• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resistance fluctuations in superconducting single crystals studied by low-frequency noise spectroscopy?

    2021-05-06 08:55:30HaiZi子海YuanYao姚湲MingChongHe何明沖DiKe可迪HongXingZhan詹紅星YuQingZhao趙宇清HaiHuWen聞海虎andCongRen任聰
    Chinese Physics B 2021年4期
    關鍵詞:紅星

    Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明沖), Di Ke(可迪), Hong-Xing Zhan(詹紅星),Yu-Qing Zhao(趙宇清), Hai-Hu Wen(聞?;?, and Cong Ren(任聰),?

    1Physics Department,School of Physics and Astronomy,Yunnan University,Kunming 50500,China

    2Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Science,Beijing 100190,China

    3Physics Department,Nanjing University,Nanjing 210093,China

    Keywords: KxFe2?ySe2,phase separation,noise and chaos,percolation

    1. Introduction

    Correlated electron systems have been an important research area in condensed matter physics. In these materials,the competition or/and coexistence of correlated states, such as metallic,insulating,magnetic,and superconducting phases,quite often occurs, leading to a rich phase diagram with unconventional ordering phenomena. In many cases this results in an intrinsic tendency to electronic phase separation.[1–4]For oxide-based materials, nanoscale inhomogeneous electronic states include dopant-driven spin or/and charge density stripes or spatial variations of the superconducting gap in high-Tccuprates,[5–8]or the mixed-valence phase separations in manganese oxides.[9,10]Respectively, these effects together with associated percolation phenomena are essential ingredient for the understanding of the unconventional superconductivity or the unusually colossal magnetoresistance.[11–13]

    Resistance fluctuations are sensitive to the degree of the phase orders of the systems under investigation,and the fluctuation spectroscopy has been used as a powerful method to investigate the intrinsic dynamics of carriers of a large variety of magnetic,semiconducting,and metallic/superconducting materials, in particular, systems close to a metal–insulator transition (MIT) or the percolation limit. In this work we provide experimental insight to the effect of iron-vacancy order on the transport properties by probing low-frequency resistance fluctuations in superconducting KxFe2?ySe2single crystals. Our result reveals the percolative nature of both normal state and superconducting transition regimes for such AFM insulator/superconductor mixed compound.

    2. Experiment

    Fig.1.(a)Back-scattered electron images of SEM measurements on the cleaved surface of a K0.76Fe1.71Se2 crystal(SMP#1). (b)Temperature dependence of the resistance of SMP#1. The dotted red curve is the fit to the R–T data in high-T regime,yielding a thermally activated energy gap of 38 meV,see text.

    Single crystals of KxFe2?ySe2were grown with the Bridgman technique following a quenching process. By this quenching process, the resulting crystals contain different iron-vacancy domain structures which depends on the quenching temperatures, although they have the same stoichiometry(as determined by an inductively coupled plasma)and the superconducting phase 17%–20%in volume,as described in detail in Ref.[32]. We choose crystal K0.76Fe1.71Se2which was quenched at 473 K as SMP#1 for our study. The sample is highly inhomogeneous in chemical stiochiometry on a submicron length scale. It seems that the minority phase, identified as a conducting component, is in an ordered state in orientation in the matrix of the majority phase, as shown by the back-scattered electron images of SEM measurements in Fig.1(a). Figure 1(b)shows the temperature T dependence of the resistance(resistivity)R of K0.76Fe1.71Se2in the whole T region. A pronounced hump in R following an insulator-tometal transition (MIT) occurs at T =120 K with an activation energy of Eg=38 meV,similar to previous report.[17,18]The MIT is rather broad due to the underlying inhomogeneity of the coexistence region. Upon further cooling, the sample undergoes a superconducting transition at the onset temperature of 31.4 K within ?Tc= 2.7 K between the Ts of the onset and zero-R. The residual resistance(resistivity)is quite high (400 m?·cm) comparing with those of other iron-based superconductors.[33]

    Fig.2. (a)Typical voltage noise spectrum at various sense current I and T =40 K for SMP#1. The colored solid lines are the fits to the data in log–log plot to display the nature of the low frequency 1/fα-type noise. (b)Voltage noise spectrum SV at f =1 Hz as a function of sense current I. The red solid line is the log–log linear fitting to display the relationship of SV ∝I2.

