• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized heat diffusion equations with variable coefficients and their fractalization from the Black-Scholes equation

    2021-05-13 07:05:24RamiAhmadElNabulsiandAlirezaKhaliliGolmankhaneh
    Communications in Theoretical Physics 2021年5期

    Rami Ahmad El-Nabulsi and Alireza Khalili Golmankhaneh

    1 Biomedical Device Innovation Center,Shenzhen Technology University,3002 Lantian Road,Pingshan District,Shenzhen,518118,China

    2 Research Center for Quantum Technology,Faculty of Science,Chiang Mai University,Chiang Mai,50200,Thailand

    3 Athens Institute for Education and Research,Mathematics and Physics Divisions,8 Valaoritou Street,Kolonaki,10671,Athens,Greece

    4 Department of Physics,Urmia Branch,Islamic Azad University,Urmia,Iran

    Abstract In this study,we prove that modified diffusion equations,including the generalized Burgers’equation with variable coefficients,can be derived from the Black-Scholes equation with a timedependent parameter based on the propagator method known in quantum and statistical physics.The extension for the case of a local fractal derivative is also addressed and analyzed.

    Keywords: Black-Scholes equation,heat kernels,modified diffusion equations,generalized Burger’s equation,fractal calculus

    1.Introduction

    The well-known Black-Scholes model (BSM) based on the diffusion process called geometric Brownian motion provides a closed form for the values of certain options such as the European put options [1].This model has a broad range of applications ranging from finance to statistical physics,mainly in the theory of anomalous diffusion processes(see[2]and references therein).The theoretical results predicted by the model are not ideal and do not completely agree with real-world applications.Given that the BSM is not satisfactory for calibrating market option data,time-dependent volatility has been conjectured by several studies.In addition,the BSM with time-varying parameters plays a crucial role in quantitative finance,since timedependent volatility influences investment expectations.Many attempts have been made to construct a viable BS model with a time-dependent volatility function,using the BS equation with variable volatility [2,3].Although the BSM has largely been used with constant volatility in physical systems exhibiting diffusion and anomalous diffusion behaviors,the implications of variable volatility are,to the best of our knowledge,absent from the theory of diffusion.This study aims to show that,under simple coordinate transformation,the generalized Burgers’equation which occurs in various areas of applied sciences such as fluid dynamics and gas dynamics may be derived from the Black-Scholes equation(BSE)with time-dependent coefficients.Moreover,due to the importance of fractals in diffusion processes,finance,and economics,where multifractality,heavytailed probability distributions,and volatility clustering play important roles[4-26],we will extend our approach to the case of fractal calculus which is an important investigation approach.Fractal calculus is a recent mathematical field of study.Due to its universality,this approach is not effectively used in the field of finance and partial differential equations.In general,fractals are non-differentiable irregular shapes used in several financial studies such as market prices [27-29].Recently,Fα-calculus,which is a particular branch of fractal calculus,was formulated in a seminal paper by A.D.Gangal and co-authors[38,30-37].The advantages of fractal calculus are that it is algorithmic,simple,local,and conjugate with ordinary calculus [30,31].

    This study is organized as follows: in section 2,we introduce the basic setups of our approach; in section 3,the main results were discussed and analyzed; in section 4,a reformulation of the current approach using fractal calculus is introduced,analyzed,and discussed; finally conclusions are given in section 5.

    2.Basic setup

    In the framework of the BS model,given a continuous function f(t,S(t)) where(S,t) ∈ R+×[0 ,T),the following modified Taylor expansion holds:

    Here,ε is a elementary time which the series expansion of f(t,S(t)) is performed around,as follows:

    S(t) is the option of an underlying security which is assumed to be a stochastic variable and which is governed by the stochastic Langevin or Ito-Weiner equation:

    Here,φ(t) is the expected return on the security S(t),σ(t) its volatility(assumed to be time-dependent),and Rtis the usual Gaussian white noise with a zero mean and which satisfies=δ(t-t′)(a delta function correlator) [3].If we discretize the time as t=nε,the probability distribution function of white noise is then given by:withand accordingly:

    therefore,for ε →0,we can write equation (1) as:

