劉闖,高振,姚玉新,杜遠(yuǎn)鵬
葡萄鉀離子轉(zhuǎn)運(yùn)基因在鹽脅迫下的功能鑒定
劉闖,高振,姚玉新,杜遠(yuǎn)鵬
山東農(nóng)業(yè)大學(xué)園藝科學(xué)與工程學(xué)院/作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東泰安 271018
【】探討在葡萄抗鹽機(jī)制中的作用,為后續(xù)培育抗鹽品種提供理論參考。利用DANMAN和MEGA軟件對(duì)葡萄HKT進(jìn)行生物學(xué)信息分析。以抗鹽性較強(qiáng)的砧木SA15和SA17以及生產(chǎn)上常用砧木1103P組培苗為材料,用100 mmol·L-1NaCl分別處理0、3、6、12、24和48 h,以清水處理相應(yīng)時(shí)間為對(duì)照,熒光定量PCR(qRT-PCR)檢測(cè)在葡萄根部的相對(duì)表達(dá)量;以SA17的cDNA為模板克隆基因,連接表達(dá)載體pRI101-AN-GFP,利用農(nóng)桿菌侵染法侵染擬南芥花序,在抗性MS板上篩選直到獲得T3純合株系;將野生型與轉(zhuǎn)基因擬南芥種子播種于MS板和含有150 mmol·L-1NaCl的MS板上,觀察其發(fā)芽和生長(zhǎng)情況并統(tǒng)計(jì)根長(zhǎng)及鮮重;利用發(fā)根農(nóng)桿菌技術(shù)獲得SA17轉(zhuǎn)基因葡萄根系,100 mmol·L-1NaCl處理24 h后,利用基于非損傷微測(cè)技術(shù)的NMT活體生理檢測(cè)儀檢測(cè)野生型和轉(zhuǎn)基因葡萄根系Na+的凈流量以及鹽脅迫下K+瞬時(shí)流量。多序列比對(duì)和系統(tǒng)進(jìn)化樹(shù)分析表明,葡萄HKT之間同源性較高,其中開(kāi)放閱讀框序列長(zhǎng)度為1 380 bp,與的親緣關(guān)系最近。鹽脅迫顯著誘導(dǎo)了葡萄在3個(gè)品種中的表達(dá),其中的相對(duì)表達(dá)量上調(diào)較高,長(zhǎng)時(shí)間脅迫后表達(dá)量仍有上升趨勢(shì),脅迫6或12 h時(shí)表達(dá)量達(dá)到峰值,且在耐鹽性強(qiáng)的SA17、SA15中表達(dá)量明顯高于1103P。擬南芥的發(fā)芽與生長(zhǎng)結(jié)果表明,正常情況下野生型和轉(zhuǎn)基因擬南芥的發(fā)芽和生長(zhǎng)情況無(wú)顯著差異,但鹽脅迫下轉(zhuǎn)基因擬南芥的發(fā)芽率、根長(zhǎng)、鮮重明顯高于野生型。熒光檢測(cè)結(jié)果表明,轉(zhuǎn)基因葡萄根系在熒光下可以明顯看到綠色熒光,而野生型根系檢測(cè)不到熒光;進(jìn)一步qRT-PCR檢測(cè)結(jié)果表明,轉(zhuǎn)基因葡萄根系中的表達(dá)量是野生型根系的20多倍。離子流速檢測(cè)結(jié)果表明,正常情況下野生型和轉(zhuǎn)基因根系Na+凈流量顯示出外排,各個(gè)時(shí)間段的波動(dòng)幅度較小且無(wú)顯著差異,平均凈流量分別為208和205 pmol·cm-2·s-1;鹽脅迫后,兩者Na+凈流量明顯增大,各個(gè)時(shí)間段的波動(dòng)幅度增大,平均凈流量分別為1 053和1 340 pmol·cm-2·s-1。正常情況下兩種根系K+吸收與外排處于動(dòng)態(tài)平衡狀態(tài),鹽脅迫顯著誘導(dǎo)K+外排,轉(zhuǎn)基因根系的外排量明顯小于野生型,分別為406和952 pmol·cm-2·s-1,表明轉(zhuǎn)基因植株根系的Na+外排、K+保持能力明顯大于野生型。在葡萄響應(yīng)鹽脅迫中發(fā)揮著重要作用,過(guò)表達(dá)該基因可以提高擬南芥和葡萄根系在鹽脅迫下的適應(yīng)能力。
葡萄;鹽脅迫;轉(zhuǎn)基因;功能鑒定
【研究意義】土壤鹽堿化一直是世界各國(guó)面臨的嚴(yán)峻問(wèn)題,制約著農(nóng)業(yè)的可持續(xù)發(fā)展[1]。葡萄是一種世界分布較廣的植物,廣泛分布在五大洲,我國(guó)葡萄產(chǎn)量居世界第一位[2],土壤鹽漬化是制約我國(guó)西北干旱、半干旱產(chǎn)區(qū)葡萄產(chǎn)業(yè)發(fā)展的重要問(wèn)題[3]。土壤鹽分對(duì)植物既有滲透脅迫又有離子毒害[4-5]。根區(qū)的高鹽會(huì)對(duì)葡萄產(chǎn)生滲透脅迫,從而降低植物的水分吸收和蒸騰作用[6]。鹽脅迫會(huì)使葡萄葉片柵欄組織的細(xì)胞由排列整齊的長(zhǎng)柱狀變成無(wú)規(guī)則且有大量沉積物,海綿組織的細(xì)胞也減少,葉綠體變得腫脹,出現(xiàn)淀粉粒,液泡膜遭到破壞,從而使細(xì)胞出現(xiàn)大大小小的囊泡[7]。