    To measure the resistance noise,the crystals were cleaved and peeled using scotch tape into a dimension of 1.5×0.5×0.01 mm3with the thinnest side along c-axis.The electric contacts were made quickly using silver paste wiring gold wires(16 μm in diameter). Noise and voltage measurements were performed simultaneously by the standard four-probe method on a Quantum Design physical property measurement system with temperature stability of 0.01%. The sense current was provided by a 9-V battery and a series of metal-film resistors with resistance a factor of 500–1000 higher than the sample resistance. The voltage V across the sample was fed into a battery-powered low-noise preamplifier (SR560) with a gain of 100, and the amplified output was processed using a dynamic signal analyzer(HP35660A)to obtain the voltage power spectral density(PSD).In all cases,a zero-current background spectrum was subtracted to obtain the voltage power spectral density SV(f,T), the portion of S(f,T) due to fluctuations in resistance. As shown in Fig.2(a), SV(f,T)shows a typical 1/fα-like noise spectrum in low frequency with α close to unit below 100 Hz in the sense currents. The noise magnitude at f =1 Hz strictly follows a quadratic law of SV(I,f =1 Hz)∝I2checked at several Ts, as shown in Fig.2(b). This current-dependent noise is an experimentally important result as it confirms that the noise obtained is intrinsic to the samples under investigation.

    3. Results and discussion

    Figure 3 shows the main results of the voltage (resistance) fluctuations in SMP#1. The typical raw data of voltage spectral density SVof generic 1/fα-type at selected Ts are shown in Fig.3(a)in the frequency domain of 0.625 Hz< f <100 Hz. By log–log fitting as shown in Fig.3(a)together with the simultaneously measured V, two parameters, the normalized resistance noise SR/R2≡SV/V2at 1 Hz and the exponent α, are extracted as a function of T, and the results presented in Figs.3(b)and 3(c),respectively. It is found that the normalized resistance noise power SR/R2peaks at Tp≈100 K,about 20 K below the corresponding resistance hump (~122 K).Based on a generalized activation fluctuation model originally proposed by Dutta,Dimon,and Horn(DDH),the 1/fαnoise spectrum is simply deduced from an integration of the Lorenzian spectra over the distribution of the activation energies for more and less conductive phases.[34]The α exponent of the 1/fαspectral density and the temperature dependence of the noise are related by[34–36]

    with kBthe Boltzmann constant. This means,in our case,that the 1/fαnoise we measure between 0.1 Hz and 100 Hz and 40 K and 300 K arises from the transition energies between 0.09 eV and 0.6 eV, indicating a highly inhomogeneous energy distribution configuration.

    Fig.3. (a)Typical voltage noise spectrum at various Ts for SMP#1. The colored solid lines are the fits to the data in log–log plot to display the nature of the low frequency 1/fα-type noise. (b)Normalized resistance noise SR/R2 at 1 Hz and resistance R as functions of T. (c) The corresponding frequency exponent of the 1/fα noise as a function of temperature, α(T).Circles are the values extracted from the fits to the individual spectra at different temperatures, as in (a). The red solid line is the best fit to the α(T)data from the data of SV(f =1 Hz,T),see text.

    A feature in SR/R2of the present samples is that in the superconducting transition region, as illustrated in Fig.3(b),the magnitude of the resistance noise shows a narrow plateau at Tonset,then a substantial rise follows with decreasing T. We have measured 4 crystals from the same patch, the noise behaviors are almost identical. The steep rise in SR/R2at Tonsethas also been observed for granular superconductors,[37]high-Tc-cuprates,[38,39]and organic superconductors,[40]and is interpreted as a result of the percolative nature of the superconducting transition in these systems. In general, for homogeneous superconducting transitions, one expects small fluctuations in the resistance with T decrease, since more quasiparticles condense into cooper pairs leading to a less noisy volume in bulk. In contrast,for inhomogeneous superconductors,large fluctuations in the resistance in the transition regime are expected, because in strongly disordered conductors, the resistance fluctuations are determined not by the entire volume of the conductor but by an essentially smaller volume,leading to a large noise level.[41,42]In other words, strongly disordered superconductors exhibit an extremely enhanced resistance noise due to the strongly nonuniform critical current density and electric field distribution confined to narrow paths,forming a normal metal(insulator)-superconductor Josephson junction-like network. To substantiate this percolative picture for the present samples,we study the nature of the resistance fluctuations in more details in the critical superconducting transition regime. The percolation theory has an important application for the real disordered systems that the relative resistance noise SR/R2scales with resistance by a power-law as[39,42]

    where lrsis the resistor–superconductor network scaling exponent which is related to the index of percolative conduction path. In our case of SMP#1, such scaling law expressed in Eq.(2)is illustrated in Fig.4 as we tune R through changing T. In Fig.4, SR/R2scales with R excellently with lrs~=1.38±0.06 in T-domain as R drops to 20%of the normalstate resistance,details in T-domain are shown in the inset of Fig.4.

