• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorption of CO2 on MgAl layered double hydroxides: Effect of intercalated anion and alkaline etching time?

    2021-05-06 08:55:38YanYanFeng馮艷艷XiaoDiNiu牛瀟迪YongHuiXu徐永輝andWenYang楊文
    Chinese Physics B 2021年4期

    Yan-Yan Feng(馮艷艷), Xiao-Di Niu(牛瀟迪), Yong-Hui Xu(徐永輝), and Wen Yang(楊文),?

    1Department of Chemistry and Bioengineering,Guilin University of Technology,Guilin 541004,China

    2Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials,

    Department of Chemistry and Bioengineering,Guilin University of Technology,Guilin 541004,China

    Keywords: CO2 adsorption,MgAl-LDHs,one-pot hydrothermal method,intercalated anion,alkaline etching

    1. Introduction

    In recent years,with the fast speed of population growth and social development, human beings need more energy,along with the continuous progress of modernization and automation.[1]Up to date, most of the energy comes from fossil resources; however, the inadequate combustion of fossil resources and other irregular use of fossil resources not only wasted the earth’s precious resources,but also produced a large number of toxic and harmful gases and fuel waste,resulting in serious environmental pollution.[2]The burning of fossil resources has produced a large amount of CO2, which can cause obvious greenhouse effect and other serious environmental problems on earth.[3–5]This phenomenon has attracted worldwide attention,and in order to reduce CO2emission, the relevant factories have to install and design the process technology for CO2capture. Hence, it is necessary to strengthen the research on CO2adsorption.

    There are many solid adsorbents to deal with CO2, but more efficient methods with fast adsorption rate and low cost are needed. According to the adsorption temperature,CO2adsorbents can be divided into three types: low-temperature adsorbent(adsorption temperature below 200?C),[6–8]mediumtemperature adsorbent (adsorption temperature between 200 and 400?C),[9]and high-temperature adsorbent (adsorption temperature above 400?C).[10]For low-temperature adsorption,great efforts have been devoted to advancing the capture performance. Guo et al.[6]prepared a series of porous activated carbons derived from sugarcane bagasse,and compared with the physically activated carbons,the NaOH-activated carbon showed high dynamic CO2uptake of 1.31 mmol/g at 60?C under 10%CO2flowing gas.Verrecchia et al.[7]investigated the three main factors affecting the synthesis of zeolites from coal fly ash, and then achieved the adsorbent with excellent CO2adsorption performance as compared to commercial 13X.Chen et al.[8]synthesized the premodified Li/Al hydrotalcite impregnated with polyethylenimine(PEI),and with PEI loading of 40%,the functionalized adsorbent obtained the highest adsorption capacity of 1.723 mmol/g at 50?C.

    Among abundant low-temperature solid adsorbents,MgAl layered double hydroxides (MgAl-LDHs) have got a great deal of attention. LDHs, consisting of positively charged layers and interlayer anions, belong to anionic layered compounds. Owing to the mobility and strong interchangeability of interlayer anions,[11–13]LDHs have been applied in many fields,such as adsorption,[14–16]catalysis,[17–19]electrochemistry,[20,21]and flame retardant.[22,23]In terms of adsorption applications, MgAl-LDHs could not only remove CO2from industrial exhaust,but also collect the anionic pollutants in the environment and gas pollution,etc. To date,numerous research on MgAl-LDHs has focused on improving the preparation methods,including changing the molar ratio of Mg/Al,[24]modifying with alkali metals,replacing the intercalation anions,[25]and so on.[26,27]Among various preparation methods, the co-precipitation method is the most commonly used. However, for the obtained adsorbents, it is disadvantageous to CO2adsorption due to their small specific surface area and stacked structure. Therefore, it is of great significance to promote the CO2uptake of MgAl-LDHs with loose and porous structure.

    In the present study, MgAl-LDHs are obtained via the one-pot hydrothermal method. Due to the amphoteric nature of Al species, NaOH is used to remove the Al species in the LDHs,[28]and appropriate treating time with NaOH solution would contribute meaningfully to forming some nanopores and increasing the available specific surface area, which ultimately expose more effective adsorption sites for CO2uptake.Consequently, we investigate the effect of intercalated anion and alkaline etching time on the structure and morphology of MgAl-LDHs for use in CO2uptake. Adjusting the intercalated anion and alkaline etching time of LDHs can tailor the structural characteristics of the resultant adsorbents,which in turn tune their adsorption performances,for MgAl-LDHs with high specific surface area and large pore volume are beneficial to the CO2adsorption process. After that,the adsorbents are characterized by x-ray diffraction (XRD), N2adsorption,scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively, followed by adsorption measurement of CO2. In order to explore the adsorption mechanism,the adsorption data are fitted by the firstorder,pseudo-second-order and Elovich models,respectively.In general, this work would provide meaningful guidance for designing MgAl-LDHs to improve CO2adsorption performance.