植物組織中過(guò)量的Na+和Cl-積累可引起光合作用降低、葉片壞死、果樹(shù)和漿果發(fā)育不均等離子毒性癥狀[8-9]??梢?jiàn)鹽脅迫直接破壞了葉片內(nèi)在結(jié)構(gòu),使氣孔開(kāi)度減小,從而損壞葉片光系統(tǒng)Ⅱ(PSII),降低葉片凈光合速率[10]。高濃度鹽脅迫還會(huì)使葡萄果實(shí)汁液中含有較高濃度鹽分,并提高其pH[11-12]?!厩叭搜芯窟M(jìn)展】為了應(yīng)對(duì)鹽脅迫,植物需要進(jìn)行滲透調(diào)節(jié)和離子分配,以盡量減少Na+對(duì)植物的危害。HKT轉(zhuǎn)運(yùn)蛋白是一種高親和K+轉(zhuǎn)運(yùn)蛋白,但同樣能轉(zhuǎn)運(yùn)Na+,幫助植物更好地完成吸鉀排鈉,維持正常鈉鉀比[13]。HKT蛋白包含多個(gè)跨膜區(qū)和孔環(huán)(P-Loop),其中第一個(gè)P-Loop決定轉(zhuǎn)運(yùn)底物類型,分為兩個(gè)亞家族,第一個(gè)亞家族只負(fù)責(zé)運(yùn)輸Na+,因?yàn)榈谝粋€(gè)孔環(huán)中含有絲氨酸,絲氨酸是鈉離子特異性載體,主要存在于雙子葉植物[14],如擬南芥、桉樹(shù)、楊樹(shù)等。第二種存在于單子葉植物,是K+選擇性載體,第一個(gè)孔環(huán)含有甘氨酸,是Na+-K+的協(xié)同運(yùn)輸體或Na+/K+的單一運(yùn)載體[15-17]。在小麥中首次被發(fā)現(xiàn)并分離[18],在提高植物抗鹽方面發(fā)揮著重要作用[19]。例如,大麥有助于幼苗鈉離子的排出,對(duì)于維持鹽脅迫下大麥正常的Na+/K+至關(guān)重要[20]。水稻可以更好地阻止鈉離子在莖葉中的積累,可釋放木質(zhì)部Na+,尤其在水稻生殖生長(zhǎng)階段,可以提高其耐鹽性[21]。將擬南芥中在馬鈴薯中過(guò)表達(dá),減少了馬鈴薯葉片中的Na+積累,并促進(jìn)了K+/Na+穩(wěn)態(tài),從而最大程度地減少了滲透失衡,維持了光合作用和氣孔導(dǎo)度,并提高了植物的生產(chǎn)力[22]?!颈狙芯壳腥朦c(diǎn)】關(guān)于家族基因在異源和同源轉(zhuǎn)基因材料中的功能鮮有報(bào)道;筆者課題組前期研究發(fā)現(xiàn),NaCl脅迫明顯上調(diào)了葡萄根系家族基因相對(duì)表達(dá)量[23];本研究進(jìn)一步對(duì)在鹽脅迫后的表達(dá)量及其功能展開(kāi)研究?!緮M解決的關(guān)鍵問(wèn)題】通過(guò)獲得相關(guān)的轉(zhuǎn)基因材料,對(duì)其抗鹽性做進(jìn)一步的驗(yàn)證,為葡萄抗鹽基因篩選及分子育種提供理論基礎(chǔ)。
試驗(yàn)于2018—2019年在山東農(nóng)業(yè)大學(xué)園藝科學(xué)與工程學(xué)院葡萄抗逆與栽培實(shí)驗(yàn)室進(jìn)行。
葡萄材料選用‘左山一’(Rupr.)×SO4(×)雜種F1代中的耐鹽株系SA17、SA15組培苗以及生產(chǎn)中常用砧木1103P(×)的組培苗,所有植物均在MS固體培養(yǎng)基上進(jìn)行體外培養(yǎng),輔以30 g·L-1蔗糖、7.0—7.5 g·L-1瓊脂粉、0.2 mg·L-1的植物激素IBA及少量活性炭。使植物在25℃/20℃下以16 h光照/8 h黑暗的光周期生長(zhǎng),每月將至少有一個(gè)芽和葉的枝條用于繼代培養(yǎng)。擬南芥種子用75%乙醇表面消毒1 min,4%次氯酸鈉表面消毒10 min,再用無(wú)菌蒸餾水沖洗5—6次,將其放在含有MS培養(yǎng)基的平板上,4℃春化3 d后放入光照培養(yǎng)箱,待長(zhǎng)出2—3片真葉時(shí)移入含有50%營(yíng)養(yǎng)土和50%蛭石的混合基質(zhì)中,覆膜兩周,在22℃、16 h光照/8 h黑暗的光照培養(yǎng)箱中生長(zhǎng)。
基因號(hào)為VIT_211s0103g00140,根據(jù)基因CDS區(qū)域設(shè)計(jì)特異性擴(kuò)增引物,上、下游引物5′端分別添加合適的酶切位點(diǎn),將擴(kuò)增出的目的基因與克隆載體(pEASY-Simple-Blunt)連接并轉(zhuǎn)化大腸桿菌,菌落PCR篩選陽(yáng)性克隆。將測(cè)序正確的目的基因酶切下來(lái)與表達(dá)載體pRI101-AN-GFP成功連接,雙酶切位點(diǎn)分別為I和I,轉(zhuǎn)化大腸桿菌并搖菌提取質(zhì)粒。將構(gòu)建好的表達(dá)載體采用凍融熱激法轉(zhuǎn)化農(nóng)桿菌GV3101和K599。