    This equation can be also obtained using Ito’s calculus.In the BS model,the delta-hedge (self-financing and riskless) portfolio is defined by:Sand subsequently,the rate of return is given by:

    On the other hand,since the gain in the value of the portfolio π is deterministic,cannot be more or less than the gain in the value of the portfolio invested at the risk-free interest rate r(assumed to be time-dependent).Therefore=rπand after dropping the φ term (bearing in mind that the pricing of the security derivative is based on a risk-neutral process which is independent of the investor’s opinion),we can write:

    This problem is,in general,associated with the initial conditions:

    and the boundary conditions:

    Here,f(S,t)→S as S →∞,where f(S,T) is defined over 0 <S <∞,0 <t <T.The call option gives the payoff max(ST-K,0)at a future time T.The accessible literature has largely treated the boundary conditions for the pricing equations(see [39] and references therein)

    3.Main Results

    By performing a change of variable R(t)=t-αr(t),α ∈R which is the time-dependent effective risk-free interest rate,equation (7) is effortlessly reduced to:

    It is notable that the time-dependent parameters in financial dynamics have largely been addressed in the literature through different aspects and methodologies[40-49].Letting x=lnS and introducing the new variable τ=T-t (the time to expiry,such that τ=0 at T=t),it is easy to check that equation (8) turns into:

    Setting

    we can write equation (9) as:

    Eq.(11) describes a financial model with a time-dependent effective risk and a time-dependent volatility.The solution is given by(for the details of calculations and derivations of the solution,please refer to [48,49]):

    where:

    Since scaling behavior and power laws are common features and ubiquitous in finance and macroeconomics [50-55],we assume throughout this work that both volatility and risk vary as power laws.We propose the following scaling relations:

    If β and χ have positive values,then it is obvious that both the (risk-free) interest rate and the volatility grow with time.However,in some cases,the interest rate may decrease over time.On the other hand,the justification for these expressions is related to the ubiquity of power laws in finance.Therefore,we obtain:

    Using the following mathematical relations [48,49]:

    whereG(x,t;x′ ,0) is the propagator of the pricing equation.For 0 <α ≤1 and τ=T-t <<1 (in normalized units),we can approximate equation (23) by:

    If χ <2α-3,which corresponds for the special case of a perturbed risk-free interest rate returning to its equilibrium rate in power-law decay,we can reduce equation (24) to:

    where

    is the effective heat kernel.For= 2,equation (26) solves the following modified heat diffusion equation [56]:

    which is reduced to its standard form for r1=0.Equation(27)is comparable to the generalized Burgers’ equation with variable coefficients [57] of the form:

    where f(T) and g(T) are arbitrary smooth functions.It can be proved that equation(28)may be reduced via a change of the variable T to the well-known variable coefficient generalized Burgers’ equations with linear damping of the form [58,59]:

    Figure 1.The Cantor set,the staircase function,and the solution of the fractal Black-Scholes equation.

    where g(T) is another arbitrary smooth function.However,for:and χ=-α,equation (25) is reduced,for large T,to:

    which solve the following modified heat diffusion equation:

    More generally,the effective heat kernel associated with equation (26) solves a nonlinear heat equation.

    4.Fractal Black-Scholes equation with timedependent parameters

    The aim of this section to generalize the outcomes of the previous section by involving fractal derivatives and time[60,62,63,61].We start by reviewing the basic concepts of fractal calculus.Fractal calculus is a recently formulated framework that includes the derivatives and integrals of functions within a fractal domain[30-34].If F is a thin Cantor set,then the Fαderivative of (h)t:F→ R at t is defined by[30-34]

    In figures 1(a),(b),(c),and (d) we have plotted the thin Cantor set,the staircase function,and equation (58),respectively.

    Figure 2.Graphs corresponding to equation (58).

