly after He production,showing that the interaction of He and Er increases.The stronger the interaction between the He and the metal,the more unfavorable it is to the stability of the system,and the mechanical properties decrease.

    Figure 3.Density of states diagram of ErH2.(a)The total density of states(TDOS)of ErH2 and the(density of states(DOS)of the d orbital of Er and the s orbital of H,(b)TDOS of pure ErH2,ErH2 with He in the octahedral site,and the tetrahedral site.(c)TDOS of ErH2 with He in the T site and the DOS of the d orbital of Er and the s orbital of H.(c)TDOS of ErH2 with He in the O site and the DOS of the d orbital of Er and the s orbital of H.

    Figures 3(c)and(d)show the TDOS and the DOS of the d orbital of Er and the s orbital of H in ErH2 with He in the T and O sites.It can be observed that the hybridization of H and Er is slightly weaker after the generation of He.This obviously leads to a decrease in the mechanical properties.

    At the same time,we note that the density of states of He in an octahedron is significantly higher than that in a tetrahedron (as shown by figure 3(b)),which indicates that the interaction between He and Er in the octahedral position is stronger than that with Er in the tetrahedral position.Therefore,when He is in an octahedron,the mechanical properties decrease more noticeably.

    According to the van’t Hoff equation,the higher the stability of the system,the lower the equilibrium pressure.Through the above analysis,we know that the production of He leads to a decline in the stability of the system [24].Therefore,the equilibrium pressure of the system increases after He is produced.The increase of equilibrium pressure means that the tritium storage performance of the material decreases.Therefore,the hydrogen storage capacity decreases following He generation.

    3.4.3.The effect of He on γ-ErH3.From figure 4(a),it can be seen that Er and H have strong hybridization at low energy levels.The density of states is contributed by both the s orbital of H and the d orbit of Er at low energy levels,and by the d orbital of Er at high energy levels.At the same time,it can be observed from figure 4(a) that the density of states at the Fermi level of ErH3(as the most H-containing phase) is close to zero.The result indicates that ErH3shows a nonmetallic property.

    Figure 4(b) shows that the density of states at the Fermi level increases after He generation.This indicates that the stability of the structure is decreased.At the same time,it can be observed that the density of states changes more obviously when He is in the octahedral site.This shows that the interaction between the He and Er atoms is stronger when He is in the octahedral site,which may explain why the octahedral site is less stable than the tetrahedral site.

    Figure 4.Density of states diagram of ErH3(a)TDOS of ErH3 and the DOS of the d orbital of Er and the s orbital of H,(b)TDOS of pure ErH3,ErH3 with He in the octahedral site and the tetrahedral site.(c)TDOS of ErH3 with He in the T site and the DOS of the d orbital of Er and the s orbital of H.(c) TDOS of ErH3 with He in the O site and the DOS of the d orbital of Er and the s orbital of H.

    Figures 4(c)and(d)are the TDOS and the DOS of the d orbital of Er and the s orbital of the H of ErH3with He in the T site and the O site.It can be observed that the hybridization of H and Er is weaker following the generation of He,and that the DOS shifts to a lower energy level.This obviously leads to a reduction in the mechanical properties.

    Similarly to the analysis of ErH2,the hydrogen storage capacity of ErH3will decrease following He generation.

    4.Conclusions

    Using ab initio calculations based on DFT,the influences of He on the mechanical properties of different erbium hydrides was systematically studied.The calculations of the relative elastic modulus and the DOS showed that:

    (1) The mechanical properties of all three erbium hydrides decreased due to the production of He.He has the biggest impact on the mechanical properties of ErH3and the decrease of the elastic modulus (a mechanical property of ErH3) can be more than 20%.

    (2) The calculated results for the densities of states were consistent with those of the mechanical parameters.The results for the densities of states showed that the destruction of the Er-H bond and the establishment of an Er-He bond led to a reduction in the mechanical properties.

    (3) Research also shows that the materials were still ductile and that no helium embrittlement appeared under the conditions described in this work.This indicates that helium embrittlement takes place at a specific He density in erbium hydrides.

    This work helps in the exploration of the hydrogen storage capacity of rare-earth metals from a microscopic point of view.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Grant No.11804046 and No.61505023).