    Fig.4. Scaling of the normalized resistance noise SR/R2 versus the resistance R of SMP#1. The red solid line is the log–log fitting line based on Eq.(2). Inset: normalized resistance noise SR/R2 at f =1 Hz(red solid dots)and resistance R(black solid dots)as functions of T in the vicinity to the superconducting fluctuation region.

    For a comparison, we have performed isothermal resistance noise measurements under magnetic field in percolative regime (Fig.5(a)). The results are shown in the inset of Fig.5(b)with T =29.6 K.By applying H to tune R from the normal-state at H = 6.5 T to the superconducting transition regime of H =0, the corresponding resistance noise level increases by more than one order of magnitude from H=2 T to H =0,as expected according to the percolation theory. Similarly,SR/R2scales with R rather well with lrs~=1.48±0.04,as shown in Fig.5(b). Considering that random magnetic flux motion in a superconducting cluster is one of the sources of resistance noise when H is applied, the two scaling exponents lrsin T-domain and H-domain are highly self-consistent.In the existing percolation models accounting for the resistance noise behavior,Kiss et al. predicted that at a given current the number of Josephson junctions in the superconductive state fluctuates. It is equivalent to fluctuations δ p(t) of the portion p of short-circuited resistors for a normal–metal–superconductor mixture. Taking account of the fluctuations in p, the noise exponent lrs~=2.74 differs from lrs~=0.9±0.32 of the“classical”three-dimensional(3D)random percolation model in which the noise is generated only by fluctuations of the non-short-circuited normal resistors.[43]However, our result of lrs~=1.4 in K0.76Fe1.71Se2is quite different from those of the p-fluctuation or classical 3D random percolation models. From microstructure point of view, we suggest that the new noise exponent in K0.76Fe1.71Se2is correlated to the formation of an orientation-ordered rather than random minor superconducting phase 122 in the matrix of the AFM insulating phase 245.

    Fig.5. (a)Typical voltage noise spectrum under various magnetic field H and T =29.6 K for SMP#1. The colored solid lines are the fits to the data in log–log plot to display the nature of the low frequency 1/fαtype noise.(b)Normalized resistance noise spectrum SR/R2 at f =1 Hz as a function of the resistance R in the vicinity to the superconducting fluctuation region.The red solid line is the scaling line based on Eq.(2).Inset: normalized resistance noise SR/R2 at f =1 Hz (red solid dots)and resistance R (black solid dots) as functions of T in the vicinity to the superconducting fluctuation region(T =29.6 K).

    Fig.6.(a)The T-dependence of resistance of SMP#2(K0.76Fe1.70Se2).Inset: typical SEM images of the microstructure of SMP#2. (b)Normalized resistance noise SR/R2 at f =1 Hz as a function of T for SMP#2. Arrows indicate the onset of the superconductive transition in R at low-T and a peak in normalized resistance noise at high-T.

    To verify the effect of microstructure of iron vacancy order on the percolative process in KxFe2?ySe2, we measured the resistance noise of another superconducting K0.76Fe1.70Se2(SMP#2)crystal.It is noted that this crystal has the same material composition with SMP#1 but with a different quench temperature of 673 K (above the AFM ordering temperature~550 K,leading to a different iron vacancy-order state(inset of Fig.6(a)).[32]From a comparison in Fig.6,the effect of the iron vacancies on both normal and superconducting states can be seen clearly by a higher T of 210 K for resistance hump,one order of magnitude lower residue resistivity,an enhanced Tonsetof 32.4 K,and a narrower transition region ?Tc=0.9 K[Fig.6(b)]. These results imply a larger metallic phase in SMP#2. Correspondingly, the magnitude of the resistance noise shown in Fig.6(b) is reduced comparing with that of SMP#1 by a factor of 2–5 at high Ts. It is interesting to note a similar peak in SR/R2at T ≈100 K,indicating a characteristic energy distribution for the insulator–metal crossover with that of SMP#1. However, in the superconducting transition region the level of SR/R2is greatly suppressed by an order of magnitude with decreasing T, in strong contrast to the case of SMP#1. In phase separation scenario, this strongly suppressed resistance noise indicates the improvement of the Josephson tunnel-junction network,suggesting a possible occurrence of geometrical phase transition for conduction channels,similar to the case of granular superconductors.[43]

