• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction?

    2021-05-06 08:55:36QiuyangLi李求洋PengheZhang張蓬鶴HaotianLi李浩天LinaChen陳麗娜KaiyuanZhou周愷元ChunjieYan晏春杰LiyuanLi李麗媛YongbingXu徐永兵WeixinZhang張衛(wèi)欣BoLiu劉波HaoMeng孟浩RonghuaLiu劉榮華andYouweiDu都有為
    Chinese Physics B 2021年4期

    Qiuyang Li(李求洋) , Penghe Zhang(張蓬鶴), Haotian Li(李浩天), Lina Chen(陳麗娜), Kaiyuan Zhou(周愷元),Chunjie Yan(晏春杰), Liyuan Li(李麗媛), Yongbing Xu(徐永兵), Weixin Zhang(張衛(wèi)欣),Bo Liu(劉波), Hao Meng(孟浩), Ronghua Liu(劉榮華),?, and Youwei Du(都有為)

    1China Electric Power Research Institute,Beijing 100192,China

    2School of Physics,Nanjing University,Nanjing 210093,China

    3School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    4School of Electronics Science and Engineering,Nanjing University,Nanjing 210093,China

    5State Grid Tianjin Electric Power Company,Tianjin 300384,China

    6Key Laboratory of Spintronics Materials,Devices and Systems of Zhejiang Province,Zhejiang 311300,China

    Keywords: magnetic tunnel junctions, magnetic tunnel junction (MTJ) model, switching time, spin torque nano-oscillator

    1. Introduction

    Spintronics as an emerging technology began from discoveries of giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) effects in the 1980s. One of the main applications of these magnetoresistive effects is in magnetic field sensors, e.g., in hard disk drive read heads and biosensors.There are four main types of magnetic transducers:Hall effect,anisotropic magnetoresistance(AMR),GMR,and TMR. Compare to Hall element with large power consumption and poor linearity, the AMR element has a much higher sensitivity, but a narrower linear operating range. The magnetoresistance (MR) ratios of conventional AMR and GMR elements are about 3%and 12%at room temperature,respectively, while the TMR element can be over 200%,[1]which indicates higher sensitivity. Besides the much higher sensitivity, the TMR element has better temperature stability, low power consumption,and a wider linear range relative to ARM and GMR sensing elements. This is why the TMR element is utilized as a highly-sensitive reading element in hard dish drive these days.[2,3]

    On the other hand, the functionalities of spintronic devices have made significant progress in magnetic memory, logic devices, and radio-frequency electronics in the last two decades[4]following the discovery of spin-transfer torque (STT) effect enabling electronic control of nanomagnetic systems.[5,6]The spin current-driven STT can not only change the static magnetic configuration by generating the effective magnetic field,[7–9]but also can result in the excitation of coherent dynamical magnetization states by compensating the dynamical damping in magnetic systems.[9,10]Intense ongoing efforts in the former are focused on exploring STT-MTJ including to achieve higher density integration of MTJ cells for magnetic random access memory(MRAM),[11]meanwhile keep high thermal stability and low power consumption.[2,4,12–15]Many of these challenges are closely related to the fact that the current required to switch the magnetization is proportional to the energy barrier separating the two states. At the same time, the thermal stability of the device is also proportional to the magnetic anisotropy energy.Therefore,a higher energy barrier will improve the nonvolatility, but it also requires a higher current to flip states. In the past ten years,researchers have theoretically proposed and experimentally verified various approaches to solve these challenges such as to temporarily lower the energy barrier right before applying an STT current by using voltage-controlled magnetic anisotropy (VCMA) effect[16–19]or heating effect,to improve the nonvolatility by incoming the anisotropy fields due to the interlayer or interfacial exchange coupling between magnetic layers,[20–22]and to further reduce the switching current by combining STT and spin–orbit torque(SOT)in threeterminal MTJ structure.[23]For the spin-torque driven dynamical magnetization,many studies are focused on investigating the relationship among the coherence of the dynamical states in spin-torque nano-oscillators(STNOs),[9,10,24]the magnetic properties,and the layout of magnetic nanostructures with the goal of achieving the optimized characteristics of STNOs for the specific applications in radio-frequency electronics, spin wave-based devices,and neuromorphic computing.[25,26]

    In this paper, we first investigate properties of the pMTJ cell with a stack structure MgO/CoFeB/Ta/CoFeB/MgO as the free layer (or recording layer), and obtain the necessary device parameters from the TMR vs. field loops and currentdriven magnetization switching experiments.Additionally,we study the STT-pMTJ switching performance including switching time and power,and their dependence on the perpendicular magnetic anisotropy and damping constant of the free layer,as well as pMTJ-based STNO dynamics performance by using SPICE model based on the experimentally obtained device parameters. This paper is organized as follows. First,the stacked structure of STT-pMTJ and the experimental results of static magnetization switching driven by magnetic field and currents are shown in Section 2.Next,Section 3 introduces the background,key physical effects involved in our studied STTpMTJ cell,and the SPICE model used in this paper. Section 4 investigates the effect of material parameters on the switching dynamics performance. Finally, conclusions are summarized in Section 5.