參考WANG等[24]的方法,準(zhǔn)備好在無(wú)菌條件下進(jìn)行侵染的葡萄組培苗的枝條,枝條最少有兩個(gè)芽和葉。取K599農(nóng)桿菌菌液500 μL加入到20 mL含有卡那霉素(50 mg·L-1)和利福平(50 mg·L-1)的液體LB培養(yǎng)基中,并在28℃下?lián)u動(dòng)孵育過(guò)夜,二次活化菌液至金黃色,離心收集菌體,并使用含有100 μmol·L-1乙酰丁香酮的無(wú)菌1/2 MS液體培養(yǎng)基重懸至600=1.0。在250 mL的錐形瓶中進(jìn)行發(fā)根農(nóng)桿菌的侵染,使剪下來(lái)的枝條浸沒(méi)在液面下,將錐形瓶在25℃下避光振搖15 min。用無(wú)菌濾紙將嫩枝插條吸干以除去多余的農(nóng)桿菌,然后插入固體生根培養(yǎng)基(1/2 MS,20 g·L-1蔗糖,7.0 g·L-1瓊脂粉,200 mg·L-1頭孢霉素)。感染后4—7周,在芽插條的傷口周圍誘導(dǎo)了獨(dú)立的再生根。當(dāng)根長(zhǎng)約3 cm時(shí),剪取須根在480 nm的熒光下進(jìn)行檢測(cè),根據(jù)綠色熒光識(shí)別轉(zhuǎn)基因和非轉(zhuǎn)基因的根,每條根系至少取3個(gè)須根進(jìn)行觀測(cè)。
用已轉(zhuǎn)化的農(nóng)桿菌GV3101采用花序侵染法侵染擬南芥,在含有卡那霉素(100 mg·L-1)的MS板上篩選擬南芥種子,直到獲得第三代純合體。
RNA提取試劑盒、反轉(zhuǎn)錄試劑盒及定量SYBR染料均來(lái)自康為世紀(jì)生物科技有限公司。20 μL反應(yīng)體系為:2×UltraSYBR Mixture 10 μL,上、下游引物(10 μmol?L-1)各1.0 μL(表1),cDNA 1.0 μL,RNase Free ddH2O 7.0 μL。每個(gè)樣本至少做3個(gè)重復(fù)。反應(yīng)條件:95℃預(yù)變性10 min,95℃變性30 s,56℃退火30 s,65℃延伸10 s,40次循環(huán),溶解溫度從65℃到95℃,每升高0.5℃保持5 s;停止反應(yīng)。
根系Na+和K+凈流量的檢測(cè)儀器為NMT活體生理檢測(cè)儀(Younger,美國(guó))。參照高海波等[25]的方法制作電極,Na+和K+電極前端分別灌充45和180 μm的液態(tài)交換劑液柱,電極尖端垂直于根系,顯微鏡調(diào)節(jié)電極尖端與根尖的距離,在600 μm左右最佳,測(cè)定過(guò)程中電極尖端盡可能靠近,但不接觸材料表面。
Na+電極不適合在含高Na+濃度的溶液中進(jìn)行測(cè)定[23],因此本研究比較鹽脅迫解除后野生型和轉(zhuǎn)基因根系根尖分生區(qū)Na+流速的變化。測(cè)定過(guò)程參考付晴晴[23]的方法,挑選生長(zhǎng)狀態(tài)相對(duì)一致的對(duì)照或100 mmol·L-1NaCl脅迫24 h后的葡萄SA17組培苗根系,去離子水沖洗后剪取2 cm左右根尖并放入測(cè)試液中平衡30 min后進(jìn)行測(cè)定,待離子流穩(wěn)定后測(cè)定15 min,每個(gè)處理測(cè)定6條根尖。
測(cè)定瞬時(shí)K+流的動(dòng)態(tài)變化時(shí),先在緩沖液中測(cè)定8 min左右,再加入一定體積的NaCl母液(pH 6.0),使測(cè)定液中的NaCl濃度為100 mmol·L-1,定點(diǎn)測(cè)量20 min左右,每個(gè)處理測(cè)定6條根尖。
測(cè)試耗材和試劑均由北京旭月科技有限公司提供。通過(guò)Fick擴(kuò)散定律公式:J=-D×(dc/dx),可獲得該離子的流動(dòng)速率(pmol·cm-2·s-1),式中的J為離子流速,D是離子/分子特異的擴(kuò)散常數(shù)(cm-2·s-1),dc/dx為離子濃度梯度。
所有試驗(yàn)都至少重復(fù)3次,利用Excel和spss24進(jìn)行數(shù)據(jù)處理和差異顯著性分析。
用DANMAN軟件對(duì)葡萄HKT家族蛋白序列進(jìn)行比對(duì)發(fā)現(xiàn),6個(gè)葡萄HKT蛋白相似度為60.25%,利用Pfam軟件對(duì)6個(gè)蛋白序列進(jìn)行預(yù)測(cè),發(fā)現(xiàn)都含有HKT蛋白家族特有的結(jié)構(gòu)功能域TrkH(圖1)。
利用MEGA軟件將葡萄HKT蛋白序列與其他物種蛋白序列構(gòu)建系統(tǒng)進(jìn)化樹(shù),發(fā)現(xiàn)VviHKT1;7、VviHKT1;6和VviHKT1;8的親緣關(guān)系較近;VviHKT1;1和VviHKT1;3親緣關(guān)系最近;而VviHKT1;2則與大豆中的GmHKT1親緣關(guān)系最近(圖2)。