    4. Summary

    We performed low frequency resistance fluctuation spectroscopy measurement on several superconducting KxFe2?ySe2single crystals. A resistance noise peak is observed corresponding to the well-observed resistance hump.Based on a generalized DDH model the resistance noise peak together with the resistance hump is interpreted as insulator–metal transition with a characteristic transition energy about 0.1–0.6 eV. We find evidence of a Josephson junction-like network in the superconducting transition region, and the resistance noise power scales with resistance R excellently as SR/R2∝R?lrswith the noise exponent lrs≈1.4. With improved microstructure of iron vacancy order to enhance the superconductivity of KxFe2?ySe2crystals,the resistance fluctuations are greatly suppressed due to the establishment of a much effective conduction/superconducting network.

    猜你喜歡
    紅星
    郭紅星:扶危濟困終不悔
    華人時刊(2023年1期)2023-03-14 06:43:38
    友善紅星小隊成長記
    少先隊活動(2021年3期)2021-12-04 13:08:26
    紅星照耀下的湘鄂贛蘇區(qū)
    紅星花鳳蝶
    紅星照耀中國(節(jié)選4)
    紅星照耀中國(節(jié)選3)
    紅星照耀中國(節(jié)選1)
    紅星照我去戰(zhàn)斗
    閃閃的《紅星》
    傳媒評論(2017年4期)2017-07-10 09:22:56
    長征中的《紅星》報
    久久精品久久久久久久性| 丝袜在线中文字幕| 黄网站色视频无遮挡免费观看| 下体分泌物呈黄色| av电影中文网址| 无限看片的www在线观看| 久久人人97超碰香蕉20202| 国产又色又爽无遮挡免| 18在线观看网站| 亚洲国产欧美在线一区| 99国产精品一区二区三区| 亚洲 国产 在线| 中文字幕人妻丝袜一区二区| 免费观看a级毛片全部| 国产视频首页在线观看| 中文乱码字字幕精品一区二区三区| 极品少妇高潮喷水抽搐| 欧美日韩亚洲综合一区二区三区_| 亚洲熟女精品中文字幕| 亚洲精品av麻豆狂野| 精品国产超薄肉色丝袜足j| 80岁老熟妇乱子伦牲交| 这个男人来自地球电影免费观看| 亚洲国产中文字幕在线视频| 一边摸一边做爽爽视频免费| 亚洲视频免费观看视频| 男人操女人黄网站| 国产1区2区3区精品| 国产精品一二三区在线看| 考比视频在线观看| 嫁个100分男人电影在线观看 | 久久毛片免费看一区二区三区| 精品免费久久久久久久清纯 | 午夜福利乱码中文字幕| 这个男人来自地球电影免费观看| 校园人妻丝袜中文字幕| 激情视频va一区二区三区| 赤兔流量卡办理| av网站免费在线观看视频| 色综合欧美亚洲国产小说| 夜夜骑夜夜射夜夜干| 亚洲精品一区蜜桃| 久久人妻熟女aⅴ| 日本vs欧美在线观看视频| 黄色毛片三级朝国网站| 黑人巨大精品欧美一区二区蜜桃| 叶爱在线成人免费视频播放| 精品欧美一区二区三区在线| 