• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD?

    2021-05-06 08:56:00YudongZhang張玉棟JialeTang唐家樂YongjieHu胡永杰JieYuan袁杰LuluGuan管路路XingyuLi李星雨HushanCui崔虎山GuanghuiDing丁光輝XinyingShi石新穎KaidongXu許開東andShiweiZhuang莊仕偉
    Chinese Physics B 2021年4期
    關(guān)鍵詞:虎山家樂光輝

    Yudong Zhang(張玉棟), Jiale Tang(唐家樂), Yongjie Hu(胡永杰), Jie Yuan(袁杰),Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光輝),Xinying Shi(石新穎), Kaidong Xu(許開東), and Shiwei Zhuang(莊仕偉),?

    1School of Physics and Electronic Engineering,Jiangsu Normal University,Xuzhou 221116,China

    2Jiangsu Leuven Instruments Co. Ltd,Xuzhou 221300,China

    Keywords: dielectric strength, silicon nitride film, inductively coupled plasma chemical vapor deposition(ICP-CVD),hydrogen content

    1. Introduction

    Silicon nitride thin films are widely used in large-scale integrated circuits and semiconductor devices,[1]such as optoelectronics,microelectronics,and so on,[2]because of their excellent photoelectric performance,mechanical and passivation properties.[3]Demands for high-k films are becoming more and more urgent with the popularization of IC manufacturing process.[4]Silicon nitride films fabricated by inductively coupled plasma chemical vapor deposition (ICP-CVD) have found many applications in this field as passivation layers.[5]The low temperature of the deposition, the higher deposition rate,the adjustable refractive index,and the higher passivation quality are all reasons that silicon nitride films are increasingly supplanting other dielectric layers, such as SiO2.[6]In summary, silicon nitride layers are likely to lower the production costs and increase the efficiency of microcircuit.[7]

    Due to the continuous shrinking of integrated circuits in the field of microelectronics,[8]the tunneling current is too large and the gate control force is reduced.[9]The traditional silicon dioxide dielectric layer no longer meets the needs of microelectronic devices,[9]so high breakdown voltage materials to replace the gate dielectric layer with low breakdown voltage have become another research hotspot in the world.[10,11]Regarding the preparation of high breakdown voltage films, the high breakdown voltage materials have many requirements,[5,12]for example, the dielectric constant must be as large as possible,and the dielectric material must be thermodynamically stable on the silicon substrate.[6,8,13]The current research work on breakdown strength has been carried out on PECVD/LPCVD,[10,14]but this experiment uses ICPCVD model to prepare silicon nitride film,which can provide more energy,promote the decomposition of reaction gas,and make a film with greater breakdown strength.

    The hydrogen content in the silicon nitride film greatly affects the breakdown strength of the film.[15]Among the components of the film, the Si–H bond plays a fundamental role in the composition of the film. As the hydrogen content in the film changes, the electrical properties of the film will change.[6,16,17]When the hydrogen content in the film is high,the dangling bonds of silicon will be filled with H,which will increase the stability of the film and increase the breakdown strength.[18]However, regarding the relationship between the H content and film breakdown voltage,few experiments have been carried out on ICP-CVD machines, and the conclusions are not perfect,so our experiment uses ICP-CVD machines for film deposition.[19,20]

    In this article, we changed the gas flow ratio and RF power to deposit silicon nitride films with different hydrogen contents. First, the deposition rate of the silicon nitride film was measured to reflect the growth state of the film. Then,the composition of the film was obtained by Fourier transform infrared spectroscopy(FTIR)and Raman spectroscopy. Combining the dielectric strength of the film, we can obtain the relationship between the hydrogen content of the film and the dielectric strength, which is of great significance for the control of the dielectric strength of the silicon nitride film.

    2. Experimental procedure

    2.1. Sample preparations

    For all experiments, double-side polished, p-type (boron doped, > 50 ?·cm) (100)-oriented single-crystalline 4-inch silicon wafers have been used as substrates,with a thickness of 350±15μm.[21]Before the film is deposited,the substrate is wiped with alcohol to remove the dirt on the surface to ensure the accuracy of the experiment.

    Table 1. Run list and results.