    2. Experimental details

    2.1. Materials

    In experiment, magnesium nitrate hexahydrate (99.0%,Mg(NO3)2·6H2O), aluminum nitrate nonahydrate (99.0%,Al(NO3)3·9H2O), magnesium chloride hexahydrate (98.0%,MgCl2·6H2O), aluminum chloride hexahydrate (97.0%,AlCl3·6H2O), magnesium acetate tetrahydrate (99.0%,Mg(CH3COO)2·4H2O), aluminum acetate (Al(CH3COO)3),urea (99.0%, H2NCONH2), and sodium hydroxide (96.0%,NaOH) were analytical grade and purchased from Xilong Chemical Co. Ltd., Guangzhou, China. All the chemicals were used without further purification.

    2.2. Preparation of the samples

    2.2.1. Preparation of MgAl-LDHs intercalated with different anions

    2.2.2. Preparation of the adsorbents alkaline-etched by 3.0 mol/L NaOH

    The adsorbents alkaline-etched by 3.0 mol/L NaOH were prepared as follows.[28]A 50 mL NaOH solution with 0.2 g of MgAl(Cl)was fully stirred at room temperature for 30 min,followed by alkaline etching reaction at 95?C for 3,6 and 9 h,respectively. Finally, the product was washed with water and ethanol for several times and dried at 100?C overnight,named as MgAl(Cl)-3,MgAl(Cl)-6,and MgAl(Cl)-9,respectively.

    2.3. Characterization

    XRD patterns of the samples were characterized by a power x-ray diffractometer(PANalytical X’Pert3)with Cu Kαradiation.[21]The pore structure of the samples was obtained using N2physisorption at 77 K by a Micromeritics ASAP Tristar II 3020 equipment (Micromeritics Instrument Corporation). Prior to the analysis, the sample was degassed at 150?C for 3 h. The morphology of the samples was observed using a field-emission scanning electron microscope(SEM, Hitachi SU5000). FT-IR spectra were conducted on a Fourier transform infrared spectrometer(Nicolet iS10,American Thermo Scientific Company)in the wavelength range of 400–4000 cm?1.

    2.4. CO2 adsorption capacity evaluation

    The CO2adsorption performance of the samples was tested by a thermogravimetric analyzer (SDT Q500, TA).[31]Appropriately 10 mg of the sample was put into an alumina pan, and He was injected as a protective gas with a gas flow of 100 mL/min. Next, the sample was raised to 75?C with a heating rate of 5?C/min. After stabilizing at 75?C for 30 min,the gas was switched to CO2with a gas flow of 100 mL/min,and the adsorption process was kept at 75?C for 60 min. The adsorption amount of CO2was calculated according to the weight change of the sample during the adsorption process.

    The first-order (Eq. (1)),[32]the pseudo-second-order(Eq. (2)),[33]and Elovich (Eq. (3))[34]kinetic models are applied over the as-prepared adsorbents,and the kinetic models are expressed as follows:

    where qe,1(qe,2) is the adsorption capacity of MgAl-LDHs at equilibrium (mg/g); qtis the adsorption capacity (mg/g)of CO2by the adsorbent at time t (min); k1(1/min), k2(g/(mg·min)) and k are the first-order, pseudo-second-order and Elovich rate constants, respectively; β is the relationship between surface coverage and activation energy.

    3. Results and discussion

    3.1. Characterization analyses

    The XRD patterns of the samples are presented in Fig.1.Characteristic diffraction features of the LDHs structure appear in all MgAl-LDHs samples at 2θ of 11.5?, 23.6?,35.0?,39.6?and 47.1?, corresponding to the reflections of (003),(006), (009), (015), and (018), respectively.[35]The sample MgAl(Cl) synthesized with chloride salts as precursors shows higher crystallinity than the samples MgAl(NO) and MgAl(Ac), suggesting that the crystallinity is affected by the precursor nature. In addition, the characteristic peaks of Mg5(CO3)4(OH)2·4H2O(brucite)are observed for MgAl(Ac)using acetate salts as precursors.As for the alkaline-etched adsorbents shown in Fig.1(b), the characteristic peak of LDHs also appears, and the characteristic peaks at 2θ of 23.6?and 47.1?change from single peak to double peaks. As the samples undergo alkaline etching, the characteristic peaks of Mg6Al2(OH)18·4.5H2O would obviously appear, while the characteristic peaks of Mg4Al2(OH)14·3H2O decrease,revealing that the Al species are partly removed. With the further increase of the alkaline etching time, the characteristic peaks of Mg4Al2(OH)14·3H2O are gradually weakened.

    N2adsorption isotherms of the samples are depicted in Fig.2. All the samples exhibit typical type-III isotherms with low N2uptake at low relative pressure(P/P0)and high N2uptake at high P/P0. For MgAl-LDHs intercalated with different anions, the adsorption volume of MgAl(Cl)is highest among the three samples, while the adsorption volume of MgAl(Ac)is lowest. With the alkaline etching of NaOH,the N2adsorption capacity depicts a reverse U-shaped trend. As the alkaline etching time increases,the N2uptake of MgAl(Cl)-3 gradually increases,and the adsorption capacity of MgAl(Cl)-6 reaches the maximum. With further increase of the alkaline etching time, the adsorption capacity of MgAl(Cl)-9 obviously decreases. The above results indicate that the alkaline etching time has a significant influence on the pore structure of the MgAl-LDHs.