久热爱精品视频在线9| 国产主播在线观看一区二区 | 欧美日韩黄片免| a级片在线免费高清观看视频| 久久免费观看电影| 人人澡人人妻人| 亚洲中文字幕日韩| 人人妻人人爽人人添夜夜欢视频| 国产欧美日韩综合在线一区二区| 精品久久久精品久久久| 天天影视国产精品| 男女边摸边吃奶| av一本久久久久| 下体分泌物呈黄色| 国产精品二区激情视频| 两性夫妻黄色片| 青春草亚洲视频在线观看| 国产精品99久久99久久久不卡| 久久久久国产一级毛片高清牌| 欧美日韩视频高清一区二区三区二| 亚洲成人免费电影在线观看 | 热re99久久国产66热| 18禁观看日本| 你懂的网址亚洲精品在线观看| av片东京热男人的天堂| 日韩免费高清中文字幕av| 亚洲精品一区蜜桃| 人成视频在线观看免费观看| 国产精品三级大全| 999精品在线视频| 日韩,欧美,国产一区二区三区| 成人手机av| 人人澡人人妻人| 丝袜在线中文字幕| 老司机影院毛片| 老司机午夜十八禁免费视频| 国产精品熟女久久久久浪| 国产免费又黄又爽又色| 又大又爽又粗| 精品一区二区三区av网在线观看 | 一级毛片女人18水好多 | 在线av久久热| 欧美日韩精品网址| 欧美激情 高清一区二区三区| 亚洲欧美精品自产自拍| 久久影院123| 亚洲专区国产一区二区| 国产欧美亚洲国产| 国产精品亚洲av一区麻豆| 亚洲自偷自拍图片 自拍| 免费黄频网站在线观看国产| 亚洲精品日韩在线中文字幕| 国产av国产精品国产| 久久久久久久国产电影| 精品免费久久久久久久清纯 | 午夜免费男女啪啪视频观看| 亚洲天堂av无毛| 国产av国产精品国产| 黑人巨大精品欧美一区二区蜜桃| 中文字幕人妻丝袜制服| 国产成人啪精品午夜网站| 精品少妇一区二区三区视频日本电影| 一二三四社区在线视频社区8| 69精品国产乱码久久久| 国产免费视频播放在线视频| 免费少妇av软件| 美女大奶头黄色视频| 久久ye,这里只有精品| 国产精品一二三区在线看| 精品人妻熟女毛片av久久网站| 免费在线观看黄色视频的| 久久 成人 亚洲| 亚洲av在线观看美女高潮| 精品久久久久久久毛片微露脸 | 成人影院久久| 天天躁夜夜躁狠狠躁躁| 男女免费视频国产| 色视频在线一区二区三区| 国产欧美日韩一区二区三区在线| 亚洲人成77777在线视频| 成人国产av品久久久| √禁漫天堂资源中文www| 亚洲欧美日韩另类电影网站| 在线精品无人区一区二区三| 精品一区二区三区四区五区乱码 | 看十八女毛片水多多多| 国产精品亚洲av一区麻豆| 丝袜脚勾引网站| 亚洲视频免费观看视频| 日韩一卡2卡3卡4卡2021年| 又黄又粗又硬又大视频| 欧美黄色片欧美黄色片| 国产97色在线日韩免费| 亚洲欧美中文字幕日韩二区| 老汉色av国产亚洲站长工具| 亚洲精品乱久久久久久| 啦啦啦啦在线视频资源| 久久女婷五月综合色啪小说| 亚洲精品国产色婷婷电影| 亚洲精品在线美女| 色94色欧美一区二区| 可以免费在线观看a视频的电影网站| 亚洲欧美精品综合一区二区三区| 蜜桃在线观看..| 美女主播在线视频| 9热在线视频观看99| 欧美老熟妇乱子伦牲交| 精品国产一区二区久久| 99国产精品一区二区三区| 久久天堂一区二区三区四区| 少妇人妻久久综合中文| 亚洲五月色婷婷综合| 一二三四社区在线视频社区8| 少妇人妻久久综合中文| 建设人人有责人人尽责人人享有的| 五月开心婷婷网| 一本色道久久久久久精品综合| 97人妻天天添夜夜摸| 国产精品二区激情视频| av网站在线播放免费| 久久久久久免费高清国产稀缺| 精品久久久久久久毛片微露脸 | 校园人妻丝袜中文字幕| avwww免费| 男人操女人黄网站| 欧美日韩av久久| 国产成人一区二区在线| xxx大片免费视频| 国产视频一区二区在线看| 国产在线免费精品| 亚洲欧洲日产国产| 亚洲图色成人| 日韩大码丰满熟妇| 一本久久精品| 精品人妻熟女毛片av久久网站| 成人国语在线视频| 超碰成人久久| 一级黄色大片毛片| 日本vs欧美在线观看视频| 男女高潮啪啪啪动态图| 精品卡一卡二卡四卡免费| 亚洲国产成人一精品久久久| 国产一卡二卡三卡精品| 国产成人精品无人区| 