    白带黄色成豆腐渣| 最新在线观看一区二区三区| 高潮久久久久久久久久久不卡| 国产精品1区2区在线观看.| 精品电影一区二区在线| 亚洲av成人av| 日韩大码丰满熟妇| 欧美另类亚洲清纯唯美| 国产精品1区2区在线观看.| 美女免费视频网站| 丝袜美腿诱惑在线| 久久草成人影院| 人人妻人人看人人澡| 成人特级黄色片久久久久久久| 男女下面进入的视频免费午夜 | 国产人伦9x9x在线观看| 少妇熟女aⅴ在线视频| 国产三级在线视频| 丝袜美腿诱惑在线| 色综合欧美亚洲国产小说| 热re99久久国产66热| 少妇粗大呻吟视频| 亚洲无线在线观看| 桃色一区二区三区在线观看| 国产伦在线观看视频一区| 亚洲av成人不卡在线观看播放网| 亚洲国产欧洲综合997久久, | 身体一侧抽搐| 国产av不卡久久| 99riav亚洲国产免费| 国产成人啪精品午夜网站| 超碰成人久久| 日本 av在线| 欧美成人性av电影在线观看| 法律面前人人平等表现在哪些方面| 国产伦一二天堂av在线观看| 99re在线观看精品视频| 久久天躁狠狠躁夜夜2o2o| 一卡2卡三卡四卡精品乱码亚洲| 欧美绝顶高潮抽搐喷水| avwww免费| 国产成人精品久久二区二区91| 久久久国产成人精品二区| 人人妻人人看人人澡| 天天躁夜夜躁狠狠躁躁| 天天添夜夜摸| x7x7x7水蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 高潮久久久久久久久久久不卡| 国产亚洲精品久久久久久毛片| 黄色女人牲交| 欧美成狂野欧美在线观看| 观看免费一级毛片| 12—13女人毛片做爰片一| 欧美激情 高清一区二区三区| 中国美女看黄片| 亚洲第一欧美日韩一区二区三区| 国产伦在线观看视频一区| 村上凉子中文字幕在线| a级毛片在线看网站| 美女扒开内裤让男人捅视频| 婷婷精品国产亚洲av| 欧美黑人精品巨大| 青草久久国产| 免费一级毛片在线播放高清视频| 最好的美女福利视频网| 国产成人精品久久二区二区91| 欧美另类亚洲清纯唯美| 老熟妇乱子伦视频在线观看| 国产91精品成人一区二区三区| 中国美女看黄片| 制服人妻中文乱码| 午夜两性在线视频| 久久久久久国产a免费观看| 最近在线观看免费完整版| 久久热在线av| 精品电影一区二区在线| 亚洲狠狠婷婷综合久久图片| 亚洲欧美精品综合久久99| 日本熟妇午夜| 草草在线视频免费看| 亚洲精华国产精华精| 午夜成年电影在线免费观看| 精品国产超薄肉色丝袜足j| 亚洲,欧美精品.| 在线观看免费日韩欧美大片| 国产1区2区3区精品| 伊人久久大香线蕉亚洲五| 嫩草影院精品99| 国产视频内射| 欧美乱色亚洲激情| 久久精品国产亚洲av香蕉五月| 国产精品久久视频播放| 亚洲欧美日韩高清在线视频| 嫩草影视91久久| 国产精品爽爽va在线观看网站 | 不卡一级毛片| 久久久久久国产a免费观看| 精品一区二区三区四区五区乱码| 韩国av一区二区三区四区| 午夜福利18| 最近最新中文字幕大全免费视频| 91大片在线观看| 国产午夜福利久久久久久| 精品乱码久久久久久99久播| 国产欧美日韩一区二区精品| 久久精品国产综合久久久| 色在线成人网| 麻豆av在线久日| 国产精品一区二区免费欧美| 婷婷精品国产亚洲av在线| 亚洲性夜色夜夜综合| 久久草成人影院| 国产黄片美女视频| 久久精品影院6| 18禁黄网站禁片午夜丰满| 中文资源天堂在线| 国产精品影院久久| 99在线人妻在线中文字幕| 久久人妻福利社区极品人妻图片| 国产高清有码在线观看视频 | 