    Fig.1. XRD patterns of the samples.

    Fig.2. N2 adsorption isotherms of the samples.

    Figure 3 displays pore size distributions (PSD) of the samples computed with the Barrett–Joyner–Halenda (BJH)method. As shown in Fig.3, all the samples possess a distribution of pores within the diameters of 0–50 nm, confirming the formation of mesoporous materials,which is attributed to the stacked structure of LDHs. It is noted that the mesopore volume of MgAl(Cl) within 2–50 nm is higher than that of MgAl(Ac)and MgAl(NO),in good agreement with the N2adsorption isotherms,and is further expanded after alkaline etching treatment. With the alkaline etching time of 9 h,the pores of MgAl(Cl)-9 collapse and the corresponding mesopore volume declines. For the alkaline-etched adsorbents, MgAl(Cl)-6 possesses huge number of micropores and mesopores, revealing that alkaline etching could make the significant contribution of micropores and mesopores,especially mesopores.This also explains why the sample MgAl(Cl)-6 achieves an enhanced CO2adsorption capacity.

    Figure 4 presents the Brunauer–Emmett–Teller specific surface area (BET SSA) and pore volume (PV) of the samples. The variation of intercalated anions leads to differences in the BET SSA and PV. Among the intercalated adsorbents,the MgAl(Cl)using chloride salts as precursors displays the highest BET SSA and PV,indicating that the porosity of MgAl(Cl)is well-developed. Compared with others,the MgAl(NO)sample has the lowest BET SSA,being 86.5%and 66.0% of the MgAl(Ac) and MgAl(Cl), respectively. The alkaline etching of NaOH results in high surface areas and large pore volumes,and the MgAl(Cl)-6 sample achieves the largest BET SSA of 28.13 m2/g and PV of 0.0765 cm3/g.

    Fig.3. Pore size distributions of the samples obtained by the BJH adsorption branch.

    SEM characterization results of the samples are shown in Fig.5. Sheet-like LDHs with smooth surface of MgAl(NO)and MgAl(Cl)using chloride salts and nitrate salts as precursors can be observed in Figs. 5(a) and 5(c), while disorderly stacked structure of MgAl(Ac)with acetate salts as precursors can be seen from Fig.5(b). The different morphologies presented by the MgAl-LDHs with different precursors may be due to the nature of intercalated anions. After alkaline etching treatment, the layered structure begins to be destroyed, suggesting that the Al species of the layered structure are partly removed, along with the increase of BET SSA and PV of the modified LDHs,which would be conducive to the exposure of the active sites, so as to improve the adsorption performance of the adsorbent. Nevertheless, the longer the alkaline etching time, the more serious the structural damage, and with the alkaline etching time being 9 h, the sheet-like structure of MgAl(Cl)-9 is severely crushed and aggregated, resulting in poor dispersibility, which is consistent with the results of N2adsorption analysis.

    Fig.4. BET specific surface area(a)and pore volume(b)of the samples.

    Fig.5. SEM images of the samples: (a)MgAl(NO),(b)MgAl(Ac),(c)MgAl(Cl),(d)MgAl(Cl)-3,(e)MgAl(Cl)-6,and(f)MgAl(Cl)-9.

    Fig.6. FT-IR spectra of the samples.

    3.2. CO2 adsorption performances of the adsorbents

    The effect of intercalated anion and alkaline etching time on CO2adsorption for MgAl-LDH adsorbents was performed,and in order to analyze the adsorption mechanism of CO2on the adsorbent, the adsorption data are fitted by the firstorder kinetic equation,the pseudo-second-order kinetic equation and the Elovich model,respectively. Figure 7(a)exhibits the CO2adsorption data of the MgAl-LDHs with different precursors.Obviously,the intercalated anion could influence CO2adsorption behavior,and it is meaningful to apply the suitable precursor to prompt CO2adsorption performance of MgAl-LDHs. Among the three samples, the adsorbent MgAl(Cl)possesses the highest CO2adsorption capacity. The impact of intercalated anion for MgAl-LDHs on CO2adsorption behavior and adsorption kinetics is illustrated in Figs.7(b)–7(d)and Table 1. Compared with the first-order kinetic equation and the Elovich model, the correlation coefficient R2for the pseudo-second-order kinetic equation is close to 1.0,suggesting that the fitting curves are in good agreement with the adsorption data and the adsorption process is more suitable to be described by the pseudo-second-order kinetic equation.

    Fig.7. CO2 adsorption isotherms of the samples prepared with different precursors fitted by the first-order kinetic model,the pseudo-secondorder kinetic model,and the Elovich kinetic model.