    The deposition experiments were performed using a Leuven Instruments 3111 System ICP-CVD downstream reactor,with an additional capacitively coupled RF plasma source connected to the substrate electrode. Both plasma sources operate at a frequency of 13.56 MHz, whereas only the ICP source was activated during the deposition. The process chamber was evacuated to a base pressure of 15 mTorr, before N2and Ar were introduced together with SiH4via a gas distribution ring arranged next to the substrate electrode. The experimental plan is shown in Table 1. By adjusting the process conditions,it is ensured that the film thickness of the experimental samples is basically the same(about 200 nm), and the difference in film thickness is controlled so that the thickness will not become a factor affecting the breakdown voltage. The RF power was controlled at 25 W, 300 W, 400 W. On the other hand, under the same RF conditions, we controlled the ratio of N2/SiH4at 0.7,0.8,0.9,and 1.0,so that silicon nitride with different hydrogen content can be obtained. All depositions were performed at a substrate temperature of 150?C. In order to reduce the deviation of the results,the first few samples of the machine were not recorded,and the experimental samples were made when the equipment was stable. And when the process conditions change,repeat the experiment first,and then make the samples when the machine adapts to the experimental conditions.

    2.2. Analysis methods

    The thickness d and refractive index n(at λ =632.8 nm)of the deposited thin films were determined using the spectral reflectance method. The measurements were conducted with a SpecEI-2000 spectroscopic ellipsometer, which determines the reflectance between 400 nm and 1000 nm. FTIR measurements on a SHIMADZU IRAffinity-1 infrared spectroscope in transmission mode between 350 cm?1and 7800 cm?1with a resolution of 0.5 cm?1were carried out to investigate the chemical composition of the films. The infrared spectrum of a blank silicon wafer was taken as reference. After baseline correction of the measured spectra, the absorption peaks were normalized by the film thickness and by the height of the silicon lattice absorption peak at 610 cm?1, assuming an equal thickness of the substrates. Room temperature Raman spectra were obtained by a Raman spectrometer(Horiba,LABRAM HR EVO)using a wavelength of λ =633 nm laser to investigate the micro-structural composition of SiNxfilms.The hydrogen content was measured by D-SIMS equipment(CAMECA 7f-auto)at about 200 nm in the SiNxfilms.

    The dielectric strength was measured by applying a ramped voltage across the dielectric film. The film was deposited on a conductive bottom layer together with a metal layer deposited on top of the deposited film. The metal layer was patterned either through a shadow mask or by lift-off to form small test pads(0.05×0.05 mm). The voltage was then ramped up until a high current peak was observed, which is the breakdown of the film.[22]

    3. Results and discussion

    3.1. Deposition rate

    First, ICP power has a very important influence on the film deposition rate.[23]As can be seen from Fig.1,when the ICP power is 25 W,300 W,400 W,the deposition rate of the film will increase with the increase of the RF power.However,when the ICP power is 25 W and the N2/SiH4ratio is 0.7,0.8,0.9,the film deposition rate is 70.6 nm/min,72.8 nm/min,and 75.7 nm/min, respectively. The increase is not obvious, indicating that the energy transport conditions are not reached,and the reaction of film deposition is not sufficient. When the ICP power is 300 W and 400 W,the film deposition rate increases significantly with the N2/SiH4ratio, which indicates that the ICP power above 300 W can already meet the current reaction and can provide good film deposition energy.

    Another factor that affects the deposition rate is the gas flow ratio. The gases participating in the reaction in our experiment are N2and SiH4. Argon mainly plays the role of bombarding the plasma,but does not participate in the reaction of the experiment. Therefore,the ratio of N2/SiH4has a very important effect on the reaction.[24]It is worth noting that when the N2/SiH4ratio is 0.7 and the ICP power is 25 W, 300 W,400 W, the film deposition rate is 70.6nm/min, 72.4 nm/min,and 75.4 nm/min, respectively, and the deposition rate does not change much. The material transportation conditions in thin film deposition are limited, and the reaction of thin film deposition is not sufficient. When the ratio of N2/SiH4is 0.8,0.9,the film deposition rate is very obvious with the increase of the ICP power,which can indicate that the ratio of N2/SiH4above 0.8 can meet the current reaction and can provide sufficient gas supply.

    Fig.1. Variation of deposition rate under different RF power and N2/SiH4 ratio.