日韩三级视频一区二区三区| 久久久久久大精品| 亚洲五月婷婷丁香| 两人在一起打扑克的视频| 国产精品 欧美亚洲| 啦啦啦韩国在线观看视频| 亚洲色图av天堂| 久久久久久九九精品二区国产 | 91麻豆精品激情在线观看国产| 90打野战视频偷拍视频| 免费看十八禁软件| 两人在一起打扑克的视频| 日本一本二区三区精品| 757午夜福利合集在线观看| 亚洲一区二区三区色噜噜| av在线播放免费不卡| 女生性感内裤真人,穿戴方法视频| 午夜福利在线观看吧| 国产aⅴ精品一区二区三区波| 欧美亚洲日本最大视频资源| 欧美性猛交╳xxx乱大交人| 精品午夜福利视频在线观看一区| 亚洲国产高清在线一区二区三 | 黄色丝袜av网址大全| 999精品在线视频| 亚洲狠狠婷婷综合久久图片| 欧美大码av| 老熟妇仑乱视频hdxx| 亚洲狠狠婷婷综合久久图片| 国内久久婷婷六月综合欲色啪| 成人特级黄色片久久久久久久| 国产一区二区激情短视频| 夜夜夜夜夜久久久久| 国产免费男女视频| 久久久久久久久久黄片| 久久这里只有精品19| 亚洲最大成人中文| 哪里可以看免费的av片| 欧洲精品卡2卡3卡4卡5卡区| 妹子高潮喷水视频| 欧美日韩乱码在线| 精品一区二区三区av网在线观看| 国产在线观看jvid| 亚洲成av人片免费观看| 国产免费男女视频| 国产精品二区激情视频| 亚洲av电影不卡..在线观看| 久久久久久九九精品二区国产 | 久久草成人影院| 亚洲五月色婷婷综合| 国产三级黄色录像| 久久草成人影院| 久久精品91蜜桃| 视频区欧美日本亚洲| 久久草成人影院| 夜夜看夜夜爽夜夜摸| 久久久久久大精品| 最近最新中文字幕大全电影3 | 亚洲成人免费电影在线观看| or卡值多少钱| 中文字幕最新亚洲高清| 国产野战对白在线观看| www.www免费av| 丁香六月欧美| 久久精品国产亚洲av香蕉五月| 在线观看日韩欧美| 曰老女人黄片| 日韩视频一区二区在线观看| xxx96com| 国产真人三级小视频在线观看| 午夜福利在线观看吧| 看片在线看免费视频| 国产一区在线观看成人免费| 欧美成狂野欧美在线观看| 香蕉久久夜色| 亚洲熟妇熟女久久| 熟女少妇亚洲综合色aaa.| 国产成人欧美| 日本 欧美在线| 精品久久久久久久人妻蜜臀av| 欧美在线黄色| 欧美色视频一区免费| 国产精品野战在线观看| 午夜福利一区二区在线看| 欧美日韩福利视频一区二区| 侵犯人妻中文字幕一二三四区| 成人免费观看视频高清| 中文在线观看免费www的网站 | 亚洲无线在线观看| 久久国产精品人妻蜜桃| 精品人妻1区二区| 麻豆av在线久日| 热re99久久国产66热| 久久99热这里只有精品18| 日韩有码中文字幕| 国产精品98久久久久久宅男小说| 丝袜美腿诱惑在线| 啦啦啦韩国在线观看视频| 美女午夜性视频免费| 好男人在线观看高清免费视频 | 又大又爽又粗| 欧美性长视频在线观看| 视频区欧美日本亚洲| 国产片内射在线| 欧美又色又爽又黄视频| 精品欧美国产一区二区三| 老司机深夜福利视频在线观看| 99精品欧美一区二区三区四区| 最新在线观看一区二区三区| 国产一级毛片七仙女欲春2 | 老司机靠b影院| 亚洲av第一区精品v没综合| 人人澡人人妻人| 2021天堂中文幕一二区在线观 | 自线自在国产av| 午夜福利在线观看吧| 91在线观看av| 哪里可以看免费的av片| 成人18禁高潮啪啪吃奶动态图| 人人妻人人澡欧美一区二区| 久久九九热精品免费| www日本在线高清视频| 国产av不卡久久| www.