如圖3所示,在100 mmol·L-1NaCl脅迫下,所有在SA17、SA15、1103P根系中的表達(dá)量都有升高的趨勢(shì),各個(gè)基因在1103P中的表達(dá)量普遍低于SA17、SA15。脅迫12 h后,、、、、的表達(dá)量普遍呈下降趨勢(shì),而的表達(dá)量呈現(xiàn)下降后又上升的趨勢(shì),且在3個(gè)品種中的表達(dá)量也普遍較高,在脅迫6或12 h時(shí)達(dá)到峰值,分別上升了14.73、16.8、10.32倍。
圖1 葡萄HKT蛋白序列比對(duì)
以SA17的cDNA為模板克隆基因,經(jīng)PCR擴(kuò)增獲得了一條約1 400 bp的條帶(圖4),測(cè)序后發(fā)現(xiàn)與葡萄基因組數(shù)據(jù)庫(kù)中的序列一致。
如圖5-A、B所示,在正常生長(zhǎng)條件下,野生型和轉(zhuǎn)基因種子發(fā)芽率無(wú)明顯差異,鹽脅迫抑制了種子的發(fā)芽,且對(duì)野生型種子抑制更明顯。野生型與3個(gè)轉(zhuǎn)基因株系種子的發(fā)芽率分別為46%、85%、90.3%、95%(圖5-C),可見(jiàn)鹽脅迫下轉(zhuǎn)基因種子的發(fā)芽情況明顯好于野生型。
將野生型和轉(zhuǎn)基因擬南芥種子在MS板上生長(zhǎng)一周后,挑選根長(zhǎng)相對(duì)一致的擬南芥轉(zhuǎn)移到MS板和添加150 mmol·L-1NaCl的MS板上,觀察8 d后的生長(zhǎng)情況(圖6-A、B)。MS板上的擬南芥各株系間根長(zhǎng)、鮮重都無(wú)顯著差異,鹽脅迫下野生型及轉(zhuǎn)基因株系主根平均長(zhǎng)度分別為19.3、30.2、30.6和31.4 mm(圖6-C),平均鮮重分別為0.027、0.057、0.057、0.053 g(圖6-D),可見(jiàn)轉(zhuǎn)基因擬南芥在鹽脅迫下的生長(zhǎng)狀況明顯好于野生型。
圖2 葡萄HKT與其他物種HKT系統(tǒng)進(jìn)化樹(shù)分析
圖3 鹽脅迫后不同葡萄株系根部HKT的表達(dá)分析
圖4 VviHKT1;7編碼區(qū)全長(zhǎng)的PCR擴(kuò)增
如圖7-A所示,剪取須根進(jìn)行檢測(cè),因?yàn)榛虮磉_(dá)載體帶有GFP標(biāo)簽,所以在熒光下檢測(cè)時(shí)轉(zhuǎn)基因根系會(huì)觀察到綠色熒光,而非轉(zhuǎn)基因根系無(wú)綠色熒光。剪取少量側(cè)根而不損壞主根,以便后續(xù)進(jìn)行離子流速試驗(yàn),利用qRT-PCR對(duì)篩選出的根系進(jìn)一步進(jìn)行鑒定,結(jié)果顯示轉(zhuǎn)基因根系目的基因的表達(dá)量顯著高于野生型(圖7-B)。
A:擬南芥種子在MS板上一周后的發(fā)芽狀況;B:擬南芥種子在添加150 mmol·L-1 NaCl的MS板上一周后的發(fā)芽情況;C:NaCl脅迫后發(fā)芽率統(tǒng)計(jì)。**表示差異極顯著(P<0.01);WT代表野生型,OE-1、OE-2、OE-3代表不同的轉(zhuǎn)基因株系。下同
正常情況下,野生型和轉(zhuǎn)基因葡萄根系Na+外排較低,約200 pmol·cm-2·s-1;100 mmol·L-1NaCl處理24 h后,Na+外流的凈流量明顯增大,轉(zhuǎn)基因根系外排能力明顯大于野生型(圖8-B)。如圖8-C所示,在15 min測(cè)量過(guò)程中,正常條件下根系Na+平均凈流量無(wú)明顯差異,鹽脅迫后轉(zhuǎn)基因根系平均凈流量明顯高于野生型,進(jìn)一步說(shuō)明轉(zhuǎn)基因根系可以更有效地調(diào)控Na+外排。
*表示差異顯著(P<0.05)* indicates significant difference (P<0.05)
A:轉(zhuǎn)基因根系的熒光檢測(cè);B:轉(zhuǎn)基因根系的定量檢測(cè)
A:根系離子流測(cè)試位點(diǎn);B:野生型和轉(zhuǎn)基因葡萄根系的Na+凈流量的檢測(cè);C:Na+平均凈流量
如圖9所示,在加入NaCl前,野生型和轉(zhuǎn)基因根系K+流呈現(xiàn)吸收與外排的動(dòng)態(tài)平衡中,且流速相對(duì)比較平穩(wěn)。當(dāng)施加100 mmol·L-1NaCl后,迅速增加了葡萄根系K+的外流,但轉(zhuǎn)基因根系的增加幅度明顯小于野生型。
在鹽脅迫條件下,離子穩(wěn)態(tài)受到嚴(yán)格的調(diào)控,使必需離子積累而毒性離子保持在較低水平[26-27]。HKT作為K+和Na+轉(zhuǎn)運(yùn)蛋白,在維持植物細(xì)胞離子穩(wěn)態(tài)方面扮演著不可或缺的角色。