国产97色在线日韩免费| 国产亚洲午夜精品一区二区久久| 精品第一国产精品| 国产精品久久久久久精品古装| 人体艺术视频欧美日本| 捣出白浆h1v1| 日本猛色少妇xxxxx猛交久久| 日韩中文字幕欧美一区二区 | 人人澡人人妻人| 免费黄频网站在线观看国产| 99精品久久久久人妻精品| 老司机影院成人| 国产成人一区二区在线| 免费久久久久久久精品成人欧美视频| 精品人妻1区二区| 亚洲精品自拍成人| 最近手机中文字幕大全| 成年人免费黄色播放视频| 中文精品一卡2卡3卡4更新| 黄网站色视频无遮挡免费观看| 精品久久久久久久毛片微露脸 | 一区二区三区四区激情视频| 国产又色又爽无遮挡免| 成人三级做爰电影| 999久久久国产精品视频| 男女下面插进去视频免费观看| 人人澡人人妻人| 天天躁狠狠躁夜夜躁狠狠躁| av福利片在线| 欧美精品亚洲一区二区| 视频区欧美日本亚洲| 国产亚洲午夜精品一区二区久久| 丝袜喷水一区| 18禁黄网站禁片午夜丰满| 手机成人av网站| www.av在线官网国产| 免费久久久久久久精品成人欧美视频| 丁香六月天网| 国产精品成人在线| 亚洲欧美中文字幕日韩二区| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费高清a一片| 久久精品aⅴ一区二区三区四区| 亚洲欧洲国产日韩| 欧美亚洲日本最大视频资源| 最近最新中文字幕大全免费视频 | 最近最新中文字幕大全免费视频 | 亚洲国产精品一区二区三区在线| 免费一级毛片在线播放高清视频 | 国产一区有黄有色的免费视频| 久久性视频一级片| 一级黄色大片毛片| 纵有疾风起免费观看全集完整版| 精品国产国语对白av| 91麻豆精品激情在线观看国产 | 免费日韩欧美在线观看| 精品久久久久久久毛片微露脸 | 国语对白做爰xxxⅹ性视频网站| 欧美激情 高清一区二区三区| 少妇的丰满在线观看| 老司机靠b影院| 欧美在线一区亚洲| 久久精品亚洲熟妇少妇任你| 黑丝袜美女国产一区| 中国国产av一级| 无遮挡黄片免费观看| 午夜av观看不卡| 女性被躁到高潮视频| 色94色欧美一区二区| 两个人看的免费小视频| 欧美黑人精品巨大| 菩萨蛮人人尽说江南好唐韦庄| 性色av一级| 国产成人精品久久久久久| 久久国产亚洲av麻豆专区| 另类亚洲欧美激情| 国产成人啪精品午夜网站| 极品少妇高潮喷水抽搐| 日本wwww免费看| 热re99久久精品国产66热6| 亚洲七黄色美女视频| 国精品久久久久久国模美| 久久久精品免费免费高清| 一本—道久久a久久精品蜜桃钙片| 亚洲精品中文字幕在线视频| 欧美亚洲 丝袜 人妻 在线| 2021少妇久久久久久久久久久| 亚洲精品美女久久av网站| √禁漫天堂资源中文www| 在线观看人妻少妇| 午夜老司机福利片| 美女视频免费永久观看网站| 国产精品国产三级专区第一集| 不卡av一区二区三区| 日韩熟女老妇一区二区性免费视频| 成人影院久久| 80岁老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 亚洲图色成人| 一区二区av电影网| 成人国产一区最新在线观看 | 新久久久久国产一级毛片| 观看av在线不卡| 侵犯人妻中文字幕一二三四区| 久久精品国产亚洲av高清一级| 丝袜美足系列| 五月开心婷婷网| 精品一区二区三区av网在线观看 | 欧美成人午夜精品| 亚洲激情五月婷婷啪啪| 亚洲欧美精品综合一区二区三区| 美女大奶头黄色视频| 欧美人与性动交α欧美软件| 亚洲九九香蕉| 精品国产国语对白av| 黄色一级大片看看| 亚洲色图综合在线观看| 国产在线视频一区二区| 国产成人av激情在线播放| 赤兔流量卡办理| 91麻豆av在线| 午夜影院在线不卡| 一本—道久久a久久精品蜜桃钙片| 日韩制服丝袜自拍偷拍| 18禁黄网站禁片午夜丰满| 婷婷成人精品国产| 国产精品一国产av| 亚洲三区欧美一区| 青草久久国产| 建设人人有责人人尽责人人享有的| 日韩人妻精品一区2区三区| 热99国产精品久久久久久7| 国产成人精品在线电影| 精品卡一卡二卡四卡免费| 国产三级黄色录像| 中文字幕av电影在线播放| 午夜福利,免费看| 