    Let h(t,Q(t));F×R+→R.Using a fractal Taylor expansion,we have:

    The analog of equation (3) is given by

    where Ptis fractal Gaussian white noise with a correlation function,as follows:

    where

    Fractalizing equation (4) gives the following equation

    Also,the fractal version of equation (5) becomes:

    Fractalizing equation (7) leads to

    By the same assumption as that given in the previous section,we can write the fractal version of equation (9) as follows:

    The solution of equation (41) is

    where

    and

    By fractalizing equations (16) and (17),we arrive at

    Using equations (46) and (47),we obtain

    and

    We conclude that

    where

    Similar arguments using fractal calculus give an analog of equation (27),as follows:

    Following the same assumption as that given for equation (28),we obtain

    If h(T)=1 then we have

    Using the same assumptions for equation (30),we get

    where,if we chooseh(x′,0) =x′,it follows that

    In figure 2,we have plotted equation (58) for different values of ν,where the case ν=1 gives the graph for equation(30)with the conditionh(x′,0) =x′.Equation(56)is the solution of the following fractal-modified heat diffusion:

    We wish to stress that the dissimilarities between the graphs in figures 2(b),(d),and(f)for different values of ν are due to the tails of function f,which demonstrate the presence of the anomalous diffusion processes normally found in financial market dynamics.

    Remark 1.Note that all the previous equations and results can be reduced to those obtained in sections 2,and 3 by choosing ν=1.

    Although the fractal Burgers’ equation has largely been addressed in the literature [64-67],the methodology presented in this study based on local fractal calculus is not complicated,compared to the methodologies addressed in the literature,which are based on fractional calculus and higherorder derivatives[68-79].Moreover,the generalized Burgers equations obtained in both approaches discussed throughout this study are simpler than those addressed in the literature which use various complicated tools such as ultrafunctions[80] and the generalized ultrafunction solution [81] among others [82].We argue that the methodologies addressed in this study may be also used to derive various generalized partial differential equations that may have important implications in various fields of study.

    5.Conclusions

    The BSE is one of the most important partial differential equations used in finance and economics studies.However,empirical studies show that several properties of markets cannot be correctly modeled by the conventional BS model.Therefore,in recent years,many generalizations of the BS model based on the concept of BSE with time-dependent parameters have been addressed in the literature.In this paper,we considered a BSE with time-dependent volatility and we proved that a family of modified diffusion equations including the generalized Burgers’ equation with variable coefficients may be obtained accordingly.Our methodologies are based on the notion of Feynman’s propagator,which is well-known in statistical and quantum physics.We focused on power-law volatility and risk which are the main scaling features in financial market fluctuations.We also extended this approach to the case of a local fractal derivative due to the importance of fractal calculus in financial theories and diffusion processes.A fractal generalized Burgers’ equation was derived,which differed from the fractal equations obtained in literature by its simplicity.We argue that such a technique may be useful in the derivation of dissimilar partial differential equations,which could have several implications for applied sciences and financial markets [83].Work is in progress towards this end.

    Acknowledgments

    The authors would like to thank the anonymous referees for their useful comments and valuable suggestions.