圖9 野生型和轉(zhuǎn)基因葡萄根系的K+凈流量的檢測(cè)
葡萄含有6個(gè)高親和鉀離子轉(zhuǎn)運(yùn)蛋白基因(),包括、、、和,其中被認(rèn)為是轉(zhuǎn)運(yùn)鈉離子的主要候選基因,在根中表達(dá)量較高,而3是非功能性的[28]。的終止密碼子出現(xiàn)在第一個(gè)成孔結(jié)構(gòu)域的上游,因此其編碼功能性蛋白的可能性較小[29]。、和在葡萄根尖、花、種子中的表達(dá)水平較低,在根中表達(dá)更低[30],但這并不能否定它們的功能。SA15、SA17的耐鹽性較強(qiáng),而1103P的耐鹽性相對(duì)較弱[23]。本研究中,在不同的鹽處理時(shí)間下,在SA15、SA17中的表達(dá)量都顯著高于1103P,初步表明鹽脅迫可以誘導(dǎo)的表達(dá),表達(dá)量高低與葡萄的抗鹽能力有關(guān)。所以在特定的生長(zhǎng)階段,相關(guān)刺激物誘導(dǎo),以及植物不同的耐鹽能力都可能改變基因表達(dá)量。
在胡楊中,過(guò)表達(dá)可以通過(guò)提高抗氧化系統(tǒng)的效率來(lái)增強(qiáng)耐鹽性[31];在大麥中,過(guò)表達(dá)通過(guò)增強(qiáng)Na+和K+的轉(zhuǎn)運(yùn)能力提高其耐鹽性[32],在棉花中過(guò)表達(dá)可以通過(guò)增加K+吸收、K+/Na+動(dòng)態(tài)平衡和清除活性氧的能力來(lái)提高其耐鹽性[33]。在番茄中,沉默增加了鹽脅迫下花中Na+的積累,從而降低了果實(shí)產(chǎn)量[34]。WU等[30]用轉(zhuǎn)化酵母,在含有50 mmol·L-1NaCl的培養(yǎng)基上培養(yǎng),半乳糖誘導(dǎo)轉(zhuǎn)基因表達(dá)并觀察其生長(zhǎng)狀況,結(jié)果初步表明在酵母系統(tǒng)中起著Na+轉(zhuǎn)運(yùn)體的作用。用雙電極電壓鉗(TEVC)電生理試驗(yàn)檢測(cè)Na+和K+電導(dǎo)性,結(jié)果表明、和是強(qiáng)Na+轉(zhuǎn)運(yùn)體,亞細(xì)胞定位表明和定位于質(zhì)膜,定位于細(xì)胞內(nèi)細(xì)胞器。本試驗(yàn)中利用花序侵染法獲得轉(zhuǎn)基因擬南芥并進(jìn)行抗性試驗(yàn),發(fā)現(xiàn)轉(zhuǎn)基因擬南芥在鹽脅迫下發(fā)芽與根的生長(zhǎng)能力明顯高于野生型,表明過(guò)表達(dá)可以提高擬南芥的耐鹽性,與其他植物中的功能相似[31-34]。利用發(fā)根農(nóng)桿菌技術(shù)獲得轉(zhuǎn)基因葡萄根系,并且對(duì)其鹽脅迫后Na+和脅迫下K+凈流量進(jìn)行檢測(cè),發(fā)現(xiàn)鹽脅迫后轉(zhuǎn)基因葡萄根系的Na+排出能力明顯強(qiáng)于野生型,鹽脅迫下轉(zhuǎn)基因葡萄根系能更好地防止K+流失,進(jìn)一步驗(yàn)證了的Na+轉(zhuǎn)運(yùn)能力,與WU等[30]研究結(jié)果一致,也說(shuō)明了過(guò)表達(dá)可以更好地幫助葡萄維持細(xì)胞離子滲透勢(shì)的穩(wěn)態(tài),從而減輕鹽脅迫對(duì)植物的離子毒害。作為細(xì)胞器定位基因,可能在調(diào)節(jié)細(xì)胞內(nèi)Na+含量方面發(fā)揮一定作用。有關(guān)葡萄家族的相關(guān)信號(hào)通路及分子機(jī)制依然值得進(jìn)一步研究。
鹽脅迫顯著誘導(dǎo)葡萄家族成員表達(dá)量上調(diào),其中上調(diào)最顯著;異源過(guò)表達(dá)可以提高擬南芥在鹽脅迫下的適應(yīng)能力,同源過(guò)表達(dá)該基因可以提高葡萄根系在鹽脅迫下的Na+排出和K+保持能力。
[1] JAMES R A, BLAKE C, BYRT C S, MUNNS R. Major genes for Na+exclusion, Nax1 and Nax2 (wheatand), decrease Na+accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany, 2011, 62(8): 2939-2947.
[2] 劉俊, 晁無(wú)疾, 亓桂梅, 劉寅喆, 漢瑞峰. 蓬勃發(fā)展的中國(guó)葡萄產(chǎn)業(yè). 中外葡萄與葡萄酒, 2020(1): 1-8.
LIU J, CHAO T J, Qi G M, QI G M, LIU Y Z, HAN Y F. Booming development of Chinese grape industry. Sino-Overseas Grapevine & Wine, 2020(1): 1-8. (in Chinese)