精华液| 韩国精品一区二区三区| 欧美成狂野欧美在线观看| 亚洲国产精品合色在线| 日韩视频一区二区在线观看| 日日夜夜操网爽| 久久精品夜夜夜夜夜久久蜜豆 | 国产v大片淫在线免费观看| 一区二区三区激情视频| 两个人视频免费观看高清| 黄色毛片三级朝国网站| 美女高潮喷水抽搐中文字幕| 正在播放国产对白刺激| 亚洲国产看品久久| 久久久久久亚洲精品国产蜜桃av| 成人国产一区最新在线观看| 麻豆成人午夜福利视频| 亚洲三区欧美一区| cao死你这个sao货| 熟妇人妻久久中文字幕3abv| 淫秽高清视频在线观看| 亚洲 欧美一区二区三区| 黄色女人牲交| 欧美成人免费av一区二区三区| 一区二区三区激情视频| 淫秽高清视频在线观看| 午夜久久久在线观看| 国产午夜福利久久久久久| 日本一本二区三区精品| 国产麻豆成人av免费视频| 午夜成年电影在线免费观看| 男人舔奶头视频| 国产av一区二区精品久久| 99热6这里只有精品| 国产精品乱码一区二三区的特点| 日韩欧美一区视频在线观看| 久9热在线精品视频| 成人三级做爰电影| 人人澡人人妻人| 久久久久国产精品人妻aⅴ院| 国产精品国产高清国产av| av有码第一页| 亚洲国产中文字幕在线视频| 欧美一区二区精品小视频在线| 免费看美女性在线毛片视频| 一本精品99久久精品77| 日韩欧美 国产精品| 大型av网站在线播放| 欧美大码av| 大型黄色视频在线免费观看| 免费人成视频x8x8入口观看| 国产aⅴ精品一区二区三区波| 午夜福利在线在线| www.www免费av| 一本综合久久免费| 国产欧美日韩精品亚洲av| 99热6这里只有精品| 少妇 在线观看| АⅤ资源中文在线天堂| 在线看三级毛片| 久久国产精品影院| 成在线人永久免费视频| 国产人伦9x9x在线观看| 波多野结衣av一区二区av| 青草久久国产| 在线国产一区二区在线| 国产真人三级小视频在线观看| 在线观看免费日韩欧美大片| 亚洲国产日韩欧美精品在线观看 | 香蕉av资源在线| 可以在线观看的亚洲视频| 亚洲一区二区三区不卡视频| 久久精品aⅴ一区二区三区四区| 欧美日韩福利视频一区二区| 亚洲最大成人中文| 亚洲久久久国产精品| 少妇的丰满在线观看| 少妇粗大呻吟视频| 亚洲av熟女| 日韩大尺度精品在线看网址| 韩国精品一区二区三区| 啪啪无遮挡十八禁网站| 亚洲第一电影网av| 999久久久精品免费观看国产| 露出奶头的视频| 黑人欧美特级aaaaaa片| 日日夜夜操网爽| 亚洲国产毛片av蜜桃av| 十八禁人妻一区二区| netflix在线观看网站| 国产精品香港三级国产av潘金莲| 给我免费播放毛片高清在线观看| 美国免费a级毛片| 久久精品国产清高在天天线| 三级毛片av免费| 一级黄色大片毛片| 久久久国产精品麻豆| 亚洲欧美精品综合久久99| 日本成人三级电影网站| 亚洲中文av在线| 人妻久久中文字幕网| 亚洲欧美日韩无卡精品| 性欧美人与动物交配| 亚洲精品在线观看二区| e午夜精品久久久久久久| 男人舔女人的私密视频| 久久香蕉激情| 久久久久久人人人人人| 热99re8久久精品国产| ponron亚洲| 99精品久久久久人妻精品| 国产成人欧美| 18禁黄网站禁片午夜丰满| 成人av一区二区三区在线看| 在线观看日韩欧美| 日韩精品青青久久久久久| 一进一出抽搐动态| 国产精品影院久久| 性欧美人与动物交配| 久久久国产欧美日韩av| 亚洲第一欧美日韩一区二区三区| 男人舔女人下体高潮全视频| 法律面前人人平等表现在哪些方面| 在线观看一区二区三区| 在线播放国产精品三级| 在线免费观看的www视频| 正在播放国产对白刺激| 国产成年人精品一区二区| 黑人欧美特级aaaaaa片| 亚洲熟妇熟女久久| 亚洲av片天天在线观看| 欧美性猛交╳xxx乱大交人| 韩国av一区二区三区四区| 成在线人永久免费视频| 超碰成人久久| 一级片免费观看大全| 久热爱精品视频在线9| 男女视频在线观看网站免费 | 18禁黄网站禁片免费观看直播| 亚洲一区高清亚洲精品| 一a级毛片在线观看| 亚洲av电影不卡..