• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Convolutional neural network for transient grating frequency-resolved optical gating trace retrieval and its algorithm optimization?

    2021-05-06 08:55:44SiyuanXu許思源XiaoxianZhu朱孝先JiWang王佶YuanfengLi李遠鋒YitanGao高亦談KunZhao趙昆JiangfengZhu朱江峰DachengZhang張大成YunlinChen陳云琳andZhiyiWei魏志義
    Chinese Physics B 2021年4期
    關鍵詞:思源張大陳云

    Siyuan Xu(許思源), Xiaoxian Zhu(朱孝先), Ji Wang(王佶), Yuanfeng Li(李遠鋒), Yitan Gao(高亦談),Kun Zhao(趙昆), Jiangfeng Zhu(朱江峰), Dacheng Zhang(張大成),Yunlin Chen(陳云琳), and Zhiyi Wei(魏志義),5

    1School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071 China

    2Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    4Institute of Applied Micro-Nano Materials,School of Science,Beijing Jiaotong University,Beijing 100044,China

    5Songshan Lake Material Laboratory,Dongguan 523808,China

    Keywords: transient-grating frequency-resolved optical gating,convolutional neural network,activation function,phase retrieval algorithm

    1. Introduction

    Generation of femtosecond(10?15s)pulses allows an ultrafast revolution in science and technology.[1]One of the most significant applications of femtosecond laser pulses,especially few-cycle femtosecond pulses,is to generate isolated attosecond pulses(1?18s)via high-order harmonic generation in gas targets.[2,3]In experiments, it is necessary and important to determine the pulse duration as well as detailed temporal profile of the electric field of a few-cycle pulse. For nanosecond pulses, the pulse width can be measured directly using a photodiode,while it cannot for picosecond and shorter pulses.Autocorrelation[4]can measure the pulse width of pico- and femtosecond pulses,but does not give details of their temporal profiles. One of the popular techniques employed in ultrafast research labs to characterize femtosecond pulses nowadays is the frequency-resolved optical gating(FROG)which is applicable for pulses over a wide range of wavelengths[5]and close to one optical cycle,which is 2.67 fs for the center wavelength at 800 nm.

    FROG measurement requires splitting the pulse to be characterized into two variably delayed replicas. The two pulse replicas are then crossed in an instantaneously responding nonlinear-optical medium. The nonlinear signal produced by the two pulses is usually measured by a spectrometer,and as the delay between the two pulses changes,a series of spectra of the nonlinear signal are recorded. Such spectra compose a two-dimensional spectrogram with delay(time)as one axis and wavelength or frequency as the other. This spectrogram is commonly named FROG trace,which contains all the information necessary to describe the measured pulse. However,the pulse envelope,electric field,or pulse width cannot be calculated or derived from the FROG trace directly. It requires a non-trivial iterative algorithm to retrieve the spectrum and spectral phase,or equivalently,the electric field temporal profile and phase,of the pulse from the recorded trace.[5,6]Using the traditional FROG algorithm to retrieve the temporal profile and phase of the pulse requires considerable computing power and takes a long time. To this end, an alternative method to the phase retrieval from transient-grating FROG (TG-FROG)trace is demonstrated using a convolutional neural network(CNN).Similar approach has been shown to be successful for SHG-FROG trace retrieval[7]and attosecond streaking trace retrieval.[8]

    A FROG spectrogram or trace is a two-dimensional(2D)array and each element contains the FROG signal strength at the corresponding frequency and delay time. This array may be considered as an image(Fig.1),in which each pixel corresponds to an element in the 2D array. The inversion of such traces to acquire the information of the femtosecond pulses may be considered as image recognition because different pulses produce FROG traces with different shapes,structures,sizes,tilts or slopes,and so on(Fig.1). For image recognition tasks,neural networks[9,10]are able to achieve better learning effects by keeping important parameters and removing a large number of unimportant parameters. We train a convolutional neural network to learn the inverse mapping of the TG-FROG measurement.[11]For phase retrieval of femtosecond pulses,the neural network is used to find the mapping function between the FROG trace and the pulse electric field, which is achieved by training the network with FROG traces of pulses with known electric fields and phases. FROG traces serve as the inputs to the network, and the time domain electric fields and phases of the pulses are the output. We choose CNN because it is one of the most popular choices in image recognition tasks. Such a neural network has a multilayer structure.Typical CNN structure includes the input layer, convolution layer, pooling layer, and fully connected layer. Each layer contains a number of neurons that are connected to the previous layer. A neuron generates an output signal when the input exceeds a certain threshold. During a training process,the CNN constantly updates the weight of each neuron, and try to make the features represented by each neuron match the desired output.[9,10]In CNN, data features are extracted by convolution, and an activation function introduces nonlinear factors. The pooling layer compresses the input feature map and extracts deeper features. Finally, a fully connected layer is used to connect the extracted features.