    In the initial stage of adsorption, the adsorption rate of the samples is faster; however,as the adsorption process progresses, the adsorption rate slows down and the adsorption equilibrium would be reached after a period of time. It is found that the CO2adsorption process of the samples could be divided into two stages: rapid surface reaction stage and CO2diffusion controlling stage. In the rapid surface reaction stage, the large slope of the curve indicates the fast adsorption rate. Among the intercalated samples,the adsorption rate of MgAl(Ac) is higher, and thus its CO2adsorption capacity hardly changes after 15 min. The rapid reaction stage is the important stage of adsorption, that is, CO2reacts with the alkaline binding sites on the adsorbent surface; with the progress of adsorption,the adsorption site of the adsorbent is gradually covered,which slows down the adsorption rate. As the adsorption process of CO2for MgAl(NO)and MgAl(Ac)reaches saturation, the adsorption capacity of MgAl(Cl) still increases,ascribing to the developed pore structure and abundant alkaline adsorption sites. In addition, it should be noted that the crystallinity of MgAl-LDHs has a non-negligible effect on CO2adsorption performance, and high crystallinity leads to favorable CO2uptake.

    Figure 8 shows CO2uptake of alkaline-etched MgAl(Cl)adsorbents. It can be seen that the adsorption performance of the adsorbents is significantly improved after alkaline etching, and the sample MgAl(Cl)-6 with alkaline etching time of 6 h has the highest adsorption amount of 16.3 mg/g. As the alkaline etching time continues to extend, the CO2uptake of MgAl(Cl)-9 sharply decreases, due to the collapse of pore structure and the fragmentized sheet-structure. Hence,the CO2adsorption performance is greatly influenced by alkaline etching time,and appropriate alkaline etching time can advance the contact between CO2molecules and the adsorbent. The fitting results of the kinetic models (displayed in Figs. 8(b)–8(d) and Table 1) show that both the first-order and pseudo-second-order kinetic models are applicable, and thus the adsorption process includes physical adsorption and chemical adsorption; however, the correlation coefficients of the pseudo-second-order kinetic model are slightly higher than those of the first-order kinetic model, indicating that the adsorption process of the adsorbent on CO2is more obedient to the pseudo-second-order kinetic model than to the first-order kinetic model. The sample MgAl(Cl)-6 owns the fastest adsorption rate of 0.041 g/(mg·min), while MgAl(Cl)without alkaline etching has the lowest adsorption rate of 0.020 g/(mg·min), consistent with CO2adsorption capacities of the alkaline-etched samples, which indicates that alkaline etching treatment is conducive to the internal diffusion of CO2during the adsorption process.

    Fig.8. CO2 adsorption isotherms of the samples prepared with various alkaline etching times fitted by the first-order kinetic model, the pseudo-second-order kinetic model,and the Elovich kinetic model.

    Table 1. Adsorption parameters from kinetic models of CO2 adsorption data.

    4. Conclusions

    MgAl layered double hydroxides have been synthesized by the one-pot hydrothermal method to investigate the effect of intercalated anion and alkaline etching time on CO2adsorption. By means of XRD,N2adsorption,SEM,FT-IR and CO2adsorption analyses,the results demonstrate that the adsorbent MgAl(Cl)using chloride salts as precursors shows a high crystallinity,sheet-like LDHs with smooth surface and developed pore structures.In contrast,MgAl(Ac)employing acetate salts as precursors displays a poor crystallinity, disorderly stacked structure and unsatisfactory pore structure; and correspondingly,MgAl(Cl)possesses the highest CO2uptake among the three intercalated samples. With alkaline etching of NaOH,the adsorption performance of the adsorbents is significantly improved, and MgAl(Cl)-6 with alkaline etching time of 6 h has the largest adsorption amount of 16.3 mg/g, which could be ascribed to well-developed porosity. The alkaline adsorption active sites over the surface of the adsorbent are fully exposed,which is conducive to the combination of acid gas CO2with it, thereby enhancing the CO2capture. As the alkaline etching time further increases, the CO2adsorption capacity of MgAl(Cl)-9 obviously reduces, mainly due to the collapse of pore structure and the fragmentized sheet-structure. Therefore, this work would provide a valuable idea for the rational design of MgAl-LDHs for enhancing CO2adsorption.