在线观看| 免费av毛片视频| 黄色丝袜av网址大全| 亚洲激情在线av| 精品第一国产精品| 国产欧美日韩精品亚洲av| 国产激情欧美一区二区| 久久久久久久午夜电影| 欧美乱码精品一区二区三区| 狠狠狠狠99中文字幕| 成人国产综合亚洲| 日韩大码丰满熟妇| 亚洲成人久久性| 一进一出抽搐动态| 亚洲自拍偷在线| 99久久综合精品五月天人人| av在线播放免费不卡| 午夜成年电影在线免费观看| 久久久久久久久久黄片| 久久青草综合色| www.999成人在线观看| 日日夜夜操网爽| videosex国产| 亚洲一区二区三区不卡视频| 亚洲国产精品成人综合色| 国产精品98久久久久久宅男小说| 91国产中文字幕| 免费在线观看影片大全网站| 老司机午夜十八禁免费视频| 精华霜和精华液先用哪个| 人妻久久中文字幕网| 久久精品国产亚洲av香蕉五月| 国产高清videossex| 91麻豆精品激情在线观看国产| 亚洲在线自拍视频| 美女高潮到喷水免费观看| 精品高清国产在线一区| 免费女性裸体啪啪无遮挡网站| 在线十欧美十亚洲十日本专区| 久久亚洲真实| 亚洲 欧美 日韩 在线 免费| 精品熟女少妇八av免费久了| 国产三级在线视频| www.精华液| 欧美激情 高清一区二区三区| 看免费av毛片| 极品教师在线免费播放| 欧美日韩精品网址| 午夜精品在线福利| 久久久久亚洲av毛片大全| www国产在线视频色| 在线观看一区二区三区| 国产精品一区二区免费欧美| videosex国产| 色婷婷久久久亚洲欧美| 99riav亚洲国产免费| 12—13女人毛片做爰片一| 免费在线观看亚洲国产| 久久国产精品男人的天堂亚洲| 亚洲男人的天堂狠狠| 国产免费av片在线观看野外av| 成人18禁高潮啪啪吃奶动态图| 亚洲熟妇熟女久久| 欧美乱色亚洲激情| 免费看十八禁软件| 精品电影一区二区在线| 中出人妻视频一区二区| 久久中文看片网| 窝窝影院91人妻| 叶爱在线成人免费视频播放| 国产黄片美女视频| 久久久国产成人免费| 精品人妻1区二区| 色av中文字幕| 国产精品免费一区二区三区在线| 日本精品一区二区三区蜜桃| 国产在线精品亚洲第一网站| 亚洲av日韩精品久久久久久密| 亚洲专区字幕在线| 国产精品久久视频播放| 黄色 视频免费看| 精品欧美国产一区二区三| 夜夜看夜夜爽夜夜摸| 一边摸一边抽搐一进一小说| 国产精品国产高清国产av| 国产av不卡久久| www国产在线视频色| 国产精品久久久久久亚洲av鲁大| 欧美乱妇无乱码| 亚洲人成网站在线播放欧美日韩| 免费搜索国产男女视频| 亚洲国产精品合色在线| 亚洲av第一区精品v没综合| 一本综合久久免费| 国产欧美日韩精品亚洲av| 夜夜躁狠狠躁天天躁| 久久亚洲精品不卡| www国产在线视频色| 国产亚洲精品第一综合不卡| 免费在线观看亚洲国产| 自线自在国产av| 国产精品美女特级片免费视频播放器 | 90打野战视频偷拍视频| 一级毛片精品| av有码第一页| 日日摸夜夜添夜夜添小说| 一二三四社区在线视频社区8| 亚洲人成网站高清观看| 少妇被粗大的猛进出69影院| 