    2. Transient-grating frequency-resolved optical gating

    The signal recorded in a TG-FROG trace is produced via four-wave-mixing (FWM) which is a third-order nonlinear process.[11,12]The input beam is divided into three identical beams. The phase matching is achieved by arranging the three input beams and one signal beam (the output) so that their points of intersection with a plane parallel to the focusing lens form the vertices of a rectangle.The three input beams are focused at one point in a piece of fused silica as the nonlinear medium by a concave mirror.Two of the beams are overlapped in space, and the pulses are overlapped in time as well. The TG signal strength versus the delay of the third input beam yields the (third-order) intensity autocorrelation. By recording the spectra of the TG signal as a function of the delay, a TG-FROG trace is obtained which contains the necessary information for complete and unambiguous retrieval of the input pulse. The expression for the TG-FROG trace is

    where ITGFROGis the TG-FROG trace,E(t)is the electric field of the input pulse, τ is the delay between the third pulse and the other two.[6,11]Such an expression represents the wellknown phase retrieval problem, which is non-trivial and cannot be solved directly.Iterative trial-and-error algorithms have been employed to retrieve the electric field and phase of the pulse from the trace, but the calculations are usually timeconsuming yet not as accurate as one might expect. On the other hand, through a trained neural network, the calculation time is greatly shortened and the retrieval is almost instant.

    A Fourier-transform-limited pulse appears as a symmetric and narrow peak in the FROG trace. When dispersion is added to the spectral phase of the pulse so that the pulse becomes chirped, the peak in the trace becomes widened and tilted, as shown in Fig.1. When the second-order dispersion is added, the pulse is linearly chirped and the peak is tilted.Higher order dispersion makes the pulse nonlinearly chirped.The third-order dispersion produces small ripples on one side of the main pulse and changes the main peak envelope as well.In order to identify the pulse correctly from the trace,the neural network needs to learn the relationship between the phase of the pulse and the structure of the peak in the trace. This learning process may be understood as an analysis of the image characteristics of the trace.

    3. Convolutional neural network

    To train the neural network, we establish a forward program to produce a sufficient number of traces from pulses with known parameters.The pulses with 750 nm center wavelength have pulse widths ranging from 4 fs to 9 fs. Actual pulses tend to have complex dispersion but higher order dispersion is usually small so we only add dispersions of the 2ndto 5thorder for simplicity without losing the generality. Figure 1 shows the traces,electric fields,and temporal phases of pulses with different order dispersions,whose transform-limited pulse widths are all 6 fs. It is shown in Fig.1 that the 2ndand 4thorder dispersions cause a symmetrical change in the pulse envelop in the time domain, and the traces are tilted to one side, while the 3rdand 5thorder dispersions introduce small ripples to one side of the main pulse envelop.

    The CNN used for FROG phase retrieval consists of four convolution layers with filter sizes of 2×2. The number of filters for each layer of convolution is 128,64,32,and 32,respectively. The stride parameter of each filter is set to 1 so the convolutional block outputs a series of feature maps with dimensions identical to the input one. In each layer of convolution calculation,an exponential linear unit(ELU)is used to introduce nonlinear factors into the neural network. In order to compress the number of data and parameters, reduce overfitting, and improve the fault tolerance of the neural network,max pooling of 2×2 is used in each layer of convolution computation after the ELU.The neural network has two fully connected layers with sizes of 512 and 1024 respectively after four convolutional layers in order to establish contact with the output representing the intensity and phase of the femtosecond pulse corresponding to the FROG trace. The inputs are FROG traces with size of 512×512. The size of the output array is 1024×1 (512+512) which contains the spectral intensity with length of 512 and the phase with length of 512.Our CNN structure is shown in Fig.2. The network is trained using the Tensorflow Python library(version 1.13)running on a graphics card for increased speed. The supervised learning converges to a solution after it optimizes weights for all the 3600 sample traces more than 60000 times, running in a NVIDIA RTX 2060S GPU card.

    Fig.1. TG-FROG traces of pulses at(a)Fourier transform limit,with(b)2nd order dispersion,(c)3rd order dispersion,(d)4th order dispersion,and(e)5th order dispersion,respectively. (f)–(j)The pulse temporal profiles and phases corresponding to(a)–(e).