    3.2. Chemical analyses

    The conditions in Table 2 were used to deposit film samples A4, A5, A6, and A7. It can be seen from the FTIR diagram that when the flow ratio of N2/SiH4is changed, the chemical composition of the film also changes dramatically.In Fig.2, the absorption peak of the film is marked, from which the chemical bond density of the film and the chemical composition of the film can be known. First, the Si–H bond increases sharply with the increase of the N2/SiH4ratio. When the proportion of N2increases,the concentration of SiH4cannot keep up with the reaction concentration of N2,the decomposition rate of SiH4in the chamber will be suppressed,and the residual H will increase,which will make up for the Si dangling bonds of the SiH4during the reaction, thus the Si–H bond density will increase. The Si dangling bonds on the SiH4film are filled with H,which makes the film more stable,so that when electrons pass through the film, it is not easy to produce defects and be broken down,so the dielectric strength of the film is increased. Therefore, the dielectric strengths of A4,A5,A6,and A7 measured by the experiment increase sequentially, which is in line with theoretical expectations and can prove our conjecture. At the same time,the obvious peaks of the N–H bond and O-H bond of the A6 sample also indicate the increase in the H content in the sample, the increase in the probability of binding to N and O atoms,and the overall H bond density reaches the maximum. Finally, the Si–O and Si–N bonds of the A4, A5, A6, and A7 samples increase in turn, because the deposition speed of the film is accelerated,the formation of silicon nitride film increases,and the concentration of Si involved in the reaction also increases, making the film rich in silicon. This increases the refractive index and increases the overall stability of the film.

    Table 2. Influence of the gas ratio on the infrared absorption peaks.

    Fig.2. FTIR data of SiNx films.

    Fig.3. Micro Raman spectra of A5,A6,A7. The inset shows the general scan.

    Micro Raman spectroscopy(Fig.3)was used to confirm the phase of the deposited silicon nitride. The general scans for A5,A6,A7 samples are shown in the inset. Sharp peak at 520 cm?1is of Si (substrate used for deposition) with peaks around 950 cm?1confirming the presence of SiNx. It can be seen from the figure that the intensity of Si–N bonds of the A5,A6,and A7 samples increases sequentially,and it can be concluded that as the N2/SiH4flow ratio increases,the deposition concentration of silicon nitride increases. It is mutually confirmed with the conclusion drawn in FTIR that the intensity of Si–N bonds in the film increases, and the stability increases correspondingly, thereby increasing the dielectric strength of the film.

    3.3. The hydrogen content in the films

    In order to obtain the distribution of hydrogen in the film,D-SIMS equipment was used to measure the hydrogen content in the silicon nitride film (as shown in Fig.4). In the depth range of 0–100 nm, the hydrogen content of A5, A6, and A7 samples has little difference. Because in the shallow layer of the film, the gas flow has little effect on the deposition of the film,and a sufficient amount of gas can deposit silicon nitride films with almost the same composition and chemical bonds.At the depth of 100–120 nm, the hydrogen content of the A5 sample begins to drop sharply. At this depth,under the experimental conditions of the A5 sample,the nitrogen flow rate is not enough to completely supply the reaction,the N–H bonds and Si–H bonds in the film are reduced, and the overall hydrogen content is reduced. At the depth of 180–200 nm, the hydrogen content of the A6 and A7 samples begins to gradually decrease, and the hydrogen contents of the A6 and A7 samples are almost the same. This depth is close to the base of the film,so the hydrogen content in the film will decrease.Under the experimental conditions of the A6 and A7 samples,the supply of nitrogen is saturated. Even if the ratio of N2/SiH4is increased, the hydrogen content in the silicon nitride film cannot be greatly changed. In the end,the hydrogen contents of the two samples are almost the same.

    Fig.4. Hydrogen content in the films by D-SIMS.

    3.4. Dielectric strength of the film

    From Fig.5(a),we can explore the influence of N2/SiH4ratio and RF power on the dielectric strength. Based on the above discussion and the trend in the picture, we can clearly find that an increase in the proportion of N2/SiH4will lead to an increase in the dielectric strength. This is mainly because the increase in N2flow makes the dangling bonds of Si in the film replenished by H,which increases the ability of the film to store charges and thus increases the dielectric strength. On the other hand,increasing the RF power will reduce the dielectric strength of the film.When the power of the radio frequency increases,the number of holes in the film will increase,and the stability of the film will decrease, thereby reducing the ability to store charges, resulting in a decrease in the dielectric strength. When the RF power is 25 W,300 W,and 400 W,the dielectric strength of the film decreases sequentially,this is in line with our theoretical expectations.

    The deposition rate of the film is also closely related to the dielectric strength.[25]From Fig.5(b), we can see that as the deposition rate increases,the dielectric strength of the film shows an upward and downward trend around 75 nm/min,and then shows a continuous upward trend after 80 nm/min. In the initial rising curve,when the deposition rate of the film increases,the material produced is mainly silicon nitride with a small amount of N–H and Si–H bonds, so the material tends to be stable and the dielectric strength of the film increases.With the further increase of the film deposition rate,the Si–H and N–H bonds in the film replace more silicon nitride,which leads to the instability of the material,so the dielectric strength of the film decreases. With the addition of a large number of Si–H bonds, the Si–H bonds in the film play a leading role,thereby increasing the role of H to compensate for the dangling bonds of Si,increasing the film’s ability to store charges and increasing the dielectric strength of the film.