    精品乱码久久久久久99久播| 国内精品一区二区在线观看| 99久国产av精品| 久久九九热精品免费| 久久韩国三级中文字幕| 亚洲精品粉嫩美女一区| 一a级毛片在线观看| 国产av在哪里看| 日产精品乱码卡一卡2卡三| 日本五十路高清| 一级黄色大片毛片| 久久亚洲国产成人精品v| 国产精品永久免费网站| 久久99热6这里只有精品| 人妻少妇偷人精品九色| 国产精品嫩草影院av在线观看| 久久久久性生活片| 又爽又黄无遮挡网站| 国产又黄又爽又无遮挡在线| 99久久精品一区二区三区| 搞女人的毛片| ponron亚洲| 国产精品无大码| 嫩草影视91久久| 我的老师免费观看完整版| 午夜福利在线观看免费完整高清在 | 亚洲欧美日韩无卡精品| 欧美一区二区精品小视频在线| 在线播放无遮挡| 日韩大尺度精品在线看网址| 亚洲精品乱码久久久v下载方式| 国产精品不卡视频一区二区| 国产乱人偷精品视频| 99久国产av精品| 特大巨黑吊av在线直播| 久久人人爽人人片av| 久久久国产成人免费| 亚洲精品国产av成人精品 | 99久久成人亚洲精品观看| a级毛色黄片| 国产片特级美女逼逼视频| 18禁裸乳无遮挡免费网站照片| 亚洲av第一区精品v没综合| 国产成人福利小说| 热99在线观看视频| 日韩欧美精品v在线| 大型黄色视频在线免费观看| 日韩av不卡免费在线播放| 亚洲欧美精品自产自拍| 日韩欧美在线乱码| 日本在线视频免费播放| 中文字幕精品亚洲无线码一区| 99久久无色码亚洲精品果冻| 国产一区二区亚洲精品在线观看| 色噜噜av男人的天堂激情| 亚洲精品日韩在线中文字幕 | 国产精品乱码一区二三区的特点| 天堂网av新在线| 亚洲天堂国产精品一区在线| 成年女人毛片免费观看观看9| 日韩欧美国产在线观看| 九九爱精品视频在线观看| 成人二区视频| 99久国产av精品国产电影| 偷拍熟女少妇极品色| 国产精品国产三级国产av玫瑰| 少妇人妻一区二区三区视频| 一区福利在线观看| 美女黄网站色视频| 久久久精品94久久精品| 日韩成人av中文字幕在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 久久九九热精品免费| 女人十人毛片免费观看3o分钟| 变态另类丝袜制服| 热99在线观看视频| 久久人人精品亚洲av| 国产精品一区二区性色av| 大香蕉久久网| 中文资源天堂在线| 黄色欧美视频在线观看| 精品99又大又爽又粗少妇毛片| 国产欧美日韩一区二区精品| 夜夜爽天天搞| av卡一久久| 欧美一区二区亚洲| 一级毛片久久久久久久久女| 我要看日韩黄色一级片| 激情 狠狠 欧美| 国产蜜桃级精品一区二区三区| 深夜a级毛片| 91久久精品电影网| av.在线天堂| 中文亚洲av片在线观看爽| 国产精品99久久久久久久久| 久久久久久久久中文| av专区在线播放| 啦啦啦韩国在线观看视频| 蜜桃久久精品国产亚洲av| 国产片特级美女逼逼视频| 亚洲国产精品成人综合色| 少妇猛男粗大的猛烈进出视频 | 成人特级黄色片久久久久久久| 国产午夜福利久久久久久| 国产老妇女一区| 人妻制服诱惑在线中文字幕| 亚洲经典国产精华液单| 我的老师免费观看完整版| 欧美区成人在线视频| av天堂中文字幕网| 国产精品一区二区三区四区免费观看 | 亚洲av二区三区四区| 搡老熟女国产l中国老女人| 免费av观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 欧美高清成人免费视频www| 国产伦精品一区二区三区四那| 日韩欧美国产在线观看| 丝袜喷水一区| 免费人成视频x8x8入口观看| 国产一区二区在线av高清观看| 国产精品精品国产色婷婷| 久久久久九九精品影院| 国产精品久久久久久av不卡| 99九九线精品视频在线观看视频| 亚洲av成人av| 国产精品免费一区二区三区在线| 91麻豆精品激情在线观看国产| 国产成人91sexporn| 国产精品一及| 亚洲av免费在线观看| 国产精品一区二区三区四区久久| 精品午夜福利在线看| 97超视频在线观看视频| 亚洲熟妇熟女久久| 精品一区二区免费观看| 男女下面进入的视频免费午夜| 国产 一区精品| 欧美日本亚洲视频在线播放| 久久热精品热| 亚洲成人久久性| 日韩欧美 国产精品| 不卡一级毛片| 寂寞人妻少妇视频99o| 在线天堂最新版资源| 国产高清不卡午夜福利| 插逼视频在线观看| 国内精品美女久久久久久| 男人舔奶头视频| 国产精品福利在线免费观看| 亚洲美女视频黄频| 