    Fig.2. Schematic of the convolutional neural network.

    4. Results

    After training the network with a set of 3600 samples,we apply the trained model to FROG-traces that have not been added to the training set,as shown in Fig.3. The output time domain electric field is compared with the electric field used to produce this particular trace by the forward program. The main peak and the corresponding phase of the pulse restore the real electric field very well,but the small pulses around the main peak are not reproduced well, with a certain amount of noise. Similarly,the retrieved phase near the main peak accurately shows the oscillation of the phase, but the value is different from the real phase. However, the oscillations are not well restored away from the main peak. This is because the model pays more attention to the learning of high-intensity values during the training, and treats low-intensity information as noise, which makes the learning of low-intensity information insufficient. This phenomenon does not affect our prediction of the pulse, and we will try to solve this problem in follow-up works. The loss and learning rates are shown in Fig.4.The loss represents the error between the learning result and the actual value in a supervised learning. The average loss of the training samples is 2×10?3after training in our neural network, which is fairly good. The learning rate determines whether the objective function converges to a local minimum and when it converges to the minimum, the learning rate is stable at 10?5within 50000 steps. We use root mean squared error(RMSE)to verify the error between the predicted result and the actual pulse and phase,and show them in each image.

    Fig.3. (a) Input theoretically calculated TG-FROG trace. (b) Actual pulse envelop and phase corresponding to the TG-FROG trace. (c) Pulse envelop and phase retrieved by the neural network with ELU activation function.

    Fig.4. (a)The loss and(b)the learning rates,stabilize at step 50000.

    In our neural network we use ELU as the activation function to introduce nonlinearity,whose function form and curve are shown in Fig.5. ELU is an activation function based on rectified linear unit (RELU) that has an extra constant α that defines function smoothness when inputs are negative. In our neural network training, we set α =1. Advantages of ELU include tending to converge faster than RELU and better generalization performance than RELU.ELU is fully continuous and differentiable, does not have a vanishing gradients problem, and does not have an exploding gradients problem, and dead RELU problem. ELU is slower to compute, but it compensates this by faster convergence during training. The performance of the ELU function in our neural network training meets our expectations.

    Fig.5. ELU activation function expression and curve.

    We compare the prediction of pulse envelop and phase by neural networks trained under several different activation functions, including leaky rectified linear unit (LRELU) and scaled exponential linear units(SELU).Their training results are shown in Fig.6. Each network has been trained enough times to make the learning rate saturated. The result of using the SELU function to predict(Fig.6(a))shows that the width of the main pulse is slightly larger, but the slightly sharper trailing edge as shown in the actual pulse(Fig.3(b))is not observed in the predicted result,and the oscillation of the phase is not well learned. The result of LRELU(Fig.6(b))shows that the main peak is split,which is wrong,and the phase oscillation is reproduced better than SELU, but the value is smaller than the actual pulse. In the application to traces not in the training data set,the neural networks with these two activation functions do not achieve results as good as ELU.At the same time, the RMSE results also show that using the ELU activation function performs best in the retrieval of ultrashort laser pulses.

    Fig.6. Pulse envelops and phases retrieved by the neural network with(a)SELU activation function and(b)LRELU activation function.

    Recently, a new activation function, Gaussian error linear unit(GELU),was proposed,which obtained better results than the ELU function in the learning of MNIST’s(Mixed National Institute of Standards and Technology database) handwritten digital database. Since our neural network is based on Google’s TensorFlow,the version is 1.13,and the GELU function only supports the latest version 2.0. We cannot currently verify the effect of this activation function in our training. In future works,we will compare more activation functions.

    In order to use the neural network trained with theoretical data to retrieve the experimentally measured TG-FROG traces,the following issues still need to be addressed. First,it is related to the central wavelength of the theoretical pulse we generate. In the forward calculation,we set the wavelength of the carrier wave at 750 nm,and the actual carrier wave of a real pulse may not be at this wavelength. Second,when we calculate and generate theoretical traces,we use a Gaussian function spectrum,while the actual measured spectrum in experiments is not a Gaussian function, which affects the structure of the trace.Third,in the experimental measurement,other nonlinear effects such as self-phase modulation(SPM) in the nonlinear crystal also change the characteristics of the trace. Fourth,different CNN parameters and activation functions still need to be explored for experimental traces.