    Fig.5. The effect of (a) and deposition rate (b) on dielectric strength.

    4. Conclusion

    In this work, the RF energy and gas flow are changed to obtain silicon nitride films with different hydrogen contents.The increase of the Si–N bond indicates that the silicon nitride content of the film is increased, and the film is more stable.Through the measurement of the dielectric strength of the sample,it is shown that lower RF power and higher N2/SiH4ratio will increase the dielectric strength of the silicon nitride film.Low RF power will increase the hydrogen content in the film,and hydrogen will not be combined with high energy to be discharged out of the chamber,so the dielectric strength will increase.A high ratio of N2/SiH4not only promotes the increase of N content in the film,but also increases the probability of Si bonding to form bonds,thereby forming more Si–H bonds in the film and increasing the hydrogen content in the film. It can be seen that increasing the hydrogen content in the film will increase the dielectric strength of the film, which is of great significance for the manufacture of films with high dielectric strength and has a wide range of MEMS applications.

    猜你喜歡
    虎山家樂光輝
    丹東虎山長城
    新少年(2024年11期)2024-12-31 00:00:00
    丹東虎山長城
    新少年(2023年5期)2023-05-06 20:04:57
    深圳市家樂威頓家具有限公司
    深圳市家樂威頓家具有限公司
    深圳市家樂威頓家具有限公司
    Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
    三山虎山血戰(zhàn)輝映青史
    源流(2021年11期)2021-03-25 10:32:07
    春在飛
    Immunohistochemical identification of dynorphin A and Kappa opioid receptor-1 in the digestive system of scallop Chlamys farreri*
    就在家門口
    世界家苑(2018年11期)2018-11-20 10:50:58