伦理电影免费视频| 免费看不卡的av| 国产男女内射视频| 成年动漫av网址| 精品久久蜜臀av无| 国产真人三级小视频在线观看| 欧美黄色淫秽网站| 在线观看人妻少妇| 日韩中文字幕视频在线看片| 欧美精品高潮呻吟av久久| 两人在一起打扑克的视频| 成人国产一区最新在线观看 | 美女午夜性视频免费| e午夜精品久久久久久久| 99久久人妻综合| 中文字幕人妻熟女乱码| 18禁观看日本| 日韩制服骚丝袜av| 极品少妇高潮喷水抽搐| 国产成人欧美在线观看 | 亚洲精品国产色婷婷电影| 午夜福利乱码中文字幕| 丰满人妻熟妇乱又伦精品不卡| 午夜福利乱码中文字幕| 亚洲精品国产色婷婷电影| 国产av一区二区精品久久| 国产激情久久老熟女| 男女无遮挡免费网站观看| 久久久久久亚洲精品国产蜜桃av| 韩国精品一区二区三区| 两人在一起打扑克的视频| 日本五十路高清| 日本wwww免费看| 亚洲av成人不卡在线观看播放网 | 大片免费播放器 马上看| 成人免费观看视频高清| 亚洲中文日韩欧美视频| 亚洲人成77777在线视频| 丝袜美足系列| 你懂的网址亚洲精品在线观看| av电影中文网址| 欧美激情高清一区二区三区| 国产精品久久久久成人av| 国产精品av久久久久免费| 国语对白做爰xxxⅹ性视频网站| 美女脱内裤让男人舔精品视频| 亚洲欧美一区二区三区久久| 天堂中文最新版在线下载| 国产精品久久久久成人av| 欧美xxⅹ黑人| 美女国产高潮福利片在线看| 视频在线观看一区二区三区| 亚洲三区欧美一区| 日本午夜av视频| 国产欧美日韩一区二区三区在线| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品国产精品| 亚洲精品乱久久久久久| 精品一品国产午夜福利视频| 男女国产视频网站| 久久av网站| 天堂8中文在线网| 高清视频免费观看一区二区| 各种免费的搞黄视频| tube8黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品香港三级国产av潘金莲 | 岛国毛片在线播放| 色播在线永久视频| 天堂中文最新版在线下载| 女性被躁到高潮视频| 欧美精品人与动牲交sv欧美| 精品少妇一区二区三区视频日本电影| 一级,二级,三级黄色视频| 国产视频一区二区在线看| 久久性视频一级片| 天天躁夜夜躁狠狠躁躁| av片东京热男人的天堂| 美女中出高潮动态图| 亚洲欧洲日产国产| 人人妻人人爽人人添夜夜欢视频| 91精品国产国语对白视频| 成人亚洲精品一区在线观看| 夜夜骑夜夜射夜夜干| 高清黄色对白视频在线免费看| 午夜激情av网站| 亚洲精品日韩在线中文字幕| 国产成人欧美| 国产精品秋霞免费鲁丝片| 人人妻,人人澡人人爽秒播 | 亚洲伊人色综图| 国产精品亚洲av一区麻豆| 精品一区二区三卡| av一本久久久久| 一本一本久久a久久精品综合妖精| 午夜免费鲁丝| 色94色欧美一区二区| 国语对白做爰xxxⅹ性视频网站| 免费观看人在逋| 一边摸一边抽搐一进一出视频| 一级,二级,三级黄色视频| 国产又爽黄色视频| 国产精品久久久久久精品古装| 免费女性裸体啪啪无遮挡网站| 国产老妇伦熟女老妇高清| 电影成人av| 激情视频va一区二区三区| 美女主播在线视频| 国产亚洲av片在线观看秒播厂| 一级片'在线观看视频| 成人午夜精彩视频在线观看| 两个人看的免费小视频| 色94色欧美一区二区| 高清欧美精品videossex| 大型av网站在线播放| 九色亚洲精品在线播放| 制服诱惑二区| 精品人妻一区二区三区麻豆| av网站在线播放免费| 久久天堂一区二区三区四区| 丁香六月欧美| 精品免费久久久久久久清纯 | 51午夜福利影视在线观看| 久热爱精品视频在线9| 制服诱惑二区| 精品亚洲成a人片在线观看| 婷婷丁香在线五月| 免费在线观看完整版高清| 国精品久久久久久国模美| 欧美日韩亚洲综合一区二区三区_| 下体分泌物呈黄色| 亚洲熟女精品中文字幕| 丁香六月天网| 欧美精品av麻豆av| 成人免费观看视频高清| 亚洲一区中文字幕在线| 国产黄频视频在线观看| 韩国精品一区二区三区| 国产精品免费大片| 中文字幕人妻丝袜一区二区| 