    5. Conclusion and perspectives

    In conclusion, we train a CNN to reconstruct the timedomain envelop and phase of ultrashort laser pulses from TGFROG traces. We use a forward program to generate numerically time domain pulse envelops,phases,and FROG traces of femtosecond pulses to train CNN under supervised training.Through the application to similarly generated FROG traces outside the training set,it is proved that our method based on CNN is feasible. We compare the prediction results of several activation functions, and the results show that the appropriate activation function improves the correctness of the neural network training. In our case, the ELU function performs better than SELU and LRELU. Finally, we point out several issues that need to be addressed for neural networks trained with theoretical data to predict experimental data. Currently this method has been proved to be able to achieve envelop and phase retrieval of theoretically calculated FROG traces. In order to retrieve traces measured in experiments,a large number of experiments and theoretical data close to the experimental conditions are necessary first. Issues of noise processing and further optimization of the neural network also need to be addressed.

    猜你喜歡
    思源張大陳云
    張大林美術作品欣賞
    My Dreams
    My plan for new term
    向陳云學習錘煉“筆力”
    定積分及其應用
    張大勤
    意林(2016年22期)2016-11-30 19:06:08
    Hippie
    TransitivityandCharacterization:AnalysisonDickinTenderisTheNight
    Gait analysis of patients with resurfacing hip arthroplasty compared with metal-on-metal bigfemo-ral-head tot ip psy
    家長會
    欧美成人午夜精品| 成人18禁高潮啪啪吃奶动态图| xxx96com| 欧美 亚洲 国产 日韩一| 乱人伦中国视频| 亚洲男人天堂网一区| 国产亚洲精品久久久久5区| 男人的好看免费观看在线视频 | 色综合欧美亚洲国产小说| 亚洲午夜理论影院| 国产高清视频在线播放一区| 久久精品人人爽人人爽视色| 国产欧美日韩综合在线一区二区| 免费一级毛片在线播放高清视频 | 韩国av一区二区三区四区| 飞空精品影院首页| 大香蕉久久网| 日本wwww免费看| av国产精品久久久久影院| 一边摸一边做爽爽视频免费| 高清视频免费观看一区二区| 别揉我奶头~嗯~啊~动态视频| 久久影院123| 国产精品1区2区在线观看. | 校园春色视频在线观看| 水蜜桃什么品种好| 国产精品久久久人人做人人爽| 69av精品久久久久久| 在线av久久热| 久久人人爽av亚洲精品天堂| www.