    ORCID iDs

    Alireza Khalili Golmankhanehhttps://orcid.org/0000-0002-5008-0163

    国产精品香港三级国产av潘金莲| 国产人伦9x9x在线观看| 国产野战对白在线观看| 一进一出抽搐动态| 一进一出抽搐gif免费好疼 | 操出白浆在线播放| 在线观看www视频免费| 精品免费久久久久久久清纯| 精品高清国产在线一区| 亚洲av成人av| 一级毛片女人18水好多| 天堂动漫精品| 亚洲 欧美一区二区三区| 成年人免费黄色播放视频| 精品国产乱子伦一区二区三区| 91成年电影在线观看| 久久中文字幕一级| 国产av一区二区精品久久| 国产视频一区二区在线看| 国产精品电影一区二区三区| 久久久久国产一级毛片高清牌| 少妇被粗大的猛进出69影院| 欧美大码av| 亚洲精品国产精品久久久不卡| 日日夜夜操网爽| 亚洲av电影在线进入| 欧美 亚洲 国产 日韩一| 久久久久久久精品吃奶| 欧美另类亚洲清纯唯美| 国产高清激情床上av| 一区福利在线观看| 90打野战视频偷拍视频| 国产精品 国内视频| 99热国产这里只有精品6| svipshipincom国产片| 看片在线看免费视频| 老司机深夜福利视频在线观看| 日韩中文字幕欧美一区二区| 999久久久国产精品视频| 国产精品香港三级国产av潘金莲| 亚洲熟妇中文字幕五十中出 | 午夜福利影视在线免费观看| 色老头精品视频在线观看| 99久久久亚洲精品蜜臀av| 成人三级黄色视频| 亚洲男人天堂网一区| 国产有黄有色有爽视频| 嫁个100分男人电影在线观看| 国产色视频综合| 少妇的丰满在线观看| 国产精品 欧美亚洲| 国产日韩一区二区三区精品不卡| 老司机深夜福利视频在线观看| av免费在线观看网站| 嫩草影视91久久| 黑人巨大精品欧美一区二区蜜桃| 国产不卡一卡二| 亚洲国产毛片av蜜桃av| 亚洲久久久国产精品| 亚洲欧美一区二区三区黑人| 午夜免费激情av| 中文字幕色久视频| 啦啦啦在线免费观看视频4| 一边摸一边抽搐一进一出视频| 丝袜在线中文字幕| 国产不卡一卡二| 男女床上黄色一级片免费看| 午夜福利免费观看在线| 极品教师在线免费播放| videosex国产| 视频区欧美日本亚洲| 成年人黄色毛片网站| 中出人妻视频一区二区| 久久热在线av| 久久精品亚洲熟妇少妇任你| 777久久人妻少妇嫩草av网站| 黄色成人免费大全| 欧美成人午夜精品| 免费少妇av软件| 欧美激情极品国产一区二区三区| 精品福利永久在线观看| 99在线视频只有这里精品首页| 亚洲第一欧美日韩一区二区三区| 国产激情久久老熟女| 夫妻午夜视频| 久久精品国产综合久久久| 老司机在亚洲福利影院| 精品一区二区三区视频在线观看免费 | 人人妻人人澡人人看| 自拍欧美九色日韩亚洲蝌蚪91| 黄色a级毛片大全视频| 国产伦一二天堂av在线观看| 黄色 视频免费看| 亚洲精品久久成人aⅴ小说| 久久久久久久午夜电影 | 一级毛片高清免费大全| 欧美激情久久久久久爽电影 | 好男人电影高清在线观看| 欧美日本亚洲视频在线播放| 国产又色又爽无遮挡免费看| 国产精品一区二区三区四区久久 | 丁香六月欧美| 亚洲国产精品合色在线| 天堂俺去俺来也www色官网| 18禁观看日本| 亚洲国产毛片av蜜桃av| 18禁国产床啪视频网站| 亚洲精品国产精品久久久不卡| 亚洲精品美女久久久久99蜜臀| videosex国产| 日本黄色日本黄色录像| 精品福利永久在线观看| 国产精品偷伦视频观看了| 性欧美人与动物交配| 亚洲色图综合在线观看| 久久精品91蜜桃| 日韩 欧美 亚洲 中文字幕| 视频区欧美日本亚洲| 久久香蕉激情| 