    2. Experimental results of STT-pMTJ

    Since its greater thermal stability than that of the in-plane magnetized MTJ, the perpendicularly magnetized MTJ structure has been widely adopted to build MRAM cells, magnetic field sensors, and STNOs for microwave generators or detectors. Given perpendicular magnetic anisotropy (PMA) advantages, various PMA materials,such as rare-earth transition metal amorphous alloy layer,[Co/(Pt,Pd)] multilayers, and CoFeB/MgO frames, have been widely investigated for the past decade. Among these PMA materials, the CoFeB/MgO/CoFeB frames were intensively studied for the development of practical devices due to their large TMR ratio.[27]Here,we adopted pMTJ cells with the following stacks of buffer/SAF/spacer/CoFeB(1)/MgO(1.4)/CoFeB(1)/Ta(0.4)/CoFeB(1.6)/MgO(1)/capping layer(thicknesses in nm)to enhance further PMA, as well as the thermal stability factor by utilizing the double-interface structure as the recording layer (or free layer) instead of the single-interface structure,as shown in the inset of Fig.1(a). The SAF represents Co/Pt multilayer based synthetic ferrimagnetic reference layer with a minimum stray field on the recording layer.[21]The multilayer was subsequently patterned into circle-shaped nanopillars with a diameter of less than 100 nm. TMR hysteresis loops of these pMTJ nano-pillars were investigated substantially under out-of-plane magnetic fields at a small bias current of 1 μA. Figure 1(a) shows the representative minor TMR hysteresis loop corresponding to magnetization switching of the free layer in the MTJ cell. The well defined squareshaped TMR hysteresis loop indicates that the studied MTJ cell has a strong PMA for both free layer (FL) and reference layer (RL). The high resistance state RAPand low resistance state RPcorrespond to the antiparallel (AP) and parallel (P) alignment of magnetization of RL and FL, respectively, as shown in Fig.1(a). The TMR ratio is defined as TMR = 100×(RAP?RP)/RP. A TMR ratio of as high as 188% can be achieved at room temperature, indicating good quality of pMTJ. Additionally, the TMR hysteresis loop was offset to 1.17 kOe from the origin of the applied magnetic field,indicating that FL suffers the influence of the stray field as well as the possible interlayer exchange coupling between FL and RL.Similar results were observed in devices with other sizes and did not show a clear dependence of TMR ratio on their resistance-area product(RA)(<10 ?·μm2), indicating that our pMTJ cell array has a very good uniformity and may achieve high-performance,low energy STT-pMRAM.

    Fig.1. TMR loops of MTJ cell with 60 nm diameter. (a)Minor TMR vs. HApp loop corresponding to the magnetization switching of the free layer (FL). The vertical dashed line represents the shift field owing to the stray field,as well as the possible interlayer exchange coupling.The dashed arrows represent the direction of magnetization switching from parallel(P)to antiparallel(AP)states,or in reverse. The magnetization configuration of FL and the reference layer(RL)are marked as the solid arrows in the two rectangles, respectively. The left bottom inset is the optical image of the measurement structure of one single MTJ cell. The right top inset is the physical multilayer stacks structure of an MTJ cell.(b) TMR vs. bias current (voltage) loops under the different external fields of ?0.31 kOe,0,and 0.31 kOe,respectively.

    3. Background and key physics

    3.1. Perpendicular magnetic anisotropy

    As mentioned before, studies showed that a PMA-based MTJ has a lower switching current than an in-plane magnetic anisotropy based MTJ with the same thermal stability factor ?.[15]In studied MgO/CoFeB/Ta/CoFeB/MgO-based pMTJ systems, the perpendicular magnetic anisotropy originates from the interfacial anisotropy of both CoFeB–Ta and CoFeB–MgO interfaces. For a magnetic system,the effective perpendicular anisotropy field (HK⊥eff) can be generally expressed as

    where HK⊥is the perpendicular anisotropy field related to PMA,Hdzand Ndzare the z-axis component of the demagnetization field Hdand corresponding geometry-dependent demagnetization coefficient, MSis the saturation magnetization of the magnetic free layer. For interface PMA(iPMA)system,the PMA constant K⊥can be expressed as Ki/tF=2πM2StC/tF,where Kiis the interfacial anisotropy energy density,tFis the thickness of the magnetic free layer,and tCis its critical thickness where the magnetic system has a perpendicular magnetization at zero field.

    3.2. Voltage-controlled magnetic anisotropy effect

    In recent years, many experimental and theoretical studies have shown that voltage-controlled magnetic anisotropy(VCMA)can be induced by the charge accumulation at the interface of ferromagnetic materials owing to an applied electric field.[16–18]Since the accumulated charge screens the external electric field in the region within a few monatomic layers of the metal–barrier interface, the VCMA is also closely related to the interface. The relationship between the gate-voltage and iPMA can be modeled by an empirical formula as follows:

    where ξ is the VCMA coefficient that represents the sensitivity between the magnetic anisotropy and the applied electric field, and tbis the thickness of the oxide barrier layer MgO. Additionally, the energy barrier of the free layer between two magnetization configurations can be represented as Eb=μ0MSVFHK/2,where VFis the volume of the free layer,MSand HKare the saturation magnetization and the anisotropy magnetic field,respectively. Therefore,the voltage-controlled iPMA HK⊥effcan modulate the energy barrier Eb,resulting in the reduction of the critical switching current, even directly switching the magnetization of the free layer. As mentioned before, the thermal stability factor ?is a critical parameter determining the data retention capability of MRAM,which is defined as the energy barrier Ebof the recording layer normalized to the thermal energy kBT, where kBis Boltzmann’s constant,and T is the absolute temperature.