熟女人妻精品国产| 一二三四社区在线视频社区8| 80岁老熟妇乱子伦牲交| 久热这里只有精品99| 亚洲自偷自拍图片 自拍| 亚洲欧美一区二区三区久久| 国产精品国产高清国产av | 精品久久久久久久毛片微露脸| 天天操日日干夜夜撸| 亚洲熟女精品中文字幕| 首页视频小说图片口味搜索| 欧美精品av麻豆av| 中文字幕高清在线视频| av免费在线观看网站| 一进一出抽搐gif免费好疼 | 精品久久久久久电影网| 成人永久免费在线观看视频| 国产精品香港三级国产av潘金莲| 色精品久久人妻99蜜桃| xxx96com| 成人国产一区最新在线观看| 一夜夜www| 老司机午夜福利在线观看视频| 99久久99久久久精品蜜桃| 乱人伦中国视频| 日韩视频一区二区在线观看| av网站在线播放免费| 99国产精品一区二区三区| 久久国产乱子伦精品免费另类| 99国产综合亚洲精品| 在线观看免费午夜福利视频| 真人做人爱边吃奶动态| 日韩成人在线观看一区二区三区| 久久久国产精品麻豆| 久久人妻熟女aⅴ| 国产成人av教育| 亚洲精品乱久久久久久| 亚洲专区字幕在线| 国产av一区二区精品久久| av超薄肉色丝袜交足视频| 成人18禁在线播放| 身体一侧抽搐| 久久久久久久午夜电影 | 91精品国产国语对白视频| 亚洲专区中文字幕在线| 免费女性裸体啪啪无遮挡网站| 国产亚洲欧美98| 搡老熟女国产l中国老女人| 亚洲伊人色综图| videosex国产| 免费不卡黄色视频| 97人妻天天添夜夜摸| 久久久精品免费免费高清| 18禁裸乳无遮挡免费网站照片 | 日韩精品免费视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 最新美女视频免费是黄的| 侵犯人妻中文字幕一二三四区| 亚洲视频免费观看视频| 欧美日韩福利视频一区二区| 精品卡一卡二卡四卡免费| 婷婷精品国产亚洲av在线 | 国产精品1区2区在线观看. | 精品久久久久久久久久免费视频 | 欧美av亚洲av综合av国产av| 老鸭窝网址在线观看| 高清在线国产一区| 老熟妇仑乱视频hdxx| 高清视频免费观看一区二区| 69av精品久久久久久| 精品熟女少妇八av免费久了| 最近最新中文字幕大全电影3 | 欧美不卡视频在线免费观看 | 在线永久观看黄色视频| 色老头精品视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品国产欧美久久久| 黑人巨大精品欧美一区二区mp4| 精品国产美女av久久久久小说| 超色免费av| 黄色a级毛片大全视频| 成人av一区二区三区在线看| 欧美激情高清一区二区三区| 欧美精品av麻豆av| 老熟妇仑乱视频hdxx| 免费高清在线观看日韩| 国产单亲对白刺激| 水蜜桃什么品种好| 五月开心婷婷网| 国产97色在线日韩免费| 久久久久国产精品人妻aⅴ院 | 国产成人啪精品午夜网站| 久久国产精品影院| 大香蕉久久网| 精品久久蜜臀av无| 妹子高潮喷水视频| 中文字幕另类日韩欧美亚洲嫩草| 丰满人妻熟妇乱又伦精品不卡| 热re99久久精品国产66热6| 美女高潮到喷水免费观看| aaaaa片日本免费| 欧美国产精品va在线观看不卡| 午夜福利一区二区在线看| 超色免费av| 久久 成人 亚洲| av中文乱码字幕在线| 亚洲av熟女| 国产人伦9x9x在线观看| 老司机靠b影院| 国产男女超爽视频在线观看| 一级片'在线观看视频| 侵犯人妻中文字幕一二三四区| 99国产精品免费福利视频| bbb黄色大片| 老司机深夜福利视频在线观看| 国产蜜桃级精品一区二区三区 | 老汉色∧v一级毛片| 他把我摸到了高潮在线观看| 啦啦啦 在线观看视频| 下体分泌物呈黄色| 欧美 日韩 精品 国产| 日韩欧美一区视频在线观看| 99国产综合亚洲精品| av线在线观看网站| 亚洲av美国av| 色精品久久人妻99蜜桃| 大片电影免费在线观看免费| 亚洲专区字幕在线| 女人高潮潮喷娇喘18禁视频| 国产免费现黄频在线看| 久久久国产成人免费| 精品久久久久久久久久免费视频 | 国产精品一区二区在线不卡| 下体分泌物呈黄色| 日韩精品免费视频一区二区三区| 精品福利永久在线观看| 人妻久久中文字幕网| 中文字幕精品免费在线观看视频| 