久久久成人免费电影| 91麻豆精品激情在线观看国产| 亚洲自拍偷在线| 久久亚洲精品不卡| 精品乱码久久久久久99久播| 国产精品一及| 天堂动漫精品| 丰满乱子伦码专区| 一区二区三区四区激情视频 | 中文字幕av成人在线电影| 夜夜看夜夜爽夜夜摸| 精品福利观看| 欧美激情久久久久久爽电影| 亚洲国产精品合色在线| 成人高潮视频无遮挡免费网站| 中文资源天堂在线| av天堂中文字幕网| 一个人看的www免费观看视频| 变态另类成人亚洲欧美熟女| 成年女人看的毛片在线观看| 亚洲色图av天堂| 午夜福利在线观看免费完整高清在 | 午夜爱爱视频在线播放| 性欧美人与动物交配| 99热这里只有是精品50| 亚洲欧美成人精品一区二区| 欧美+日韩+精品| 少妇熟女aⅴ在线视频| 国产一级毛片七仙女欲春2| 亚洲av中文av极速乱| 无遮挡黄片免费观看| 最好的美女福利视频网| 国产 一区精品| 国产三级中文精品| 五月伊人婷婷丁香| 国产私拍福利视频在线观看| 少妇的逼好多水| 嫩草影院精品99| 免费大片18禁| 听说在线观看完整版免费高清| 欧美一区二区亚洲| 久久久精品欧美日韩精品| av在线天堂中文字幕| 久久韩国三级中文字幕| 亚洲最大成人手机在线| 中文字幕精品亚洲无线码一区| 欧美成人免费av一区二区三区| 中文在线观看免费www的网站| 国产高清三级在线| 麻豆一二三区av精品| 亚洲av五月六月丁香网| 夜夜看夜夜爽夜夜摸| 国产高清视频在线播放一区| 亚洲精品在线观看二区| 亚洲精品成人久久久久久| 精品一区二区免费观看| 天堂动漫精品| 我要看日韩黄色一级片| 岛国在线免费视频观看| 97热精品久久久久久| 国产欧美日韩一区二区精品| 久久人人爽人人片av| 欧美国产日韩亚洲一区| 亚洲人成网站在线观看播放| 伊人久久精品亚洲午夜| 国产高潮美女av| 日韩中字成人| 一进一出好大好爽视频| 两性午夜刺激爽爽歪歪视频在线观看| 在线a可以看的网站| 日韩欧美精品v在线| 日韩三级伦理在线观看| 天美传媒精品一区二区| 好男人在线观看高清免费视频| 国产亚洲欧美98| 人妻丰满熟妇av一区二区三区| 亚洲最大成人中文| 全区人妻精品视频| 日韩精品青青久久久久久| 亚洲欧美日韩无卡精品| 国产高清视频在线观看网站| 日韩成人av中文字幕在线观看 | 久久精品国产亚洲av涩爱 | 看十八女毛片水多多多| 免费无遮挡裸体视频| 身体一侧抽搐| 热99在线观看视频| 国产成年人精品一区二区| av在线天堂中文字幕| 免费观看的影片在线观看| 国产精品伦人一区二区| 观看免费一级毛片| 国产成人一区二区在线| 日本黄大片高清| avwww免费| 丰满人妻一区二区三区视频av| 亚洲av.av天堂| 九九热线精品视视频播放| 露出奶头的视频| 亚洲欧美日韩高清专用| 蜜桃亚洲精品一区二区三区| 直男gayav资源| 成人精品一区二区免费| 在线观看66精品国产| 亚洲国产精品sss在线观看| 中文字幕熟女人妻在线| 男人的好看免费观看在线视频| 国产视频内射| 又爽又黄a免费视频| 看黄色毛片网站| 精品不卡国产一区二区三区| 日日啪夜夜撸| 国产精品爽爽va在线观看网站| 男女之事视频高清在线观看| 亚洲最大成人手机在线| 精品午夜福利视频在线观看一区| 欧美最黄视频在线播放免费| 亚洲专区国产一区二区| 精品久久久久久久久亚洲| 女生性感内裤真人,穿戴方法视频| 美女内射精品一级片tv| 国产精品一二三区在线看| 乱码一卡2卡4卡精品| 伦精品一区二区三区| 精品一区二区三区视频在线观看免费| 国产三级在线视频| 天堂动漫精品| 日日摸夜夜添夜夜爱| 欧美xxxx性猛交bbbb| 久久久久久久久久久丰满| 看黄色毛片网站| av.在线天堂| 看非洲黑人一级黄片| 久久久精品94久久精品| 97热精品久久久久久| 成人鲁丝片一二三区免费| 亚洲三级黄色毛片| 欧美不卡视频在线免费观看| 亚洲精品日韩在线中文字幕 | 男女啪啪激烈高潮av片| 国产精品久久久久久精品电影| 最近中文字幕高清免费大全6| 国产人妻一区二区三区在| 尤物成人国产欧美一区二区三区| 伦精品一区二区三区| 国产一区二区三区av在线 | 长腿黑丝高跟| 美女内射精品一级片tv| 一卡2卡三卡四卡精品乱码亚洲| 少妇的逼水好多| 91午夜精品亚洲一区二区三区| 97在线视频观看| 99热全是精品| 啦啦啦韩国在线观看视频| 国产免费一级a男人的天堂| 久久久久久久久久黄片| 一区二区三区免费毛片| 亚洲精品乱码久久久v下载方式| 日韩,欧美,国产一区二区三区 | 久久人人爽人人片av| 青春草视频在线免费观看| 老熟妇乱子伦视频在线观看| 亚洲真实伦在线观看| 亚洲精品粉嫩美女一区| 欧美成人一区二区免费高清观看| 女的被弄到高潮叫床怎么办| 国产精品亚洲美女久久久| 亚洲精品一区av在线观看| 91麻豆精品激情在线观看国产| 日本爱情动作片www.