    3.3. Spin transfer torque

    Spin transfer torque effect describes the transfer of angular momentum from electrons spin polarized by the fixed magnetic layer(also named as the polarized layer)and delivered in the form of torque to switch the magnetization of the free layer in an MTJ or spin valve.[5,6]The direction of the generated torque is determined by the direction of the applied electric current perpendicularly passing through the devices and the magnetization of the polarized layer. Therefore, instead of the external field switching, a bidirectional current can control a bidirectional magnetization switching of the free layer in an STT-MTJ cell with a fixed magnetic layer as the polarized layer. The intrinsic threshold current density Jc0is an important parameter that characterizes STT magnetization switching in STT-MRAM.The threshold current density is expressed by the following equation:

    where α is the Gilbert damping constant, γ is the gyromagnetic constant,e is the charge of electron,MSis the saturation magnetization of the free layer,tFis the thickness of the free layer, η(θ)=P/[2(1+P2)cosθ] is the STT efficiency, P is the spin polarization factor,and θ is the angle of the magnetizations between the free and fixed layers(θ =0 for P state,π for AP state). Heffis the effective field including the external applied field Hex, anisotropy field HK, demagnetization field Hd,and the stray or dipole field Hst.

    3.4. TMR and temperature effects

    TMR of the MTJ is expressed as (RAP?RP)/RP, where RAPand RPare the antiparallel and parallel resistances of MTJ,respectively. Based on voltage- and temperature-dependent spin polarization factor P of magnetic materials, the voltage and temperature dependence of TMR can be captured using the modified Julliere’s formula as follows:

    Here,P0is the polarization factor which can be experimentally determined by the low-bias TMR in R–V curves of MTJ,αspis the material-dependent empirical constant,and V0is the biasvoltage which can be determined by the high-bias features of TMR in the experimental observes[Fig.1(b)].

    3.5. Magnetization dynamics and LLG equation

    Various studies have shown that the dynamical motion of a time-varying magnetization vector M(t) under spin transfer torques can be well described by Landau–Lifshitz–Gilbert(LLG)equation as

    4. Spice simulation of STT-PMTJ

    4.1. SPICE model framework

    As inspired by the proposed SPICE-based LLG models for STT-MTJ in recent years,[28–31]we performed the substantial circuit simulation and analysis of the pMTJ devices strictly based on our experimental parameters to acquire the MTJ switching performance and its dependence on bias voltage Vbias, thickness of recording layer tF(or magnetic anisotropy HK),and damping constant α for guiding experiments to further optimize the device parameters for the development of MTJ.Figure 2 shows the SPICE model consisting of five subcircuits: voltage-dependent magnetic anisotropy, LLG, STT,TMR, and temperature, similar to previous reports.[31]The simulation parameters of the STT-MTJ device are extracted from our experiments above and listed in Table 1.

    Table 1. MTJ simulation parameters.

    Fig.2. SPICE model framework for modeling the MTJ-based devices in Fig.1 based on the experimentally obtained parameters.

    In our circuit simulation,a simple STT-MRAM cell consisting of a two-terminal MTJ in series with an access transistor is shown in Fig.3(a). Consistent with our experimental devices,the two-terminal MTJ consists of a fixed layer,a barrier layer,and a free layer. In an STT-MRAM cell,the data is stored or coded by the magnetization direction of FL,which is controlled by the electric current passing through the MTJ cell.The bidirectional current is achieved by applying proper voltages to the bitline and the source line meanwhile keeping the corresponding access transistor on by applying an appropriate voltage to the word line. Figure 3(b) shows the representation of our experimental R–V curves. The R–V characteristics are well reproduced by using the modified Julliere’s formula Eq. (4) with the fitting parameters P0=0.8, V0=0.65, and αsp=2×10?5,as shown in Fig.3(c).

    Fig.3. The pMTJ-based STT-MRAM.(a)Spin-circuit modeling of an STT-pMRAM bit cell including spin-transfer-torque,voltage-controlled magnetic anisotropy, and temperature effects. (b) The experimental result of the bias current dependent TMR of our pMTJ device. (c) The simulation result of the modeling pMTJ-based STT-MRAM.