免费在线观看影片大全网站| 高清视频免费观看一区二区| 亚洲av电影在线进入| 欧美激情 高清一区二区三区| √禁漫天堂资源中文www| 欧美精品亚洲一区二区| avwww免费| av网站免费在线观看视频| 91麻豆av在线| 黄色成人免费大全| 国产精品免费一区二区三区在线 | 丰满人妻熟妇乱又伦精品不卡| 国产精品98久久久久久宅男小说| 一进一出好大好爽视频| 久久香蕉激情| 王馨瑶露胸无遮挡在线观看| 身体一侧抽搐| 午夜福利乱码中文字幕| 国产精品一区二区在线观看99| 日韩大码丰满熟妇| 99热网站在线观看| 午夜成年电影在线免费观看| 一本综合久久免费| 日韩成人在线观看一区二区三区| 日韩视频一区二区在线观看| 精品久久久久久电影网| netflix在线观看网站| 久久久久久人人人人人| 亚洲熟妇熟女久久| 国产极品粉嫩免费观看在线| 国产精品电影一区二区三区 | 国产黄色免费在线视频| 黑人猛操日本美女一级片| 黄色成人免费大全| 国产不卡av网站在线观看| 中亚洲国语对白在线视频| 在线播放国产精品三级| 黑人巨大精品欧美一区二区mp4| 国产蜜桃级精品一区二区三区 | 久久国产亚洲av麻豆专区| 亚洲五月色婷婷综合| 在线观看一区二区三区激情| 国产精品一区二区在线观看99| 欧美丝袜亚洲另类 | 首页视频小说图片口味搜索| 又黄又粗又硬又大视频| 婷婷精品国产亚洲av在线 | 精品国产国语对白av| 999久久久精品免费观看国产| 亚洲性夜色夜夜综合| 亚洲精品国产色婷婷电影| 老司机靠b影院| 久久国产精品大桥未久av| 免费不卡黄色视频| 50天的宝宝边吃奶边哭怎么回事| 又黄又爽又免费观看的视频| 欧美av亚洲av综合av国产av| 丝袜美腿诱惑在线| 人人妻人人澡人人看| av电影中文网址| 欧美在线黄色| 人人妻人人爽人人添夜夜欢视频| 亚洲av熟女| 久久久久视频综合| 50天的宝宝边吃奶边哭怎么回事| 九色亚洲精品在线播放| 91精品三级在线观看| 视频区图区小说| 少妇猛男粗大的猛烈进出视频| 亚洲成人免费电影在线观看| 欧美黑人精品巨大| 男女免费视频国产| 精品久久久久久电影网| 欧美精品啪啪一区二区三区| 精品国产一区二区三区四区第35| 黄色视频,在线免费观看| 成人三级做爰电影| 久久久久久久久免费视频了| 亚洲 欧美一区二区三区| 丝袜美足系列| 天天躁夜夜躁狠狠躁躁| 国产精品免费一区二区三区在线 | 国产激情久久老熟女| 国产精品99久久99久久久不卡| 日韩欧美一区视频在线观看| 99riav亚洲国产免费| 黑人欧美特级aaaaaa片| 天天躁狠狠躁夜夜躁狠狠躁| 欧美乱妇无乱码| 高清欧美精品videossex| 99国产精品免费福利视频| 大片电影免费在线观看免费| 欧美精品高潮呻吟av久久| 欧美人与性动交α欧美精品济南到| 午夜激情av网站| 午夜福利在线免费观看网站| 两人在一起打扑克的视频| 久久国产亚洲av麻豆专区| 亚洲av日韩在线播放| 99热国产这里只有精品6| 看免费av毛片| 999久久久国产精品视频| 久久久国产精品麻豆| 国产xxxxx性猛交| 精品免费久久久久久久清纯 | 人妻 亚洲 视频| 国产成人免费观看mmmm| 999久久久精品免费观看国产| 国产精品久久久久久人妻精品电影| 91在线观看av| 成人免费观看视频高清| 国产片内射在线| av天堂在线播放| 如日韩欧美国产精品一区二区三区| 欧美日韩av久久| 久久人妻福利社区极品人妻图片| 亚洲av片天天在线观看| 91精品三级在线观看| 高清在线国产一区| 国产xxxxx性猛交| 极品人妻少妇av视频| 超碰97精品在线观看| 啪啪无遮挡十八禁网站| 又黄又粗又硬又大视频| 色94色欧美一区二区| 精品国产乱子伦一区二区三区| 在线观看免费视频网站a站| 欧美丝袜亚洲另类 | 黄色 视频免费看| 性色av乱码一区二区三区2| 中文字幕av电影在线播放| 午夜免费观看网址| 99久久综合精品五月天人人| 伊人久久大香线蕉亚洲五| 超色免费av| 水蜜桃什么品种好| 51午夜福利影视在线观看| 在线国产一区二区在线| 捣出白浆h1v1| 亚洲欧美日韩高清在线视频| 99热只有精品国产| www.