    爱豆传媒免费全集在线观看| 男女边吃奶边做爰视频| 波多野结衣巨乳人妻| 观看免费一级毛片| 中文字幕人妻熟人妻熟丝袜美| 欧美3d第一页| 国产精华一区二区三区| av在线播放精品| 舔av片在线| 爱豆传媒免费全集在线观看| www.色视频.com| 少妇人妻一区二区三区视频| 91午夜精品亚洲一区二区三区| 久久精品国产亚洲av涩爱 | 午夜免费男女啪啪视频观看| 免费人成在线观看视频色| 小蜜桃在线观看免费完整版高清| 青春草视频在线免费观看| 亚洲av不卡在线观看| 高清毛片免费看| 精品久久久久久久久久久久久| 99热这里只有精品一区| 麻豆av噜噜一区二区三区| 韩国av在线不卡| 狂野欧美白嫩少妇大欣赏| 禁无遮挡网站| 毛片女人毛片| 一级毛片我不卡| 一夜夜www| 91在线精品国自产拍蜜月| 久久久久久大精品| 成人漫画全彩无遮挡| 欧美性感艳星| 欧美性猛交╳xxx乱大交人| 亚洲无线在线观看| 最近视频中文字幕2019在线8| 欧美一区二区国产精品久久精品| 日韩欧美一区二区三区在线观看| av天堂在线播放| 此物有八面人人有两片| 国产亚洲5aaaaa淫片| 只有这里有精品99| 国产三级中文精品| 女同久久另类99精品国产91| 日韩成人伦理影院| 亚洲人成网站在线观看播放| 国产精品人妻久久久久久| 国产成人午夜福利电影在线观看| 国产在线男女| 国产精品野战在线观看| 日本一本二区三区精品| 一本精品99久久精品77| 国产亚洲av片在线观看秒播厂 | 国产精品一区二区三区四区免费观看| 99精品在免费线老司机午夜| 啦啦啦观看免费观看视频高清| 久久人妻av系列| 乱码一卡2卡4卡精品| 真实男女啪啪啪动态图| 亚洲av成人精品一区久久| 日日摸夜夜添夜夜添av毛片| 国产伦精品一区二区三区四那| av在线亚洲专区| 久久亚洲国产成人精品v| 日本熟妇午夜| 免费看光身美女| 国产精品一区二区三区四区免费观看| 欧美激情久久久久久爽电影| 久久久久国产网址| 国产精品.久久久| 久久久久久久久久久免费av| 欧美精品国产亚洲| 国产极品天堂在线| 午夜福利高清视频| 成人亚洲欧美一区二区av| 伦理电影大哥的女人| 99视频精品全部免费 在线| 欧美日韩综合久久久久久| 欧美日韩综合久久久久久| 麻豆久久精品国产亚洲av| 91久久精品电影网| 中文字幕av成人在线电影| 神马国产精品三级电影在线观看| 欧美又色又爽又黄视频| 最好的美女福利视频网| 欧美一区二区精品小视频在线| 国产爱豆传媒在线观看| 国产精品久久久久久亚洲av鲁大| 国产亚洲5aaaaa淫片| 久久人人精品亚洲av| 国内揄拍国产精品人妻在线| 美女黄网站色视频| 亚洲精品国产成人久久av| 最近中文字幕高清免费大全6| 免费人成视频x8x8入口观看| 国产亚洲精品久久久com| 非洲黑人性xxxx精品又粗又长| 蜜桃亚洲精品一区二区三区| 久久久国产成人精品二区| 国产v大片淫在线免费观看| 国产精品久久电影中文字幕| 高清在线视频一区二区三区 | 在线观看午夜福利视频| 亚洲va在线va天堂va国产| 成人av在线播放网站| 国产69精品久久久久777片| 老司机福利观看| 国产又黄又爽又无遮挡在线| 99精品在免费线老司机午夜| 国产色爽女视频免费观看| 亚洲国产精品久久男人天堂| 久久精品国产亚洲av天美| 久久久a久久爽久久v久久| 国产精品电影一区二区三区| 欧美日本视频| 看免费成人av毛片| 熟女电影av网| 成年版毛片免费区| 日本-黄色视频高清免费观看| 亚洲乱码一区二区免费版| 少妇被粗大猛烈的视频| 看非洲黑人一级黄片| 97超视频在线观看视频| 长腿黑丝高跟| 18禁在线播放成人免费| 男女视频在线观看网站免费| 美女cb高潮喷水在线观看| 在现免费观看毛片| 人妻系列 视频| 别揉我奶头 嗯啊视频| 国产在线精品亚洲第一网站| 可以在线观看毛片的网站| 伦精品一区二区三区| 中文亚洲av片在线观看爽| 国产三级中文精品| 精品久久久久久久久亚洲| 99久久中文字幕三级久久日本| 日韩强制内射视频| 国产精品久久久久久av不卡| 一本一本综合久久| 免费在线观看成人毛片| 女人被狂操c到高潮| 亚洲国产精品国产精品| 中文字幕制服av| 精品人妻一区二区三区麻豆| 欧美变态另类bdsm刘玥| 亚洲最大成人中文| 欧美日韩综合久久久久久| 欧美+亚洲+日韩+国产| 日产精品乱码卡一卡2卡三| 亚洲欧洲国产日韩| 国产男人的电影天堂91| 久久久精品欧美日韩精品| 亚洲五月天丁香| 又爽又黄无遮挡网站| 又黄又爽又刺激的免费视频.