    4.2. STT switching performance

    Compared to the state-of-art of measurement technologies required in experimentally determining the ultra-fast switching time,the circuit simulation can easily access to STTinduced magnetization switching process by directly analyzing the time-domain circuit signal related to the magnetization of the free layer. The z-component of magnetization Mzas a function of time after applying a bias-voltage with different amplitudes on the MTJ cell is shown in Fig.4. One can see that for both switching directions(P-to-AP and AP-to-P),the switching time τ corresponding to Mz=0 decreases with the increase of the pulse amplitude. Since the studied magnetization switching in STT-MTJ is in the precessional switching regime, the switching is dominated by STT rather than temperature-dependent thermal activation effect. Based on the adiabatic precessional model, the switching time can be expressed as

    Fig.4. Switching time performance at different bias voltage. (a) and (b) Switching process of Mz as a function of pulse duration time for AP-to-P state(a)and P-to-AP state(b)at various amplitudes of bias voltage pulse. (c)and(d)Switching time,defined at Mz =0(horizontal dished lines in(a)and(b)),as a function of pulse amplitude for AP-to-P state(c)and P-to-AP state(d). The symbols are the simulation results and the solid lines are the fitting curves with Eq.(6).

    Fig.5. Switching time as a function of the free layer thickness(perpendicular magnetic anisotropy Ki)for AP-to-P state(a)and P-to-AP state(b)at various amplitudes of bias voltages Vbias=1.5 V,2 V,2.5 V,3 V,and 3.5 V.

    The conventional spin-torque nano-oscillators based on magnetic multilayer structures,spin-valve,[10]or MTJ;[32]recently developed spin-Hall nano-oscillators[26,33,34]based on nonmagnetic heavy metal and magnetic metal or insulator bilayer structure; and the magnetic auto-oscillators with highly current- and field-dependent frequency tunability, modulation,injection locking,and mutual synchronization have great potential applications as a class of miniaturized and ultrabroadband microwave signal generators for nanosensor and wireless communications, or as nanoscale spin-wave excitation sources for magnon-based devices.[25]The STNOs with the largest reported integrated output power have been presented in CoFeB-MgO-based MTJs due to their high TMR.[32]The studied pMTJ cells for STT-MRAM applications are also can be used as STNOs for RF electronics by adding an inplane magnetic field at an appropriate current range. Figure 7 shows that current-driven STT can compete with the damping and sustain a stable magnetization procession at Vbias=3 V and in-plane field H = 1500 Oe. The representative autooscillation frequency spectra can be obtained by performing the fast Fourier transform (FFT) of the time-dependent zcomponent magnetization Mzdepicted in Fig.7(a). The FFT spectrum of Mzshows a primary peak at 3.3 GHz, which is below the frequency of ferromagnetic resonance 3.9 GHz,indicating that it is a localized mode.While the higher frequency~6.6 GHz is its second harmonic mode. The frequency and power of magnetic nano-oscillators can be controlled by the applied current and magnetic field.

    Fig.6. Switching time τ vs. damping constant α for AP-to-P(a)and APto-P (b) at various amplitudes of bias voltages Vbias =2 V, 2.5 V, 3 V, and 3.5 V.

    Fig.7. STT sustained stable magnetization procession in pMTJ-based STNO.(a)Time trace of the normalized z-component magnetization Mz of the free layer in STNO at bias voltage Vbias=3 V and applied in-plane field H =1500 Oe. (b)FFT spectrum of the free-running STNO with a foundational peak ~3.3 GHz and a second harmonic peak ~6.6 GHz.

    5. Conclusion

    We utilized stack structure MgO/CoFeB/Ta/CoFeB/MgO as the free layer of pMTJ, and achieved a high TMR ratio~190%at room temperature,meanwhile keeping a well thermal stability factor ~73. Based on the experimental results and the extracted material parameters,we further estimated the STT-pMTJ switching performance including switching time and power, and their dependence on perpendicular magnetic anisotropy and damping constant of the free layer by SPICEbased circuit simulations including voltage-controlled magnetic anisotropy,spin-transfer-torque,and temperature effects.The observed TMR vs. current curves can be well reproduced by our circuit simulations,which validate the SPICE model of pMTJs. Our simulation results show that the pMTJ cells exhibit switching time less than 1 ns and write energies<1.4 pJ;meanwhile the lower PMA and damping constant can further reduce the switching time at the studied range of damping constant α <0.1. Additionally,our results also demonstrate that the pMTJ cells could be easily transformed into spin-torque nano-oscillators from magnetic memory as microwave sources or detectors for telecommunication devices. Our results and methods suggest that the SPICE-based LLG model provides an efficient approach for the designers of spintronic devices to easily estimate key performance indicators of devices and optimize device and material parameters.