在线观看 | 插逼视频在线观看| 少妇被粗大猛烈的视频| 最近中文字幕高清免费大全6| 国产亚洲欧美98| 成人永久免费在线观看视频| 一区二区三区高清视频在线| 国产精品免费一区二区三区在线| 欧美成人一区二区免费高清观看| 又爽又黄a免费视频| 久久午夜亚洲精品久久| 特大巨黑吊av在线直播| 中文资源天堂在线| 人人妻人人澡欧美一区二区| 乱人视频在线观看| 亚洲一区高清亚洲精品| 亚洲国产日韩欧美精品在线观看| 男女啪啪激烈高潮av片| 久久精品综合一区二区三区| 国产人妻一区二区三区在| 国产精品电影一区二区三区| 12—13女人毛片做爰片一| 久久精品影院6| 亚洲四区av| 人妻久久中文字幕网| 伦理电影大哥的女人| 黑人高潮一二区| 三级毛片av免费| 可以在线观看毛片的网站| 身体一侧抽搐| 黑人高潮一二区| 男插女下体视频免费在线播放| 色尼玛亚洲综合影院| 精品福利观看| 国内揄拍国产精品人妻在线| 亚洲国产精品成人综合色| 内地一区二区视频在线| 亚洲经典国产精华液单| 久久99热这里只有精品18| 午夜福利在线观看吧| 中文字幕人妻熟人妻熟丝袜美| 在线观看免费视频日本深夜| av免费在线看不卡| 日韩成人av中文字幕在线观看 | 麻豆久久精品国产亚洲av| 国产黄色小视频在线观看| 久久久久精品国产欧美久久久| 一个人看的www免费观看视频| 人人妻,人人澡人人爽秒播| 日韩强制内射视频| 免费在线观看成人毛片| 亚洲人成网站在线观看播放| 国产精品久久久久久亚洲av鲁大| 国产精品日韩av在线免费观看| 能在线免费观看的黄片| a级一级毛片免费在线观看| 日本免费一区二区三区高清不卡| 有码 亚洲区| 51国产日韩欧美| 亚洲成av人片在线播放无| 亚洲真实伦在线观看| 一级毛片久久久久久久久女| 成人鲁丝片一二三区免费| 熟妇人妻久久中文字幕3abv| 91av网一区二区| 麻豆成人午夜福利视频| 欧美激情国产日韩精品一区| 亚洲国产精品sss在线观看| 最近中文字幕高清免费大全6| 欧美成人精品欧美一级黄| 免费无遮挡裸体视频| 久久婷婷人人爽人人干人人爱| 欧美xxxx黑人xx丫x性爽| 国产 一区 欧美 日韩| 午夜福利在线观看免费完整高清在 | 日韩欧美在线乱码| 日本与韩国留学比较| 最近中文字幕高清免费大全6| 99热这里只有精品一区| av.在线天堂| 国产精品国产三级国产av玫瑰| 麻豆国产av国片精品| 亚洲中文日韩欧美视频| 国产 一区精品| 午夜免费激情av| 中国美白少妇内射xxxbb| eeuss影院久久| 性色avwww在线观看| 中文字幕久久专区| 村上凉子中文字幕在线| 少妇猛男粗大的猛烈进出视频 | 国产精品久久久久久精品电影| 女人十人毛片免费观看3o分钟| 国产大屁股一区二区在线视频| 久久久久久九九精品二区国产| 校园人妻丝袜中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利在线观看免费完整高清在 | 99热精品在线国产| 亚洲电影在线观看av| 精品一区二区免费观看| 亚洲人与动物交配视频| 婷婷亚洲欧美| 少妇的逼好多水| 亚洲av不卡在线观看| 在线观看66精品国产| 亚洲av美国av| 中文字幕精品亚洲无线码一区| 又黄又爽又免费观看的视频| 99在线人妻在线中文字幕| 热99re8久久精品国产| 两性午夜刺激爽爽歪歪视频在线观看| 看免费成人av毛片| 中文亚洲av片在线观看爽| 欧美一区二区国产精品久久精品| 久久草成人影院| 日本黄色视频三级网站网址| 在线观看美女被高潮喷水网站| 尤物成人国产欧美一区二区三区| 麻豆久久精品国产亚洲av| 有码 亚洲区| 91精品国产九色| 成人亚洲欧美一区二区av| 国产精品一及| 午夜激情福利司机影院| 日韩精品中文字幕看吧| 日韩精品青青久久久久久| 亚洲av第一区精品v没综合| 亚洲第一电影网av| 一进一出抽搐gif免费好疼| 男女之事视频高清在线观看| 国产色爽女视频免费观看| 午夜福利18| 97超级碰碰碰精品色视频在线观看| 欧美不卡视频在线免费观看| 99在线人妻在线中文字幕| 国产单亲对白刺激| 亚洲中文字幕一区二区三区有码在线看| 