国产精品久久电影中文字幕| 丝袜美足系列| 黑人巨大精品欧美一区二区mp4| 啦啦啦免费观看视频1| 亚洲av日韩精品久久久久久密| 亚洲精华国产精华精| 老司机午夜十八禁免费视频| 精品久久久久久电影网| 色尼玛亚洲综合影院| 亚洲精品av麻豆狂野| 国产精品一区二区精品视频观看| 国产精品98久久久久久宅男小说| 免费在线观看影片大全网站| av在线播放免费不卡| 国产精品亚洲一级av第二区| 丰满饥渴人妻一区二区三| 国产成人系列免费观看| 亚洲视频免费观看视频| 亚洲av电影在线进入| 欧美色视频一区免费| 久久草成人影院| 麻豆一二三区av精品| 久久久久国产精品人妻aⅴ院| 午夜激情av网站| 女人被躁到高潮嗷嗷叫费观| 亚洲国产精品999在线| 国产91精品成人一区二区三区| 91av网站免费观看| 久久香蕉激情| 中文字幕最新亚洲高清| av电影中文网址| 少妇粗大呻吟视频| 一进一出好大好爽视频| 久久人妻熟女aⅴ| 久久久精品国产亚洲av高清涩受| netflix在线观看网站| 久久狼人影院| 别揉我奶头~嗯~啊~动态视频| 欧美日韩国产mv在线观看视频| 久久狼人影院| 国产精品秋霞免费鲁丝片| 不卡av一区二区三区| 国产精品国产av在线观看| www.www免费av| 亚洲色图综合在线观看| 国产真人三级小视频在线观看| a在线观看视频网站| 日日摸夜夜添夜夜添小说| 亚洲成人精品中文字幕电影 | www.熟女人妻精品国产| 12—13女人毛片做爰片一| 国产有黄有色有爽视频| 久久国产精品人妻蜜桃| 亚洲美女黄片视频| 中亚洲国语对白在线视频| av国产精品久久久久影院| 精品久久久久久,| 中国美女看黄片| 真人做人爱边吃奶动态| 一a级毛片在线观看| 国产av又大| 91九色精品人成在线观看| 久久精品aⅴ一区二区三区四区| 午夜精品在线福利| 99国产精品一区二区三区| 亚洲av美国av| 一级片'在线观看视频| 丰满饥渴人妻一区二区三| 亚洲性夜色夜夜综合| 日韩欧美在线二视频| 99久久久亚洲精品蜜臀av| 18禁美女被吸乳视频| 淫妇啪啪啪对白视频| 欧美日本亚洲视频在线播放| 欧美色视频一区免费| 老司机深夜福利视频在线观看| 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区| 91字幕亚洲| 99国产精品一区二区蜜桃av| 国产亚洲精品综合一区在线观看 | 精品国内亚洲2022精品成人| 一区福利在线观看| 无人区码免费观看不卡| 在线观看66精品国产| 久久久久久久午夜电影 | 国产一区二区在线av高清观看| 久久草成人影院| 久久久久久免费高清国产稀缺| 久久人妻福利社区极品人妻图片| 午夜免费鲁丝| 国产精品久久久人人做人人爽| 日本wwww免费看| 亚洲色图av天堂| 欧美激情极品国产一区二区三区| 法律面前人人平等表现在哪些方面| 国产欧美日韩一区二区三区在线| 亚洲人成电影观看| 老司机深夜福利视频在线观看| 亚洲久久久国产精品| 久久草成人影院| 国产成人欧美| 久久精品成人免费网站| 亚洲欧美一区二区三区久久| 国产黄a三级三级三级人| 自拍欧美九色日韩亚洲蝌蚪91| 国产高清视频在线播放一区| 日韩高清综合在线| 女人爽到高潮嗷嗷叫在线视频| 欧美午夜高清在线| 欧美日韩福利视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 成人亚洲精品一区在线观看| 精品国产乱子伦一区二区三区| 精品一区二区三卡| 国产成人一区二区三区免费视频网站| 999久久久精品免费观看国产| 91av网站免费观看| 人妻丰满熟妇av一区二区三区| 精品国产一区二区三区四区第35| 国产欧美日韩综合在线一区二区| 