    免费观看的影片在线观看| 国产精品国产高清国产av| 色播亚洲综合网| 亚洲九九香蕉| 日韩欧美三级三区| 色噜噜av男人的天堂激情| 国产成人系列免费观看| 精品国产亚洲在线| 亚洲一区二区三区色噜噜| 99久久99久久久精品蜜桃| 天堂网av新在线| 蜜桃久久精品国产亚洲av| 色视频www国产| 精品一区二区三区四区五区乱码| 毛片女人毛片| 19禁男女啪啪无遮挡网站| 一进一出好大好爽视频| 男女床上黄色一级片免费看| 日本精品一区二区三区蜜桃| 97超视频在线观看视频| 国内揄拍国产精品人妻在线| 欧美av亚洲av综合av国产av| 国产乱人视频| 99久久久亚洲精品蜜臀av| 人妻夜夜爽99麻豆av| 欧美三级亚洲精品| 久久香蕉精品热| 一二三四在线观看免费中文在| 不卡av一区二区三区| 熟妇人妻久久中文字幕3abv| 在线十欧美十亚洲十日本专区| 在线国产一区二区在线| 亚洲欧美日韩高清在线视频| 观看免费一级毛片| 校园春色视频在线观看| 狂野欧美激情性xxxx| 亚洲欧美精品综合久久99| www.熟女人妻精品国产| 丁香六月欧美| 好看av亚洲va欧美ⅴa在| 成人高潮视频无遮挡免费网站| 日韩精品中文字幕看吧| 欧美日韩精品网址| 精品福利观看| 亚洲成人免费电影在线观看| 欧美一区二区精品小视频在线| 国产精品综合久久久久久久免费| 国产精品久久久久久亚洲av鲁大| 日韩中文字幕欧美一区二区| 成人av一区二区三区在线看| 欧美三级亚洲精品| 此物有八面人人有两片| 午夜福利18| 五月伊人婷婷丁香| 国产免费av片在线观看野外av| 亚洲av美国av| 国产亚洲欧美在线一区二区| 国产成人精品久久二区二区91| 麻豆成人午夜福利视频| 婷婷丁香在线五月| 伦理电影免费视频| 亚洲欧洲精品一区二区精品久久久| 99热这里只有是精品50| 国产av麻豆久久久久久久| 精品久久久久久久人妻蜜臀av| 欧美日本视频| 欧美精品啪啪一区二区三区| 网址你懂的国产日韩在线| 亚洲国产精品sss在线观看| 久久久久久人人人人人| 国产乱人视频| 国产不卡一卡二| 日韩欧美三级三区| 午夜福利免费观看在线| 日日干狠狠操夜夜爽| 黄片大片在线免费观看| 久99久视频精品免费| 欧美色欧美亚洲另类二区| 人妻久久中文字幕网| 国产精品久久电影中文字幕| 日本一本二区三区精品| 午夜精品一区二区三区免费看| 亚洲av中文字字幕乱码综合| 中文资源天堂在线| 欧美不卡视频在线免费观看| 人妻夜夜爽99麻豆av| 国产三级在线视频| 久久中文看片网| 我要搜黄色片| 这个男人来自地球电影免费观看| 亚洲成人久久爱视频| 老司机午夜福利在线观看视频| 一本精品99久久精品77| 亚洲 欧美一区二区三区| 好看av亚洲va欧美ⅴa在| 免费av不卡在线播放| ponron亚洲| 欧美av亚洲av综合av国产av| 黄片小视频在线播放| 淫秽高清视频在线观看| 久久久久久久精品吃奶| 久久久久九九精品影院| 午夜激情福利司机影院| 欧美色欧美亚洲另类二区| 亚洲精品乱码久久久v下载方式 | 亚洲av电影在线进入| 叶爱在线成人免费视频播放| 亚洲aⅴ乱码一区二区在线播放| 这个男人来自地球电影免费观看| 一级作爱视频免费观看| 很黄的视频免费| 国产精品 欧美亚洲| 亚洲 欧美一区二区三区| 国产精品一区二区三区四区免费观看 | 99热6这里只有精品| 97超级碰碰碰精品色视频在线观看| 精品99又大又爽又粗少妇毛片 | 国产av麻豆久久久久久久| 国产精品乱码一区二三区的特点| 精品不卡国产一区二区三区| 亚洲 国产 在线| 日韩 欧美 亚洲 中文字幕| 男女做爰动态图高潮gif福利片| 国产蜜桃级精品一区二区三区| 国产av不卡久久| 老鸭窝网址在线观看| 青草久久国产| xxxwww97欧美| 欧美日韩亚洲国产一区二区在线观看| 在线播放国产精品三级| 99久久精品一区二区三区| 成年版毛片免费区| 亚洲国产高清在线一区二区三| 久久欧美精品欧美久久欧美| 精品国产三级普通话版| 久久精品综合一区二区三区| 欧美激情在线99| 中亚洲国语对白在线视频| 精品熟女少妇八av免费久了| 欧美日韩亚洲国产一区二区在线观看| 高潮久久久久久久久久久不卡| 国产乱人伦免费视频| 午夜福利成人在线免费观看| 国产精品1区2区在线观看.| 身体一侧抽搐| 亚洲自拍偷在线| 88av欧美| 狠狠狠狠99中文字幕| 麻豆国产av国片精品| 两人在一起打扑克的视频| www.