精华液| 国产又爽黄色视频| 精品一区二区三区四区五区乱码| 韩国精品一区二区三区| 欧美乱妇无乱码| 亚洲五月色婷婷综合| 亚洲aⅴ乱码一区二区在线播放 | 欧美黑人精品巨大| 亚洲第一欧美日韩一区二区三区| 搡老岳熟女国产| 日韩一卡2卡3卡4卡2021年| 午夜视频精品福利| 久久九九热精品免费| 少妇 在线观看| 交换朋友夫妻互换小说| 欧美国产精品va在线观看不卡| 极品教师在线免费播放| 日日爽夜夜爽网站| 欧美黑人欧美精品刺激| 成人影院久久| 欧美老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 日日爽夜夜爽网站| 亚洲综合色网址| 好看av亚洲va欧美ⅴa在| 日韩中文字幕欧美一区二区| 狠狠婷婷综合久久久久久88av| 50天的宝宝边吃奶边哭怎么回事| 国产主播在线观看一区二区| 美女 人体艺术 gogo| 成人永久免费在线观看视频| 欧美精品高潮呻吟av久久| 又大又爽又粗| 高清在线国产一区| 日韩欧美国产一区二区入口| 免费看十八禁软件| 真人做人爱边吃奶动态| 午夜福利一区二区在线看| 女人精品久久久久毛片| 飞空精品影院首页| 高清毛片免费观看视频网站 | 99久久综合精品五月天人人| 男人舔女人的私密视频| 大香蕉久久网| 国产aⅴ精品一区二区三区波| 久久精品国产a三级三级三级| 最近最新免费中文字幕在线| 亚洲欧美一区二区三区久久| 宅男免费午夜| 久久久久国产一级毛片高清牌| 免费在线观看影片大全网站| 男女之事视频高清在线观看| 色尼玛亚洲综合影院| 亚洲三区欧美一区| 91成年电影在线观看| 大码成人一级视频| 亚洲熟女毛片儿| 精品久久久久久久毛片微露脸| 国产精品久久电影中文字幕 | 日韩熟女老妇一区二区性免费视频| 国产亚洲欧美精品永久| 午夜影院日韩av| 在线av久久热| 一a级毛片在线观看| 欧美一级毛片孕妇| 一级a爱片免费观看的视频| 亚洲一区高清亚洲精品| 日韩成人在线观看一区二区三区| 中文字幕色久视频| 极品少妇高潮喷水抽搐| 亚洲一区高清亚洲精品| 国产精品久久久av美女十八| 国产精品免费大片| 亚洲片人在线观看| 免费av中文字幕在线| 国产蜜桃级精品一区二区三区 | 女性生殖器流出的白浆| 一区二区三区国产精品乱码| 80岁老熟妇乱子伦牲交| 一进一出抽搐动态| 欧美日韩国产mv在线观看视频| 久久精品熟女亚洲av麻豆精品| 国产av又大| 丝袜美足系列| 国产又爽黄色视频| 免费看十八禁软件| 99国产精品99久久久久| 无遮挡黄片免费观看| 高清毛片免费观看视频网站 | 中文字幕最新亚洲高清| 好男人电影高清在线观看| 色精品久久人妻99蜜桃| 无限看片的www在线观看| 免费高清在线观看日韩| 一区二区三区国产精品乱码| 亚洲精品粉嫩美女一区| 国产成人啪精品午夜网站| 欧美 日韩 精品 国产| 久久久久久久精品吃奶| 啦啦啦视频在线资源免费观看| 亚洲国产看品久久| 中文字幕人妻熟女乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 一夜夜www| 视频区欧美日本亚洲| 大片电影免费在线观看免费| 嫩草影视91久久| 日韩人妻精品一区2区三区| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品一二三| 美女国产高潮福利片在线看| 国产精品久久久人人做人人爽| e午夜精品久久久久久久| 国产99白浆流出| 久久久久久久久久久久大奶| 色老头精品视频在线观看| 国产精品久久久久久人妻精品电影| 在线观看66精品国产| 两性夫妻黄色片| ponron亚洲| 精品无人区乱码1区二区| av中文乱码字幕在线| 高清黄色对白视频在线免费看| 在线国产一区二区在线| 欧美日韩乱码在线| 国产精品免费视频内射| 一区在线观看完整版| 久久精品国产a三级三级三级| 18禁裸乳无遮挡动漫免费视频| 日本欧美视频一区| 亚洲精品国产色婷婷电影| 深夜精品福利| 午夜日韩欧美国产| 最近最新中文字幕大全免费视频| 午夜两性在线视频| 亚洲人成电影免费在线| 成人国产一区最新在线观看| 777米奇影视久久| 丰满的人妻完整版| 脱女人内裤的视频| 极品教师在线免费播放| 午夜激情av网站| 两性夫妻黄色片| 丝瓜视频免费看黄片| 最新在线观看一区二区三区| 精品一品国产午夜福利视频| 国产日韩一区二区三区精品不卡| 欧美日本中文国产一区发布| 91老司机精品| 人妻一区二区av| 后天国语完整版免费观看| 女人精品久久久久毛片| 999精品在线视频| 在线看a的网站| 精品国产国语对白av| 亚洲av美国av| 日本vs欧美在线观看视频| 