| 欧美高清成人免费视频www| 97超碰精品成人国产| 婷婷精品国产亚洲av| 亚洲精品日韩在线中文字幕 | 国产美女午夜福利| 国产视频内射| 99热这里只有是精品在线观看| 国产精品伦人一区二区| 大又大粗又爽又黄少妇毛片口| 免费看光身美女| 99视频精品全部免费 在线| 欧美+亚洲+日韩+国产| 精品久久久久久久久亚洲| 黄色视频,在线免费观看| 色播亚洲综合网| 国产精品嫩草影院av在线观看| 青春草国产在线视频 | 啦啦啦观看免费观看视频高清| 久久精品综合一区二区三区| 欧美日韩在线观看h| 久久这里只有精品中国| 99久久中文字幕三级久久日本| 一级二级三级毛片免费看| 色播亚洲综合网| 精品一区二区三区视频在线| 国产69精品久久久久777片| 国产 一区 欧美 日韩| 波多野结衣巨乳人妻| 老熟妇乱子伦视频在线观看| 国产精品综合久久久久久久免费| 国产伦精品一区二区三区视频9| 国产一区二区在线av高清观看| 美女内射精品一级片tv| 国产69精品久久久久777片| 久久久久久久久久久丰满| 欧美潮喷喷水| 九草在线视频观看| 亚洲av中文av极速乱| 欧美精品国产亚洲| 日日干狠狠操夜夜爽| 国产亚洲av嫩草精品影院| 成年免费大片在线观看| 国产伦精品一区二区三区四那| 日本-黄色视频高清免费观看| 亚洲av中文av极速乱| 99久久精品热视频| 女人十人毛片免费观看3o分钟| 欧美xxxx性猛交bbbb| 国内精品久久久久精免费| 在线观看免费视频日本深夜| 哪个播放器可以免费观看大片| 亚洲国产欧美人成| 亚洲精品国产av成人精品| 蜜桃亚洲精品一区二区三区| 尾随美女入室| 日本黄色视频三级网站网址| av免费观看日本| 中国国产av一级| 在线免费观看不下载黄p国产| av在线老鸭窝| av福利片在线观看| 成人三级黄色视频| 成人特级av手机在线观看| 国产精品女同一区二区软件| 男女视频在线观看网站免费| 性欧美人与动物交配| 国产在线精品亚洲第一网站| 白带黄色成豆腐渣| 中文欧美无线码| 国产视频首页在线观看| 午夜爱爱视频在线播放| 黄色欧美视频在线观看| 国语自产精品视频在线第100页| 村上凉子中文字幕在线| 国产视频首页在线观看| 久久精品夜色国产| 天堂网av新在线| 日本黄色视频三级网站网址| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美精品专区久久| 国产精品国产三级国产av玫瑰| 欧美xxxx黑人xx丫x性爽| 女人被狂操c到高潮| 天天一区二区日本电影三级| 国产亚洲5aaaaa淫片| 噜噜噜噜噜久久久久久91| 日本撒尿小便嘘嘘汇集6| 亚洲成av人片在线播放无| 久久欧美精品欧美久久欧美| 久久精品综合一区二区三区| 国产淫片久久久久久久久| 欧美一级a爱片免费观看看| 国内精品美女久久久久久| 亚洲熟妇中文字幕五十中出| 亚洲四区av| 亚洲人成网站高清观看| 午夜福利在线观看免费完整高清在 | 麻豆国产97在线/欧美| 亚洲国产色片| 国产探花在线观看一区二区| 国产极品精品免费视频能看的| 亚洲综合色惰| 亚洲四区av| 亚洲av不卡在线观看| 久久综合国产亚洲精品| 人妻夜夜爽99麻豆av| 久久久精品欧美日韩精品| 国产大屁股一区二区在线视频| 神马国产精品三级电影在线观看| 日本色播在线视频| 国产不卡一卡二| 91在线精品国自产拍蜜月| 国产一级毛片在线| 国产免费男女视频| 亚洲成人精品中文字幕电影| 我要看日韩黄色一级片| 韩国av在线不卡| 免费av观看视频| 国产三级中文精品| 青春草亚洲视频在线观看| 午夜激情欧美在线| 国产日韩欧美在线精品| 国产熟女欧美一区二区| 国产精品久久久久久精品电影| 欧美在线一区亚洲| 亚洲不卡免费看| 网址你懂的国产日韩在线| 成人国产麻豆网| 久久6这里有精品| 国内久久婷婷六月综合欲色啪| 国产老妇女一区| 免费av毛片视频| av视频在线观看入口| 婷婷亚洲欧美| 欧美日本亚洲视频在线播放| 免费看美女性在线毛片视频| 99热全是精品| 久久久久久久久中文| 日日啪夜夜撸| 观看美女的网站| 国产精品蜜桃在线观看 | 日本五十路高清| 天美传媒精品一区二区| 国产精品蜜桃在线观看 | av国产免费在线观看| 搡老妇女老女人老熟妇| 亚洲人成网站在线播| 一级黄色大片毛片| 亚洲一级一片aⅴ在线观看| 日本一二三区视频观看| 内地一区二区视频在线| 免费无遮挡裸体视频| 九九久久精品国产亚洲av麻豆| 日韩高清综合在线| 日本在线视频免费播放| 在线观看免费视频日本深夜| av又黄又爽大尺度在线免费看 | 99在线人妻在线中文字幕| 国产人妻一区二区三区在| 在线播放无遮挡| 村上凉子中文字幕在线| 观看美女的网站| 嘟嘟电影网在线观看| 国产精品一区二区三区四区免费观看| 