[3] MAAS E V, HOFFMAN G J. Crop salt tolerance-current assessment. Journal of the Irrigation and Drainage Division, 1977, 103(2): 115-134.
[4] CHINNUSAMY V, ZHU J H, ZHU J K. Salt stress signaling and mechanisms of plant salt tolerance. Genetic Engineering, 2006, 27: 141-177.
[5] DEINLEIN U, STEPHAN A B, HORIE T, LUO W, XU G H, SCHROEDER J I. Plant salt-tolerance mechanisms. Trends in Plant Science, 2014, 19(6): 371-379.
[6] NEUMANN P M. Chapter 2-recent advances in understanding the regulation of whole-plant growth inhibition by salinity, drought and colloid stress. Advances in Botanical Research, 2011, 57: 33-48.
[7] 秦玲, 康文懷, 齊艷玲, 蔡愛(ài)軍. 鹽脅迫對(duì)釀酒葡萄葉片細(xì)胞結(jié)構(gòu)及光合特性的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(20): 4233-4241.
QIN L, KANG W H, QI Y L, CAI A J. Effects of salt stress on mesophyll cell structures and photosynthetic characteristics in leaves of wine grape (spp.). Scientia Agricultura Sinica, 2012, 45(20): 4233-4241. (in Chinese)
[8] BABY T, COLLINS C, TYERMAN S D, GILLIHAM M. Salinity negatively affects pollen tube growth and fruit set in grapevines and cannot be ameliorated by silicon. American Journal of Enology & Viticulture, 2016, 67(2): 218-228.
[9] WALKER R R, CLINGELEFFER P R. Rootstock attributes and selection for Australian conditions. Australian Viticulture, 2009, 13(4): 70-76.
[10] 李晨, 李秀杰, 韓真, 劉莉萍, 李勃. 非生物脅迫對(duì)葡萄光合作用的影響研究進(jìn)展. 山東農(nóng)業(yè)科學(xué), 2017, 49(12): 144-148.
LI C, LI X J, HAN Z, LIU L P, LI B. Research advances on effects of abiotic stress on photosynthesis of grape. Shandong Agricultural Sciences, 2017, 49(12): 144-148. (in Chinese)
[11] WALKER R R, BLACKMORE D H, CLINGELEFFER P R, CORRELL R L. Rootstock effects on salt tolerance of irrigated field-grown grapevines (L. cv. Sultana) 2. Ion concentrations in leaves and juice. Australian Journal of Grape and Wine Research, 2004, 10(2): 90-99.
[12] STEVENS R M, HARVEY G, PARTINGTON D L. Irrigation of grapevines with saline water at different growth stages: Effects on leaf, wood and juice composition. Australian Journal of Grape & Wine Research, 2011, 17(2): 239-248.