国产精品精品国产色婷婷| 久久人妻av系列| av天堂在线播放| 春色校园在线视频观看| 日韩在线高清观看一区二区三区| 国产私拍福利视频在线观看| 在线看三级毛片| 欧美区成人在线视频| 亚洲精品国产成人久久av| 一卡2卡三卡四卡精品乱码亚洲| 国产极品精品免费视频能看的| 成人漫画全彩无遮挡| 在线播放国产精品三级| 亚洲精品亚洲一区二区| 男女视频在线观看网站免费| 精品久久久噜噜| 国产精品无大码| 俺也久久电影网| 亚洲中文日韩欧美视频| 久久亚洲精品不卡| 亚洲成人久久爱视频| 欧美激情久久久久久爽电影| 久久久久久国产a免费观看| 中文字幕免费在线视频6| 亚洲精品亚洲一区二区| 午夜福利在线观看吧| 国产精品亚洲美女久久久| 国产精品一区二区三区四区久久| 日本三级黄在线观看| 久久久午夜欧美精品| 最后的刺客免费高清国语| 日日摸夜夜添夜夜添av毛片| 久久久成人免费电影| 国产视频内射| 国产精品一区二区性色av| 99国产精品一区二区蜜桃av| 日韩在线高清观看一区二区三区| 亚洲熟妇中文字幕五十中出| 久久精品国产亚洲av天美| 午夜福利18| 最近2019中文字幕mv第一页| 国产熟女欧美一区二区| 国产高清有码在线观看视频| 精品久久久久久久人妻蜜臀av| 色综合亚洲欧美另类图片| 男人狂女人下面高潮的视频| 寂寞人妻少妇视频99o| 91久久精品国产一区二区成人| 亚洲av中文字字幕乱码综合| 久久精品国产清高在天天线| 51国产日韩欧美| 夜夜看夜夜爽夜夜摸| 免费搜索国产男女视频| 日日摸夜夜添夜夜添av毛片| 成人特级av手机在线观看| 亚洲天堂国产精品一区在线| 国产精品av视频在线免费观看| 成年免费大片在线观看| 91久久精品电影网| 最近手机中文字幕大全| 国产精品乱码一区二三区的特点| 中文字幕熟女人妻在线| 午夜久久久久精精品| 亚洲成人精品中文字幕电影| 三级毛片av免费| 1000部很黄的大片| 午夜老司机福利剧场| 久久久久国产网址| or卡值多少钱| 精品国内亚洲2022精品成人| 久久久成人免费电影| 免费看日本二区| 国产精品福利在线免费观看| 美女 人体艺术 gogo| 成人毛片a级毛片在线播放| 亚洲av免费高清在线观看| 国产精品亚洲一级av第二区| 性插视频无遮挡在线免费观看| 国内精品一区二区在线观看| 美女xxoo啪啪120秒动态图| 亚洲av中文字字幕乱码综合| 91麻豆精品激情在线观看国产| 欧美另类亚洲清纯唯美| 91av网一区二区| 又爽又黄无遮挡网站| 婷婷精品国产亚洲av在线| 国产人妻一区二区三区在| 日本黄色视频三级网站网址| av视频在线观看入口| 亚洲中文字幕日韩| 少妇的逼好多水| 十八禁国产超污无遮挡网站| 久久中文看片网| 中文在线观看免费www的网站| 国产不卡一卡二| 成人鲁丝片一二三区免费| 日日啪夜夜撸| 日韩 亚洲 欧美在线| 1000部很黄的大片| 给我免费播放毛片高清在线观看| 女同久久另类99精品国产91| 夜夜爽天天搞| 老熟妇乱子伦视频在线观看| 两个人视频免费观看高清| 不卡视频在线观看欧美| 综合色丁香网| 亚洲,欧美,日韩| 免费大片18禁| 成人永久免费在线观看视频| 久久久精品94久久精品| 日韩一区二区视频免费看| 国产成年人精品一区二区| 国产又黄又爽又无遮挡在线| 一进一出好大好爽视频| 久久精品国产亚洲av天美| 久久这里只有精品中国| 精品99又大又爽又粗少妇毛片| 成人三级黄色视频| 国产单亲对白刺激| 色在线成人网| 色视频www国产| av天堂在线播放| 韩国av在线不卡| 亚洲激情五月婷婷啪啪| 可以在线观看的亚洲视频| 一进一出抽搐gif免费好疼| 亚洲欧美日韩高清专用| 国产精品一区二区性色av| 久久午夜亚洲精品久久| 国产一级毛片七仙女欲春2| 久久九九热精品免费| 免费观看在线日韩| 毛片女人毛片| 亚洲中文字幕日韩| 亚洲精品国产av成人精品 | 亚洲国产欧洲综合997久久,| 亚洲欧美日韩高清在线视频| 日本精品一区二区三区蜜桃| 成人美女网站在线观看视频| 深夜精品福利| 中文字幕久久专区| 有码 亚洲区| 亚洲在线自拍视频| 亚洲av成人av| 青春草视频在线免费观看| 麻豆国产97在线/欧美| 午夜视频国产福利| 中国国产av一级| 一个人看视频在线观看www免费| 日日干狠狠操夜夜爽| 又黄又爽又免费观看的视频| 亚洲高清免费不卡视频| 国产亚洲精品久久久久久毛片| 国产亚洲精品久久久com| 悠悠久久av| 美女 人体艺术 gogo| 无遮挡黄片免费观看|