亚洲成人中文字幕在线播放| 性插视频无遮挡在线免费观看| 久久久久久久久久久丰满| 天堂中文最新版在线下载 | 午夜福利高清视频| a级毛片免费高清观看在线播放| 可以在线观看的亚洲视频| 在线国产一区二区在线| 国产极品天堂在线| 国产黄色小视频在线观看| 如何舔出高潮| 久久久久久久久久久免费av| avwww免费| 日本一二三区视频观看| 亚洲av中文字字幕乱码综合| 99国产极品粉嫩在线观看| 国产精品女同一区二区软件| 亚洲成a人片在线一区二区| 久久久久免费精品人妻一区二区| 国产不卡一卡二| 插阴视频在线观看视频| 99热精品在线国产| av天堂在线播放| 一个人观看的视频www高清免费观看| 亚洲天堂国产精品一区在线| 日本黄大片高清| 久久久精品欧美日韩精品| 特大巨黑吊av在线直播| 婷婷精品国产亚洲av| 亚洲国产欧美人成| 99热6这里只有精品| 国产成人freesex在线| 26uuu在线亚洲综合色| 插阴视频在线观看视频| 美女被艹到高潮喷水动态| 久久99蜜桃精品久久| 女人十人毛片免费观看3o分钟| 高清在线视频一区二区三区 | 高清在线视频一区二区三区 | 亚洲在久久综合| 国产精品,欧美在线| 午夜爱爱视频在线播放| 人妻制服诱惑在线中文字幕| 久久久久久伊人网av| 日本撒尿小便嘘嘘汇集6| 在线观看66精品国产| 久久久精品94久久精品| 99久国产av精品| 免费观看在线日韩| 成年女人永久免费观看视频| 色视频www国产| 欧美激情久久久久久爽电影| 亚洲av成人av| 老司机福利观看| 国产成人精品久久久久久| 免费看美女性在线毛片视频| 久久精品国产鲁丝片午夜精品| 一进一出抽搐gif免费好疼| 国产高清有码在线观看视频| 国产av一区在线观看免费| 此物有八面人人有两片| videossex国产| 级片在线观看| 欧美日韩综合久久久久久| 国产一区二区亚洲精品在线观看| 国产成人影院久久av| 美女被艹到高潮喷水动态| 久久这里只有精品中国| 亚洲人与动物交配视频| 婷婷精品国产亚洲av| 久久久精品94久久精品| 久久久久久久久久久丰满| 此物有八面人人有两片| 国模一区二区三区四区视频| 久久久欧美国产精品| 日韩欧美一区二区三区在线观看| 精品人妻熟女av久视频| 三级经典国产精品| 国产精品三级大全| 欧美极品一区二区三区四区| 一进一出抽搐gif免费好疼| 欧美在线一区亚洲| 免费一级毛片在线播放高清视频| 国产一区二区三区av在线 | 你懂的网址亚洲精品在线观看 | 我要看日韩黄色一级片| 蜜桃亚洲精品一区二区三区| 日本黄色视频三级网站网址| av在线天堂中文字幕| 别揉我奶头 嗯啊视频| 日本-黄色视频高清免费观看| 一级二级三级毛片免费看| 国产日韩欧美在线精品| 97人妻精品一区二区三区麻豆| 午夜福利视频1000在线观看| 国产欧美日韩精品一区二区| 男人舔女人下体高潮全视频| 狂野欧美白嫩少妇大欣赏| 夫妻性生交免费视频一级片| 淫秽高清视频在线观看| 99久久人妻综合| 大型黄色视频在线免费观看| 亚洲五月天丁香| 欧美日韩国产亚洲二区| 久久久国产成人精品二区| 人体艺术视频欧美日本| 一个人免费在线观看电影| 久久久a久久爽久久v久久| 国产一区二区在线观看日韩| 国产精品一区www在线观看| 欧美区成人在线视频| 搡老妇女老女人老熟妇| 国产精品野战在线观看| 搡女人真爽免费视频火全软件| 国产黄色视频一区二区在线观看 | 网址你懂的国产日韩在线| 丰满乱子伦码专区| www日本黄色视频网| 久久久久久九九精品二区国产| 99久久无色码亚洲精品果冻| kizo精华| 国产精品一及| 欧美3d第一页| 日韩av不卡免费在线播放| 亚洲精品国产av成人精品| 欧美激情久久久久久爽电影| 欧美性猛交╳xxx乱大交人| 成人综合一区亚洲| 国产不卡一卡二| 久久99热6这里只有精品| 亚洲一区二区三区色噜噜| 卡戴珊不雅视频在线播放| 91狼人影院| 舔av片在线| 看片在线看免费视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 超碰av人人做人人爽久久| av黄色大香蕉| 日本与韩国留学比较| 亚洲最大成人手机在线| 久久鲁丝午夜福利片| a级毛片a级免费在线| 老女人水多毛片| 91av网一区二区| 麻豆精品久久久久久蜜桃| 欧美精品一区二区大全| а√天堂www在线а√下载| 久久这里有精品视频免费| 亚洲欧美成人综合另类久久久 | 极品教师在线视频| 99久久久亚洲精品蜜臀av| 卡戴珊不雅视频在线播放| 天天一区二区日本电影三级| 久久久精品94久久精品| 成人美女网站在线观看视频| www.