精华液| 一区二区三区国产精品乱码| 国产精品98久久久久久宅男小说| 欧美一区二区精品小视频在线| 免费av毛片视频| av在线天堂中文字幕| 一本久久中文字幕| 最新在线观看一区二区三区| 国产在线精品亚洲第一网站| 国产熟女xx| 悠悠久久av| 久久精品国产亚洲av香蕉五月| 午夜福利免费观看在线| 日韩高清综合在线| 欧美丝袜亚洲另类 | 99久久成人亚洲精品观看| 黑人操中国人逼视频| 亚洲精品在线美女| avwww免费| 国内毛片毛片毛片毛片毛片| 亚洲欧美日韩高清专用| 国产久久久一区二区三区| 国产午夜精品论理片| 黄色 视频免费看| 国产一区在线观看成人免费| 亚洲熟妇中文字幕五十中出| 51午夜福利影视在线观看| 国产麻豆成人av免费视频| 国产 一区 欧美 日韩| 一本综合久久免费| 我的老师免费观看完整版| 久久精品国产亚洲av香蕉五月| 亚洲av电影在线进入| 久久性视频一级片| 亚洲国产中文字幕在线视频| 麻豆一二三区av精品| 精品国产超薄肉色丝袜足j| 国产伦精品一区二区三区视频9 | 精品久久久久久,| 亚洲av成人av| 又大又爽又粗| 欧美3d第一页| 天堂av国产一区二区熟女人妻| 精品福利观看| 亚洲美女黄片视频| 女生性感内裤真人,穿戴方法视频| 亚洲国产欧美一区二区综合| 国产麻豆成人av免费视频| 久久热在线av| 国产精品一区二区三区四区免费观看 | 日韩av在线大香蕉| 97超级碰碰碰精品色视频在线观看| 啦啦啦观看免费观看视频高清| 三级男女做爰猛烈吃奶摸视频| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久久毛片微露脸| 久久性视频一级片| 在线播放国产精品三级| 成人高潮视频无遮挡免费网站| 色在线成人网| 亚洲av电影在线进入| 午夜精品久久久久久毛片777| 国产又黄又爽又无遮挡在线| 国产精品1区2区在线观看.| 一a级毛片在线观看| 免费观看人在逋| 国产成人aa在线观看| 级片在线观看| 免费无遮挡裸体视频| 99re在线观看精品视频| 午夜亚洲福利在线播放| 在线看三级毛片| 亚洲成av人片在线播放无| 精品电影一区二区在线| 变态另类丝袜制服| 久9热在线精品视频| 观看免费一级毛片| 午夜两性在线视频| 国产精品久久久久久精品电影| 免费搜索国产男女视频| 中出人妻视频一区二区| 国产伦一二天堂av在线观看| 国产高潮美女av| 老汉色av国产亚洲站长工具| 香蕉av资源在线| 国产成人精品无人区| 亚洲欧美精品综合久久99| 亚洲一区二区三区不卡视频| 亚洲av成人不卡在线观看播放网| 国产欧美日韩精品亚洲av| 男插女下体视频免费在线播放| 日本在线视频免费播放| 国产精品美女特级片免费视频播放器 | 久久草成人影院| 亚洲av成人一区二区三| 日韩人妻高清精品专区| 老汉色av国产亚洲站长工具| tocl精华| 一级毛片女人18水好多| 国产高清视频在线播放一区| 十八禁网站免费在线| 国产欧美日韩一区二区精品| 看免费av毛片| 日本黄大片高清| 天堂动漫精品| 十八禁人妻一区二区| 国产av一区在线观看免费| 精品不卡国产一区二区三区| 国产私拍福利视频在线观看| 夜夜爽天天搞| 蜜桃久久精品国产亚洲av| 久久久久国产精品人妻aⅴ院| 91av网一区二区| 18禁美女被吸乳视频| 亚洲欧美精品综合久久99| 9191精品国产免费久久| 午夜福利高清视频| 男女床上黄色一级片免费看| 国产亚洲av嫩草精品影院| 观看免费一级毛片| 国产精品亚洲一级av第二区| 国产高清激情床上av| cao死你这个sao货| 国产av一区在线观看免费| 亚洲电影在线观看av| 久久久久久久久久黄片| 一边摸一边抽搐一进一小说| 久久伊人香网站| 亚洲精品一卡2卡三卡4卡5卡| 丰满的人妻完整版| 日韩高清综合在线| 久久国产精品人妻蜜桃| 九九在线视频观看精品| 色综合亚洲欧美另类图片| 嫩草影院入口| 色尼玛亚洲综合影院| 一二三四在线观看免费中文在| 亚洲激情在线av| 99riav亚洲国产免费| 最近最新中文字幕大全电影3| 亚洲电影在线观看av| 国产一区二区激情短视频| 在线观看免费午夜福利视频| 亚洲中文日韩欧美视频| 巨乳人妻的诱惑在线观看| 日日干狠狠操夜夜爽| 一卡2卡三卡四卡精品乱码亚洲| 免费无遮挡裸体视频| avwww免费| 午夜精品在线福利| 久久久精品大字幕| 成年版毛片免费区| 国产精品久久久久久精品电影| www.www免费av| 人妻丰满熟妇av一区二区三区| 黄色 视频免费看| 亚洲无线在线观看| e午夜精品久久久久久久| netflix在线观看网站| 