国产99白浆流出| 亚洲av熟女| 99国产精品99久久久久| 1024香蕉在线观看| 精品欧美一区二区三区在线| 久久久久久人人人人人| 一个人观看的视频www高清免费观看 | 精品久久久久久电影网| 999久久久精品免费观看国产| 久久99一区二区三区| 日日摸夜夜添夜夜添小说| 国产蜜桃级精品一区二区三区| 性少妇av在线| 三上悠亚av全集在线观看| 母亲3免费完整高清在线观看| 亚洲中文日韩欧美视频| 欧美黄色片欧美黄色片| 婷婷丁香在线五月| 神马国产精品三级电影在线观看 | 涩涩av久久男人的天堂| 在线观看日韩欧美| 欧美成人午夜精品| 人成视频在线观看免费观看| 亚洲va日本ⅴa欧美va伊人久久| 五月开心婷婷网| 伦理电影免费视频| 午夜福利欧美成人| 亚洲欧美激情综合另类| 麻豆久久精品国产亚洲av | 三上悠亚av全集在线观看| 免费看十八禁软件| 女性被躁到高潮视频| 国产精品影院久久| 国产欧美日韩一区二区精品| 精品国产超薄肉色丝袜足j| 久久久久久久精品吃奶| 国产伦一二天堂av在线观看| 亚洲狠狠婷婷综合久久图片| 国产1区2区3区精品| 在线免费观看的www视频| 91麻豆av在线| 成人三级黄色视频| 99精品久久久久人妻精品| 亚洲专区国产一区二区| 69av精品久久久久久| 精品国产国语对白av| 十八禁网站免费在线| 亚洲国产中文字幕在线视频| 国产不卡一卡二| x7x7x7水蜜桃| 亚洲精品国产区一区二| 免费看十八禁软件| 水蜜桃什么品种好| 黄色视频,在线免费观看| 人人妻人人添人人爽欧美一区卜| 村上凉子中文字幕在线| a级毛片在线看网站| 黄色丝袜av网址大全| 亚洲五月色婷婷综合| 日韩欧美一区视频在线观看| 国产精品偷伦视频观看了| 婷婷丁香在线五月| 久热爱精品视频在线9| 国产又色又爽无遮挡免费看| 午夜福利在线免费观看网站| 国产精品成人在线| 婷婷丁香在线五月| 9191精品国产免费久久| 欧美av亚洲av综合av国产av| 桃红色精品国产亚洲av| xxxhd国产人妻xxx| 国产又爽黄色视频| 久久精品成人免费网站| 国产精品一区二区在线不卡| 女性被躁到高潮视频| av天堂在线播放| 天堂√8在线中文| 午夜福利在线观看吧| 可以免费在线观看a视频的电影网站| 不卡av一区二区三区| 妹子高潮喷水视频| 午夜视频精品福利| 成人国产一区最新在线观看| 99久久人妻综合| 日本五十路高清| 亚洲国产精品sss在线观看 | 精品人妻在线不人妻| 免费av毛片视频| 18禁国产床啪视频网站| 欧美激情 高清一区二区三区| 亚洲av美国av| 亚洲精品粉嫩美女一区| 国产精品爽爽va在线观看网站 | 精品久久久久久久毛片微露脸| 亚洲狠狠婷婷综合久久图片| 久久中文字幕一级| 亚洲精品中文字幕一二三四区| 男女下面插进去视频免费观看| 国产精品久久久久久人妻精品电影| 中亚洲国语对白在线视频| 久久久久九九精品影院| 国产欧美日韩一区二区精品| 视频区图区小说| 夜夜夜夜夜久久久久| 可以免费在线观看a视频的电影网站| 成人三级做爰电影| 国产人伦9x9x在线观看| 50天的宝宝边吃奶边哭怎么回事| 99精品在免费线老司机午夜| 亚洲av片天天在线观看| 免费在线观看视频国产中文字幕亚洲| 久久久久国产精品人妻aⅴ院| 国产精品1区2区在线观看.