国产欧美日韩一区二区三区在线| 在线观看免费午夜福利视频| 一级黄色大片毛片| 国产伦人伦偷精品视频| 一级毛片精品| 国产精品国产av在线观看| 亚洲第一欧美日韩一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 欧美亚洲 丝袜 人妻 在线| 一边摸一边抽搐一进一出视频| 视频区欧美日本亚洲| 亚洲 欧美一区二区三区| 高清视频免费观看一区二区| av天堂久久9| 亚洲片人在线观看| 首页视频小说图片口味搜索| 水蜜桃什么品种好| 成在线人永久免费视频| 男男h啪啪无遮挡| 成年人免费黄色播放视频| 午夜久久久在线观看| 久久久国产欧美日韩av| 久久草成人影院| 亚洲美女黄片视频| 日本vs欧美在线观看视频| 欧美 日韩 精品 国产| 黄片大片在线免费观看| 亚洲三区欧美一区| a级毛片在线看网站| 欧美性长视频在线观看| 亚洲av电影在线进入| 看片在线看免费视频| 宅男免费午夜| 欧美国产精品一级二级三级| 国产在线一区二区三区精| 99精品久久久久人妻精品| 999久久久精品免费观看国产| 欧美亚洲 丝袜 人妻 在线| 国产亚洲av高清不卡| 中亚洲国语对白在线视频| 777久久人妻少妇嫩草av网站| 99国产精品一区二区蜜桃av | 国产蜜桃级精品一区二区三区 | 免费少妇av软件| 色婷婷av一区二区三区视频| 自线自在国产av| 很黄的视频免费| 久久久国产欧美日韩av| 国产亚洲欧美98| 乱人伦中国视频| 十分钟在线观看高清视频www| 国产亚洲精品第一综合不卡| 日本一区二区免费在线视频| 飞空精品影院首页| 99精品久久久久人妻精品| 12—13女人毛片做爰片一| 一边摸一边抽搐一进一小说 | a级毛片在线看网站| 中文字幕精品免费在线观看视频| 国产亚洲欧美在线一区二区| 成人18禁高潮啪啪吃奶动态图| 99久久人妻综合| 成人手机av| 老熟妇仑乱视频hdxx| 国产极品粉嫩免费观看在线| 一进一出抽搐gif免费好疼 | 欧美黄色淫秽网站| 亚洲国产精品sss在线观看 | 69精品国产乱码久久久| 久久国产精品男人的天堂亚洲| 黑人欧美特级aaaaaa片| 午夜亚洲福利在线播放| 国产亚洲一区二区精品| 久久久国产成人精品二区 | 香蕉国产在线看| av天堂在线播放| 免费久久久久久久精品成人欧美视频| 国产精品二区激情视频| 美国免费a级毛片| 久久精品91无色码中文字幕| 三上悠亚av全集在线观看| 久久草成人影院| 亚洲,欧美精品.| 亚洲国产欧美网| 欧美精品人与动牲交sv欧美| 成人av一区二区三区在线看| 久久久久视频综合| 在线免费观看的www视频| 美国免费a级毛片| 视频在线观看一区二区三区| 国产高清视频在线播放一区| 大码成人一级视频| 美女高潮喷水抽搐中文字幕| 91九色精品人成在线观看| 电影成人av| 纯流量卡能插随身wifi吗| 中出人妻视频一区二区| 人妻 亚洲 视频| 国产激情久久老熟女| 成年动漫av网址| 夜夜夜夜夜久久久久| 丝瓜视频免费看黄片| 别揉我奶头~嗯~啊~动态视频| ponron亚洲| 女警被强在线播放| 国产成人欧美| 黄片大片在线免费观看| 777久久人妻少妇嫩草av网站| 交换朋友夫妻互换小说| 9热在线视频观看99| 色精品久久人妻99蜜桃| 亚洲五月色婷婷综合| a在线观看视频网站| 国产亚洲一区二区精品| 欧美成狂野欧美在线观看| 免费看a级黄色片| 国产高清videossex| 成人亚洲精品一区在线观看| 九色亚洲精品在线播放| 人人妻人人澡人人看| 国产黄色免费在线视频| 色在线成人网| 9色porny在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品成人av观看孕妇| 操美女的视频在线观看| 日韩欧美三级三区| 亚洲成人手机| 嫁个100分男人电影在线观看| 亚洲国产毛片av蜜桃av| 久久久久久久久免费视频了| 免费观看人在逋| 亚洲成人免费电影在线观看| 可以免费在线观看a视频的电影网站| 亚洲av美国av| 欧美 亚洲 国产 日韩一| 香蕉国产在线看| 免费少妇av软件| av国产精品久久久久影院| 久久久久久久精品吃奶| 日韩制服丝袜自拍偷拍| 国产片内射在线| 极品教师在线免费播放| 一区二区三区激情视频| av片东京热男人的天堂| 99国产精品免费福利视频| 欧美精品啪啪一区二区三区| 国产精品美女特级片免费视频播放器 | 视频区欧美日本亚洲|