色视频.com| 麻豆av噜噜一区二区三区| 1000部很黄的大片| 性色avwww在线观看| www.av在线官网国产| 欧美一区二区亚洲| 欧美变态另类bdsm刘玥| 亚洲av成人av| 又黄又爽又刺激的免费视频.| 久久精品夜夜夜夜夜久久蜜豆| 热99re8久久精品国产| 三级国产精品欧美在线观看| 午夜福利在线观看吧| 婷婷亚洲欧美| 免费大片18禁| 成人午夜精彩视频在线观看| 爱豆传媒免费全集在线观看| 欧美高清性xxxxhd video| 最好的美女福利视频网| 成人性生交大片免费视频hd| 日本黄色视频三级网站网址| 亚洲va在线va天堂va国产| 亚洲av二区三区四区| 69人妻影院| 搞女人的毛片| 日韩强制内射视频| 成人午夜精彩视频在线观看| 少妇的逼好多水| 男女那种视频在线观看| 99久久精品热视频| 欧美成人免费av一区二区三区| 欧美日韩在线观看h| 中文字幕精品亚洲无线码一区| 日韩欧美 国产精品| 好男人在线观看高清免费视频| 国产白丝娇喘喷水9色精品| 一区二区三区四区激情视频 | 一边亲一边摸免费视频| 99热这里只有精品一区| 少妇人妻一区二区三区视频| 欧美丝袜亚洲另类| 亚洲中文字幕一区二区三区有码在线看| 中国美女看黄片| 成人亚洲欧美一区二区av| videossex国产| 夫妻性生交免费视频一级片| 久久6这里有精品| 黄色配什么色好看| 日日干狠狠操夜夜爽| 日本熟妇午夜| 欧美日韩乱码在线| 国产伦理片在线播放av一区 | 狂野欧美白嫩少妇大欣赏| 色哟哟哟哟哟哟| 插阴视频在线观看视频| 成人亚洲欧美一区二区av| 午夜福利在线观看吧| 大香蕉久久网| 两个人视频免费观看高清| 国产探花极品一区二区| 校园人妻丝袜中文字幕| 亚洲欧美日韩东京热| 少妇裸体淫交视频免费看高清| 国产精品人妻久久久久久| 狂野欧美激情性xxxx在线观看| 18+在线观看网站| 日韩强制内射视频| 日韩成人伦理影院| 噜噜噜噜噜久久久久久91| 免费人成在线观看视频色| 亚洲国产欧洲综合997久久,| 十八禁国产超污无遮挡网站| 亚洲av.av天堂| 国产综合懂色| 五月玫瑰六月丁香| 老女人水多毛片| 色综合亚洲欧美另类图片| 国产精品永久免费网站| 美女国产视频在线观看| 直男gayav资源| 国产蜜桃级精品一区二区三区| 精品久久久久久成人av| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久成人av| 亚洲成人中文字幕在线播放| 晚上一个人看的免费电影| 欧美bdsm另类| 国产乱人偷精品视频| 九九久久精品国产亚洲av麻豆| 亚洲第一电影网av| 在线免费观看的www视频| 黄色欧美视频在线观看| 一边亲一边摸免费视频| 亚洲av中文字字幕乱码综合| 91精品一卡2卡3卡4卡| 九九热线精品视视频播放| 中文资源天堂在线| 免费看美女性在线毛片视频| 特级一级黄色大片| 91在线精品国自产拍蜜月| 黄色一级大片看看| 国产精品久久久久久av不卡| 人体艺术视频欧美日本| 一本一本综合久久| 中文字幕av成人在线电影| 少妇人妻精品综合一区二区 | 99九九线精品视频在线观看视频| 国产伦理片在线播放av一区 | 国产69精品久久久久777片| 欧美日本亚洲视频在线播放| 中文字幕制服av| 看非洲黑人一级黄片| 精品人妻一区二区三区麻豆| 亚洲精品色激情综合| 欧美潮喷喷水| 我要看日韩黄色一级片| 一个人看视频在线观看www免费| 久久韩国三级中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 欧美精品一区二区大全| 热99re8久久精品国产| 免费观看a级毛片全部| 直男gayav资源| 国产av不卡久久| 中文资源天堂在线| 99久久无色码亚洲精品果冻| 成人亚洲欧美一区二区av| 国内精品宾馆在线| 又粗又爽又猛毛片免费看| 欧美3d第一页| 日韩制服骚丝袜av| 99热这里只有是精品50| 国产精品日韩av在线免费观看| 久久久久久久久久成人| 嫩草影院入口| 国产女主播在线喷水免费视频网站 | 欧美变态另类bdsm刘玥| 一夜夜www| 欧美日韩综合久久久久久| 精品一区二区三区视频在线|