美女扒开内裤让男人捅视频| 亚洲国产看品久久| 99热这里只有精品一区 | 国产成人精品久久二区二区免费| 成人午夜高清在线视频 | 97超级碰碰碰精品色视频在线观看| 精品国产一区二区三区四区第35| 精品一区二区三区av网在线观看| 香蕉丝袜av| 老熟妇乱子伦视频在线观看| 一级作爱视频免费观看| 午夜福利欧美成人| 午夜免费鲁丝| 日本a在线网址| 精品一区二区三区视频在线观看免费| aaaaa片日本免费| 国产精品久久久人人做人人爽| 久久国产亚洲av麻豆专区| 欧美zozozo另类| 久久狼人影院| 国产在线精品亚洲第一网站| 久久中文字幕人妻熟女| 一级a爱视频在线免费观看| 精品熟女少妇八av免费久了| 欧美在线黄色| 怎么达到女性高潮| 51午夜福利影视在线观看| 夜夜看夜夜爽夜夜摸| 亚洲成a人片在线一区二区| 免费av毛片视频| 精品卡一卡二卡四卡免费| 一级片免费观看大全| 亚洲全国av大片| 精品日产1卡2卡| 波多野结衣高清作品| 美国免费a级毛片| 久久久久九九精品影院| 免费看a级黄色片| 一本精品99久久精品77| 丝袜美腿诱惑在线| 久久精品91蜜桃| 久久久精品国产亚洲av高清涩受| avwww免费| 久久国产亚洲av麻豆专区| 母亲3免费完整高清在线观看| 日韩免费av在线播放| 99热这里只有精品一区 | 97碰自拍视频| 欧美国产日韩亚洲一区| 精品久久久久久久毛片微露脸| 亚洲av五月六月丁香网| 久99久视频精品免费| 国产又色又爽无遮挡免费看| 国产99久久九九免费精品| 国产成人精品久久二区二区91| 成人av一区二区三区在线看| 99热这里只有精品一区 | 人人妻,人人澡人人爽秒播| 国产av一区在线观看免费| 91成年电影在线观看| 一级a爱视频在线免费观看| 精品无人区乱码1区二区| 午夜福利一区二区在线看| 精品卡一卡二卡四卡免费| 俺也久久电影网| 日韩成人在线观看一区二区三区| 黑人欧美特级aaaaaa片| 亚洲七黄色美女视频| 999精品在线视频| 国产亚洲欧美精品永久| 久久久久久久午夜电影| 亚洲五月色婷婷综合| 欧美丝袜亚洲另类 | 国产一区在线观看成人免费| 日日爽夜夜爽网站| 欧美黑人巨大hd| 亚洲精品在线观看二区| 男女那种视频在线观看| 欧美成人性av电影在线观看| 日本免费一区二区三区高清不卡| 高清在线国产一区| 欧美日韩亚洲综合一区二区三区_| 妹子高潮喷水视频| 熟女少妇亚洲综合色aaa.| 91成年电影在线观看| 日韩中文字幕欧美一区二区| 久久久国产成人精品二区| 国产av不卡久久| 国产精品一区二区精品视频观看| 国内精品久久久久久久电影| 国产私拍福利视频在线观看| 成人永久免费在线观看视频| 国产熟女午夜一区二区三区| 久久精品国产亚洲av香蕉五月| 91九色精品人成在线观看| 亚洲成av人片免费观看| 男女下面进入的视频免费午夜 | 免费高清视频大片| 成人国产综合亚洲| 老司机午夜十八禁免费视频| 中文字幕人妻丝袜一区二区| 日韩精品中文字幕看吧| 人人妻人人澡人人看| 欧美午夜高清在线| 国产伦一二天堂av在线观看| 麻豆成人午夜福利视频| 久久99热这里只有精品18| 久久精品亚洲精品国产色婷小说| 久久久国产成人免费| 日韩欧美一区二区三区在线观看| 香蕉久久夜色| 中文字幕人妻熟女乱码| 午夜免费观看网址| 国产精品乱码一区二三区的特点| 99久久国产精品久久久| 88av欧美| 欧美精品亚洲一区二区| 在线av久久热| 19禁男女啪啪无遮挡网站| 在线观看66精品国产| 成年女人毛片免费观看观看9|