[13] Francisco R, Walter G, Julian I S. Sodium-driven potassium uptake by the plant potassium transporterand mutations conferring salt tolerance. Science, 1995, 270(5242): 1660-1663.
[14] Uozumi N, Kim E J, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker E P, Nakamura T, Schroeder J I. Thegene homolog mediates inward Na+currents in Xenopus laevis oocytes and Na+uptake in Saccharomyces cerevisiae. Plant Physiology, 2000, 122(4): 1249-1259.
[15] HORIE T, YOSHIDA K, NAKAYAMA H, YAMADA K, OIKI S, SHINMYO A. Two types oftransporters with different properties of Na+and K+transport in. The Plant Journal, 2001, 27(2): 129-138.
[16] GARCIADEBLáS B, SENN M E, BA?UELOS M A, RODR?GUEZ- NAVARRO A. Sodium transport andtransporters: The rice model. Plant Journal, 2003, 34(6): 788-801.
[17] MASER P, ECKELMAN B, VAIDYANATHAN R, HORIE T, FAIRBAURN D J, KUBO M, YAMAGAMI M, YAMAGUCHI K, NISHIMURA M, UOZUMI N, ROBERYSON W, SUSSMAN M R, SCHROEDER J I. Altered shoot/root Na+distribution and bifurcating salt sensitivity inby genetic disruption of the Na+transporter. FEBS Letters, 2002, 531(2): 157-161.
[18] SCHACHTMAN D P, SCHROEDER J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 1994, 370(6491): 655-658.
[19] WATERS S, GILLIHAM M, HRMOVA M. Plant high-affinity potassium () transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. International Journal of Molecular Sciences, 2013, 14(4): 7660-7680.
[20] BEZOUW R F H M V, JANSSEN E M, ASHRAFUZZAMAN M, GHAHRAMANZADEH R, KILIAN B, GRANER A, VISSER R G F, VAN DER LINDEN C G. Shoot sodium exclusion in salt stressed barley (L.) is determined by allele specific increased expression of. Journal of Plant Physiology, 2019, 241: 153029.
[21] SUZUKI K, YAMAJI N, COSTA A, OKUMA E, KOBAYASHI N I, KASHIWAGI T, KATSUHARA M, WANG C, TANOI K, MURATA Y, SCHROEDER J I, MA J F, HORIE T.mediated Na+transport in stems contributes to Na+exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biology, 2016, 16(1): 22.
[22] WANG L, LIU Y H, LI D, FENG S J, YANG J W, ZHANG J J, ZHANG J L, WANG D, GAN Y T. Improving salt tolerance in potato through overexpression ofgene. BMC Plant Biology, 2019, 19(1): 357.
[23] 付晴晴. ‘左山一’雜交砧木株系耐鹽評(píng)價(jià)及鈉離子吸收分配特征研究[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2018.
Fu Q Q. Salt tolerance identification and mechanism of hybrid rootstocks from ‘Zuo Shan 1’ [D]. Tai’an: Shandong Agricultural University, 2018. (in Chinese)
[24] WANG F P, ZHAO P P, ZHANG L, ZHAI H, DU Y P. Functional characterization of). Horticulture Research, 2019, 6(1): 803-814.
[25] 高海波, 張淑靜, 沈應(yīng)柏. 灰斑古毒蛾口腔反吐物誘導(dǎo)沙冬青細(xì)胞Ca2+內(nèi)流及H2O2積累. 生態(tài)學(xué)報(bào), 2012, 32(20): 6520-6526.
GAO H B, ZHANG S J, SHEN Y B. Regurgitant fromGermar induces calcium influx and accumulation of hydrogen peroxide in Ammopiptanthus mongolicus () Cheng f. cells. Acta Ecologica Sinica, 2012, 32(20): 6520-6526. (in Chinese)
[26] ZHU J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 2003, 6(5): 441-445.
[27] HAMAMOTO S, HORIE T, HAUSER F, DEINLEIN U, SCHROEDER J, UOZUMI N.transporters mediate salt stress resistance in plants: from structure and function to the field. Current Opinion in Biotechnology, 2015, 32: 113-120.
[28] HENDERSON S W, DUNLEVY J D, WU Y, BLACKMORE D H, WALKER R R, EDWARDS E J, GILLIHAM M, WALKER A R. Functional differences in transport properties of naturalvariants influence shoot Na+exclusion in grapevine rootstocks. The New Phytologist, 2018, 217(3): 1113-1127.
[29] HAUSER F, HORIE T. A conserved primary salt tolerance mechanism mediated bytransporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ratio in leaves during salinity stress. Plant, Cell & Environment, 2010, 33(4): 552-565.
[30] WU Y, HENDERSON S W, WEGE S, ZHENG F, WALKER A R, WALKER R R, GILLIHAM M. The grapevine NaE sodium exclusion locus encodes sodium transporters with diverse transport properties and localisation. Journal of Plant Physiology, 2020, 246/247: 153113.