亚洲美女黄片视频| 日韩av在线大香蕉| 级片在线观看| 99久久久亚洲精品蜜臀av| 亚洲国产欧美人成| 亚洲一区高清亚洲精品| 欧美日韩瑟瑟在线播放| 国产免费av片在线观看野外av| 99riav亚洲国产免费| 久久久久久久久免费视频了| 亚洲一区二区三区色噜噜| 亚洲av电影在线进入| 日本黄色片子视频| 老熟妇乱子伦视频在线观看| 欧美午夜高清在线| 毛片女人毛片| 免费一级毛片在线播放高清视频| 欧美+亚洲+日韩+国产| av在线天堂中文字幕| 老司机福利观看| 亚洲人成网站在线播放欧美日韩| 88av欧美| 99热6这里只有精品| 真人做人爱边吃奶动态| 人人妻人人澡欧美一区二区| 午夜亚洲福利在线播放| 精品久久久久久成人av| av福利片在线观看| 男女床上黄色一级片免费看| 一进一出抽搐动态| 不卡av一区二区三区| 国产免费av片在线观看野外av| 成年人黄色毛片网站| 人人妻人人看人人澡| 国产真人三级小视频在线观看| 国模一区二区三区四区视频 | 欧美又色又爽又黄视频| 91麻豆精品激情在线观看国产| 欧美日本亚洲视频在线播放| 又紧又爽又黄一区二区| 久久人妻av系列| 两个人视频免费观看高清| 麻豆成人av在线观看| 国产成人一区二区三区免费视频网站| 国产精品一区二区免费欧美| 国语自产精品视频在线第100页| 天堂动漫精品| 女人被狂操c到高潮| 国语自产精品视频在线第100页| 久久久水蜜桃国产精品网| 成年免费大片在线观看| 国产野战对白在线观看| 一夜夜www| 日韩欧美在线二视频| 国产爱豆传媒在线观看| 变态另类丝袜制服| 婷婷丁香在线五月| 国产精品99久久99久久久不卡| 欧美一区二区国产精品久久精品| 中出人妻视频一区二区| 99视频精品全部免费 在线 | 成人一区二区视频在线观看| 日韩欧美精品v在线| 丝袜人妻中文字幕| 国产精品野战在线观看| 成人三级黄色视频| 一本一本综合久久| 欧美乱色亚洲激情| 丰满人妻一区二区三区视频av | 制服丝袜大香蕉在线| 午夜久久久久精精品| 97碰自拍视频| 亚洲精品中文字幕一二三四区| 国产综合懂色| 国产高潮美女av| 精品免费久久久久久久清纯| 久久久久久久久免费视频了| 日本与韩国留学比较| 午夜免费激情av| 亚洲国产日韩欧美精品在线观看 | 午夜免费观看网址| 久99久视频精品免费| 激情在线观看视频在线高清| 国产欧美日韩精品亚洲av| 久久草成人影院| 老汉色∧v一级毛片| 观看美女的网站| 国产综合懂色| 日韩成人在线观看一区二区三区| 久久久久九九精品影院| 91在线观看av| 久久中文看片网| 少妇的丰满在线观看| 国产午夜福利久久久久久| 国产伦人伦偷精品视频| 天堂网av新在线| 国产精品香港三级国产av潘金莲| 一进一出抽搐动态| 黄色成人免费大全| 露出奶头的视频| 久久久久精品国产欧美久久久| 最好的美女福利视频网| 桃红色精品国产亚洲av| 两性午夜刺激爽爽歪歪视频在线观看| 在线免费观看的www视频| 成年女人毛片免费观看观看9| 老汉色∧v一级毛片| 99国产精品一区二区蜜桃av| 一级毛片女人18水好多| 天天躁狠狠躁夜夜躁狠狠躁| 成年人黄色毛片网站| 搞女人的毛片| 亚洲精品色激情综合| 亚洲欧美精品综合久久99| 男人舔女人的私密视频| 国产精品久久视频播放| 欧美高清成人免费视频www| 国产私拍福利视频在线观看| 欧美中文日本在线观看视频| 亚洲国产高清在线一区二区三| 91在线精品国自产拍蜜月 | 怎么达到女性高潮| 国产av在哪里看| 成年人黄色毛片网站| 欧美日韩瑟瑟在线播放| 国产一区二区激情短视频| 亚洲第一电影网av| 村上凉子中文字幕在线| av女优亚洲男人天堂 | 母亲3免费完整高清在线观看| 成人永久免费在线观看视频| 亚洲18禁久久av| 国产久久久一区二区三区| 亚洲精品一区av在线观看| 黄片大片在线免费观看| 搞女人的毛片| 国产欧美日韩精品亚洲av| 欧美国产日韩亚洲一区| 日本与韩国留学比较| 最近在线观看免费完整版| 久久久久国产精品人妻aⅴ院| 亚洲中文av在线| 黑人欧美特级aaaaaa片| 99re在线观看精品视频| 很黄的视频免费| 999久久久精品免费观看国产| 精品99又大又爽又粗少妇毛片 | 免费在线观看视频国产中文字幕亚洲| 国产精品一区二区三区四区久久| 成人三级做爰电影| 最好的美女福利视频网| 真人一进一出gif抽搐免费| 国语自产精品视频在线第100页| 国产一区二区三区在线臀色熟女| 日本一本二区三区精品| 