美国免费a级毛片| 亚洲av欧美aⅴ国产| 超碰97精品在线观看| 日本wwww免费看| 日韩 欧美 亚洲 中文字幕| 国产精品一区二区在线不卡| 国产三级黄色录像| 国产老妇伦熟女老妇高清| 亚洲五月婷婷丁香| 亚洲av成人不卡在线观看播放网 | 欧美国产精品va在线观看不卡| cao死你这个sao货| 久久久久久免费高清国产稀缺| 精品久久久久久电影网| 日韩精品免费视频一区二区三区| 精品少妇久久久久久888优播| 亚洲av电影在线进入| 我要看黄色一级片免费的| 交换朋友夫妻互换小说| 欧美成人精品欧美一级黄| 在线av久久热| 久久久欧美国产精品| 人人妻人人添人人爽欧美一区卜| 一级毛片黄色毛片免费观看视频| 手机成人av网站| 麻豆国产av国片精品| tube8黄色片| 又粗又硬又长又爽又黄的视频| 宅男免费午夜| 国产99久久九九免费精品| 欧美激情高清一区二区三区| 亚洲五月色婷婷综合| 99香蕉大伊视频| 久久久国产欧美日韩av| 伦理电影免费视频| 90打野战视频偷拍视频| a级毛片黄视频| 一区在线观看完整版| 丝袜喷水一区| www.精华液| 九草在线视频观看| 男人爽女人下面视频在线观看| 后天国语完整版免费观看| 国产日韩欧美亚洲二区| 中国国产av一级| 成人亚洲欧美一区二区av| 777久久人妻少妇嫩草av网站| 欧美人与性动交α欧美精品济南到| 国产精品麻豆人妻色哟哟久久| 久久国产精品人妻蜜桃| 99国产综合亚洲精品| 亚洲五月色婷婷综合| 亚洲国产av新网站| 欧美变态另类bdsm刘玥| 热re99久久国产66热| 老鸭窝网址在线观看| 欧美 日韩 精品 国产| 亚洲综合色网址| 亚洲成av片中文字幕在线观看| 精品久久久精品久久久| 在线观看免费日韩欧美大片| 成人国产一区最新在线观看 | 久久鲁丝午夜福利片| 精品国产国语对白av| 又大又爽又粗| 丁香六月天网| 青青草视频在线视频观看| 中文字幕人妻丝袜制服| 亚洲av综合色区一区| 亚洲精品乱久久久久久| 精品少妇黑人巨大在线播放| 久久精品亚洲熟妇少妇任你| 日本午夜av视频| 久久狼人影院| 丁香六月欧美| 久久天躁狠狠躁夜夜2o2o | 亚洲精品国产一区二区精华液| 久久精品国产亚洲av涩爱| 老司机亚洲免费影院| 午夜av观看不卡| 国产成人欧美在线观看 | 亚洲成人手机| 汤姆久久久久久久影院中文字幕| 丁香六月天网| 老司机亚洲免费影院| 欧美精品一区二区免费开放| 日本欧美视频一区| 日日夜夜操网爽| 男的添女的下面高潮视频| 999久久久国产精品视频| 欧美国产精品一级二级三级| 天天添夜夜摸| 国产日韩欧美视频二区| 七月丁香在线播放| 亚洲久久久国产精品| 不卡av一区二区三区| 亚洲色图 男人天堂 中文字幕| 国产成人系列免费观看| 色视频在线一区二区三区| 国产成人精品无人区| 男人舔女人的私密视频| 国产高清videossex| 老司机影院毛片| 天堂俺去俺来也www色官网| 中文字幕色久视频| 看免费成人av毛片| 老司机在亚洲福利影院| 国产精品秋霞免费鲁丝片| 熟女av电影| 免费日韩欧美在线观看| 18禁黄网站禁片午夜丰满| 免费看不卡的av| 中文字幕精品免费在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品熟女亚洲av麻豆精品| 在线观看免费高清a一片| 视频在线观看一区二区三区| 免费黄频网站在线观看国产| 久久精品久久精品一区二区三区| 天天躁夜夜躁狠狠久久av| 乱人伦中国视频| 黄片播放在线免费| 大话2 男鬼变身卡| 成年av动漫网址| 成人18禁高潮啪啪吃奶动态图| 精品国产乱码久久久久久男人| 婷婷色av中文字幕| www.精华液| 天天添夜夜摸| 亚洲精品在线美女| 777米奇影视久久| 在线天堂中文资源库| a级毛片黄视频| 国产精品秋霞免费鲁丝片| 宅男免费午夜| 欧美 亚洲 国产 日韩一| 日本午夜av视频| 日韩欧美一区视频在线观看| av天堂久久9| 黄色一级大片看看| 一本久久精品| 伊人亚洲综合成人网| 国产精品99久久99久久久不卡| 一区在线观看完整版| 国产日韩欧美亚洲二区| 又粗又硬又长又爽又黄的视频|