[31] XU M, CHEN C H, CAI H, WU L. Overexpression ofimproves salt tolerance in. Genes, 2018, 9(10): 475.
[32] MIAN A, OOMEN R J, LSAYENKOV S, SENTENAC H, MAATHUIS F J, VéRY A A. Over-expression of an Na+and K+permeabletransporter in barley improves salt tolerance. Plant Journal, 2011, 68(3): 468-479.
[33] GUO Q, MENG S, TAO S C, FENG J, FAN X Q, XU P, XU Z Z, SHEN X L. Overexpression of a samphire high-affinity potassium transporter geneenhances salt tolerance in transgenic cotton. Acta Physiologiae Plantarum, 2020, 42(3): 36.
[34] ROMERO-ARANDA M R, GONZáLEZ-FERNáNDEZ P, PéREZ- TIENDA J R, LóPEZ-DIAZ M R, ESPINOSA J, GRANUM E, TRAVERSO J á, PINEDA B, GARCIA-SOGO B, MORENO V, ASINS M J, BELVER A. Na+transporterreduces flower Na+content and considerably mitigates the decline in tomato fruit yields under saline conditions. Plant Physiology and Biochemistry, 2020, 154: 341-352.
Functional Identification of Grape Potassium Ion TransporterUnder Salt Stress
LIU Chuang, GAO Zhen, YAO YuXin, DU YuanPeng
College of Horticultural Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
【】The aim of this study was to explore the role ofin the salt tolerance mechanism of grapes, so as to provide a theoretical reference for the subsequent cultivation of new salt-tolerant varieties. 【】DANMAN and MEGA software were used to analyze the biological information of VviHKT. The strongly salt resistant rootstocks SA15, SA17 and the commonly used rootstock 1103P tissue cultured seedlings were used as materials. Seedlings were treated under 100 mmol·L-1NaCl for 0, 3, 6, 12, 24, 48 h, and the corresponding time of water treatment were taken as control. Real-time quantitative PCR (qRT-PCR) was used to detect the relative expression ofin the roots of grapes.was cloned from SA17 cDNA and then linked with pRI101-AN-GFP, and the inflorescence ofwas infected by. Subsequently, T3homozygous lines were screened out from resistant MS plates. Wild-type and transgenicseeds were sowed on MS plates and MS plates (150 mmol·L-1NaCl added), their germination and growth were observed, and the root length and fresh weight were counted. The SA17 transgenic grape roots were obtained byrhizogenes technology. After being treated with 100 mmol·L-1NaCl for 24 hours, the NMT in vivo physiological detector based on non-damaging micro-measurement technology was used to detect the net flow of Na+and K+instantaneous flow under salt stress in the roots of wild-type and transgenic grapes. 【】Multiple sequence alignment and phylogenetic tree analysis showed that VviHKT had high homology, among which theopen reading frame sequence length was 1 380 bp and it was the closest to VviHKT1;6. Salt stress significantly induced the expression ofgene in three varieties of grapes. Among them, the relative expression ofwas up-regulated, which was still increased after long-term stress. The relative expression ofreached the peak at 6 or 12 h under salt stress, and its relative expression in SA17 and SA15 was significantly higher than 1103P. Results of germination and growth experiments inshowed that there was no significant difference between wild-type and transgenicunder normal conditions, but the germination rate, root length and fresh weight of transgenicwere significantly higher than those of wild type under salt stress. Fluorescence detection experiments showed that green fluorescence could be seen in the transgenic grape roots under fluorescence, rather than in the wild-type roots. Further, qRT-PCR results also showed that the relative expression ofin the transgenic grape roots was 20-folds higher than that in the wild-type roots. The results of ion flow rate detection showed that the net flow of Na+both in wild-type and transgenic roots showed efflux under normal conditions. Besides, no significant difference was found between wild-type and transgenic roots (208 and 205 pmol·cm-2·s-1) and the fluctuation range of ion flow rate in each time period was small. After salt stress, the Na+net fluxes of them increased significantly, and the fluctuations in each time period also increased; the average net fluxes of wild-type and transgenic roots were 1 053 and 1 340 pmol·cm-2·s-1, respectively. Under normal conditions, the K+absorption and efflux of the two roots were in a dynamic equilibrium. Salt stress significantly induced K+efflux, and the efflux of K+in transgenic roots was significantly smaller than that in the wild type, which were 406 and 952 pmol·cm-2·s-1, respectively. The results indicated that the ability of removing Na+and keeping K+of transgenic roots was significantly greater than that of wild type. 【】played an important role in the response of grapes to salt stress, and the overexpression of this gene could improve the adaptability ofand grape roots under salt stress.
grape;; salt stress; transgene; functional identification
10.3864/j.issn.0578-1752.2021.09.012
2020-07-30;
2020-10-14
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2019JZZY010727)、國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-29-zp-2)、山東省重大科技創(chuàng)新工程(2018CXG0306)
劉闖,E-mail:18364030521@163.com。通信作者杜遠(yuǎn)鵬,E-mail:duyuanpeng001@163.com
(責(zé)任編輯 趙伶俐)