少妇丰满av| 两人在一起打扑克的视频| 每晚都被弄得嗷嗷叫到高潮| 性色avwww在线观看| 在线十欧美十亚洲十日本专区| 视频区欧美日本亚洲| 国产在线精品亚洲第一网站| 一级a爱片免费观看的视频| 免费在线观看成人毛片| av在线蜜桃| 免费搜索国产男女视频| 无限看片的www在线观看| 亚洲精品国产精品久久久不卡| xxx96com| 国产精品久久久人人做人人爽| 欧美中文日本在线观看视频| 欧美+亚洲+日韩+国产| 国产欧美日韩一区二区精品| 日本成人三级电影网站| 亚洲精品中文字幕一二三四区| 亚洲av成人一区二区三| 久久久水蜜桃国产精品网| 一本精品99久久精品77| 在线观看一区二区三区| 色视频www国产| 亚洲 欧美 日韩 在线 免费| 99国产精品一区二区蜜桃av| 欧美乱色亚洲激情| 亚洲狠狠婷婷综合久久图片| 成人一区二区视频在线观看| 久久久久久久久久黄片| 欧美大码av| 国产伦精品一区二区三区视频9 | 最近最新中文字幕大全免费视频| 久久精品国产综合久久久| 国产av不卡久久| 精品久久久久久久久久免费视频| 国产免费av片在线观看野外av| 99久久综合精品五月天人人| 日本与韩国留学比较| 无人区码免费观看不卡| av在线蜜桃| 国产精品熟女久久久久浪| 国产精品一区二区在线观看99 | 久久婷婷人人爽人人干人人爱| 又爽又黄无遮挡网站| 欧美又色又爽又黄视频| 久99久视频精品免费| 久久久亚洲精品成人影院| 精品欧美国产一区二区三| 亚洲电影在线观看av| 亚洲高清免费不卡视频| 成年版毛片免费区| 两个人视频免费观看高清| 日本熟妇午夜| 搡老妇女老女人老熟妇| 国产精品不卡视频一区二区| 综合色av麻豆| 看片在线看免费视频| 亚洲av福利一区| 亚洲人成网站高清观看| 爱豆传媒免费全集在线观看| 国产又黄又爽又无遮挡在线| 丰满人妻一区二区三区视频av| 内地一区二区视频在线| 精品久久久久久久久亚洲| 欧美成人精品欧美一级黄| www日本黄色视频网| 国产91av在线免费观看| eeuss影院久久| 久久久久久久国产电影| 国内揄拍国产精品人妻在线| 亚洲不卡免费看| 日韩精品有码人妻一区| 亚洲国产成人一精品久久久| 黄片无遮挡物在线观看| 久久久国产成人精品二区| 免费观看a级毛片全部| 欧美成人精品欧美一级黄| 在线观看一区二区三区| 欧美另类亚洲清纯唯美| 国产精品av视频在线免费观看| 免费看av在线观看网站| 亚洲成人中文字幕在线播放| 国产真实乱freesex| av在线蜜桃| 国产麻豆成人av免费视频| 男女啪啪激烈高潮av片| 久99久视频精品免费| 久久精品人妻少妇| 能在线免费观看的黄片| 午夜福利高清视频| 国产亚洲精品久久久com| 亚洲第一区二区三区不卡| 2021少妇久久久久久久久久久| 亚洲av日韩在线播放| 国产精品久久久久久精品电影小说 | 国产成人精品一,二区| 丰满人妻一区二区三区视频av| 99热这里只有是精品50| 国产亚洲91精品色在线| 成人午夜精彩视频在线观看| av又黄又爽大尺度在线免费看 | 天天一区二区日本电影三级| 69人妻影院| 少妇熟女aⅴ在线视频| 91精品伊人久久大香线蕉| av天堂中文字幕网| 午夜福利视频1000在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品国产av成人精品| 大话2 男鬼变身卡| 精品人妻熟女av久视频| 又粗又爽又猛毛片免费看| 狂野欧美白嫩少妇大欣赏| 欧美又色又爽又黄视频| 女人被狂操c到高潮| 免费观看a级毛片全部| 亚洲不卡免费看| 国内揄拍国产精品人妻在线| 老女人水多毛片| 国产国拍精品亚洲av在线观看| 国产精品人妻久久久久久| 国产黄色小视频在线观看| 女人久久www免费人成看片 | 亚洲成色77777| 美女cb高潮喷水在线观看| 我的老师免费观看完整版| 久久精品夜色国产| 黄片无遮挡物在线观看| 国产91av在线免费观看| 日日撸夜夜添| 熟女电影av网| 联通29元200g的流量卡| 我的女老师完整版在线观看| videos熟女内射| 在线免费十八禁| 久久久精品94久久精品| 小蜜桃在线观看免费完整版高清| 99九九线精品视频在线观看视频| 特级一级黄色大片| 女人十人毛片免费观看3o分钟| 床上黄色一级片| 欧美潮喷喷水| 在线观看美女被高潮喷水网站| 欧美激情国产日韩精品一区| 亚洲婷婷狠狠爱综合网| 国产精品一区二区性色av| 久久人人爽人人片av| 久久国产乱子免费精品| av黄色大香蕉|