| 精品国产超薄肉色丝袜足j| 亚洲全国av大片| 午夜影院日韩av| 久久亚洲精品不卡| 亚洲男人天堂网一区| 国产一区二区在线av高清观看| 91成年电影在线观看| 精品免费久久久久久久清纯| 一级,二级,三级黄色视频| 国产精华一区二区三区| 最近最新中文字幕大全电影3 | 丝袜美腿诱惑在线| 日韩欧美免费精品| 久久久久久久精品吃奶| 一区二区三区精品91| 国产欧美日韩综合在线一区二区| 国产97色在线日韩免费| 成人18禁在线播放| 亚洲色图综合在线观看| 成人永久免费在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 12—13女人毛片做爰片一| 国产三级在线视频| 男女下面进入的视频免费午夜 | 中文字幕人妻丝袜一区二区| 亚洲人成77777在线视频| 国产精品久久久久久人妻精品电影| 一区二区三区精品91| 很黄的视频免费| 美女扒开内裤让男人捅视频| 国产在线精品亚洲第一网站| netflix在线观看网站| 九色亚洲精品在线播放| 久久久久久人人人人人| 丝袜美腿诱惑在线| 伦理电影免费视频| 丁香欧美五月| 欧美日韩乱码在线| 大香蕉久久成人网| 国产97色在线日韩免费| 国产精品一区二区在线不卡| 亚洲av片天天在线观看| 亚洲专区国产一区二区| 久久欧美精品欧美久久欧美| 一区二区日韩欧美中文字幕| 亚洲中文av在线| 啪啪无遮挡十八禁网站| 在线观看免费午夜福利视频| 国产激情久久老熟女| 真人做人爱边吃奶动态| 变态另类成人亚洲欧美熟女 | 两性午夜刺激爽爽歪歪视频在线观看 | 免费高清在线观看日韩| 在线观看午夜福利视频| 久久久精品国产亚洲av高清涩受| 国产精品永久免费网站| 99久久99久久久精品蜜桃| 精品少妇一区二区三区视频日本电影| 99久久人妻综合| 亚洲,欧美精品.| 男女之事视频高清在线观看| 国产熟女午夜一区二区三区| 免费久久久久久久精品成人欧美视频| 国产精品野战在线观看 | 成人亚洲精品一区在线观看| 视频在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 国产人伦9x9x在线观看| 午夜福利免费观看在线| 一级片免费观看大全| 国产成人一区二区三区免费视频网站| 正在播放国产对白刺激| 两性午夜刺激爽爽歪歪视频在线观看 | 51午夜福利影视在线观看| 国产欧美日韩综合在线一区二区| 成人精品一区二区免费| 男人舔女人下体高潮全视频| 日韩大码丰满熟妇| 久久青草综合色| 午夜免费成人在线视频| 欧美成人性av电影在线观看| 中文字幕最新亚洲高清| 国产精品综合久久久久久久免费 | 亚洲精品国产一区二区精华液| 在线国产一区二区在线| 免费少妇av软件| 18禁裸乳无遮挡免费网站照片 | 国产精品1区2区在线观看.| 亚洲国产毛片av蜜桃av| 亚洲人成77777在线视频| 麻豆国产av国片精品| 制服人妻中文乱码| 热99国产精品久久久久久7| 久久欧美精品欧美久久欧美| 亚洲熟妇中文字幕五十中出 | 丝袜美足系列| ponron亚洲| 深夜精品福利| 一区二区三区精品91| 高清在线国产一区| 老司机在亚洲福利影院| 亚洲国产看品久久| 欧美日韩乱码在线| 亚洲一区高清亚洲精品| 色播在线永久视频| 亚洲 国产 在线| 国产三级黄色录像| 一级作爱视频免费观看| 淫妇啪啪啪对白视频| 夜夜看夜夜爽夜夜摸 | 黄色视频不卡| 国产色视频综合| 成人18禁高潮啪啪吃奶动态图| 一二三四在线观看免费中文在| 男人舔女人下体高潮全视频| 亚洲七黄色美女视频| 久久精品国产99精品国产亚洲性色 | 久久久久久人人人人人| 日本黄色日本黄色录像| 波多野结衣一区麻豆| 人妻丰满熟妇av一区二区三区| 亚洲 欧美 日韩 在线 免费| 亚洲免费av在线视频| 在线观看免费高清a一片| 18禁观看日本| 成人免费观看视频高清| 国产极品粉嫩免费观看在线| 黄色毛片三级朝国网站| 大型黄色视频在线免费观看| 成人免费观看视频高清| 美女 人体艺术 gogo| 久久国产亚洲av麻豆专区| 日本免费一区二区三区高清不卡 | 婷婷精品国产亚洲av在线| 90打野战视频偷拍视频| av片东京热男人的天堂| 无限看片的www在线观看| 在线视频色国产色| 丝袜美腿诱惑在线| 老司机午夜福利在线观看视频| 99国产精品一区二区三区| 久久狼人影院| 免费看十八禁软件| 黄片播放在线免费| 成人av一区二区三区在线看| 亚洲中文av在线| 免费不卡黄色视频| 免费日韩欧美在线观看| 精品一区二区三卡| 丝袜人妻中文字幕| xxxhd国产人妻xxx| 日韩欧美国产一区二区入口| 日韩欧美免费精品| 法律面前人人平等表现在哪些方面| 亚洲专区国产一区二区| 男女床上黄色一级片免费看| 免费在线观看黄色视频的| 亚洲欧美一区二区三区久久| 国产精品久久久av美女十八| 母亲3免费完整高清在线观看| 91大片在线观看| 18禁观看日本| 男女之事视频高清在线观看| 夫妻午夜视频| 国产99白浆流出| 久久久久久大精品| 亚洲欧美精品综合久久99| 久热爱精品视频在线9| 91精品三级在线观看| 极品人妻少妇av视频| 国产精品国产高清国产av| 日韩欧美三级三区| 久久久精品国产亚洲av高清涩受| 无限看片的www在线观看| 少妇被粗大的猛进出69影院| 一区在线观看完整版| av电影中文网址| 日韩欧美一区二区三区在线观看| 欧美色视频一区免费| 日韩免费高清中文字幕av| 黄色女人牲交| 女警被强在线播放| 色婷婷久久久亚洲欧美| 99热只有精品国产| 免费不卡黄色视频| 亚洲精品成人av观看孕妇| 五月开心婷婷网| 人妻久久中文字幕网| 精品一区二区三区视频在线观看免费 | 99久久人妻综合| 老鸭窝网址在线观看| 国产精品电影一区二区三区| 欧美av亚洲av综合av国产av| 久久久久九九精品影院| 午夜91福利影院| 丰满的人妻完整版| 精品久久久久久电影网| 国产精品99久久99久久久不卡| 久久香蕉国产精品| 亚洲男人的天堂狠狠| 国产精品综合久久久久久久免费 | 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久av网站| 欧美一级毛片孕妇| 久久婷婷成人综合色麻豆| 一夜夜www| 99精品在免费线老司机午夜| 美女午夜性视频免费| 久9热在线精品视频| 岛国在线观看网站| 美女高潮到喷水免费观看| 亚洲avbb在线观看| 黄色女人牲交| 精品国产乱子伦一区二区三区| 亚洲熟妇熟女久久| 精品高清国产在线一区| 国产伦人伦偷精品视频| 国产99久久九九免费精品| 一区福利在线观看| 极品人妻少妇av视频| 夜夜看夜夜爽夜夜摸 | 两性夫妻黄色片| 岛国在线观看网站| 国产成人精品在线电影| 久久影院123| 欧美在线黄色| 很黄的视频免费| 国产一区二区三区视频了| 欧美在线一区亚洲| 91在线观看av| 国产欧美日韩精品亚洲av| 午夜成年电影在线免费观看| 男女午夜视频在线观看| 后天国语完整版免费观看| 水蜜桃什么品种好| 日韩欧美免费精品| 日日摸夜夜添夜夜添小说| 久久精品国产清高在天天线| 久久草成人影院| 久久久久亚洲av毛片大全| 亚洲成a人片在线一区二区| 亚洲精品久久成人aⅴ小说| 国产高清国产精品国产三级| 欧美激情 高清一区二区三区| 丰满迷人的少妇在线观看| 美女高潮喷水抽搐中文字幕| 人人澡人人妻人| 国产欧美日韩精品亚洲av| 国产激情欧美一区二区| 国产一区二区激情短视频| 丝袜美足系列| 久久人妻熟女aⅴ| 9191精品国产免费久久| 国产一区二区激情短视频| 高潮久久久久久久久久久不卡| 国产精品国产av在线观看| 校园春色视频在线观看| 国产成人系列免费观看| 亚洲成a人片在线一区二区| www.自偷自拍.com| 久99久视频精品免费| 老汉色∧v一级毛片|