• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Implementation of synaptic learning rules by memristors embedded with silver nanoparticles?

    2021-05-06 08:55:30YueNing寧玥YunfengLai賴(lài)云鋒JiandongWan萬(wàn)建棟ShuyingCheng程樹(shù)英QiaoZheng鄭巧andJinlingYu俞金玲
    Chinese Physics B 2021年4期

    Yue Ning(寧玥), Yunfeng Lai(賴(lài)云鋒), Jiandong Wan(萬(wàn)建棟),Shuying Cheng(程樹(shù)英), Qiao Zheng(鄭巧), and Jinling Yu(俞金玲)

    School of Physics and Information Engineering,Fuzhou University,Fuzhou 350108,China

    Keywords: resistive switching,synaptic plasticity,memristor

    1. Introduction

    Due to the drawbacks of processing analog information,computing based on traditional von Neumann architectures is facing challenges in the era of information explosion.[1–4]Human brain has the advantages of low power consumption,high fault tolerance,and large-scale parallel processing ability to be a desirable candidate for processing analog information.[5–8]In a neuronal system, synapses connect neurons with its synaptic plasticity describing connection strength.[9]The improvement of synaptic plasticity will make the system more brain-like, and will further help to simulate complex neural functionalities.[10]Improving synaptic plasticity is thus essential for neuromorphic computing.[11]

    A memristor, holding a sandwiched dielectric medium between electrodes,has a similar structure and functionalities to be an artificial counterpart of a biological synapse.[12–14]Tantalum oxide (TaOx) exhibits good thermal stability, suitable dielectric constant,and excellent resistive switching properties to be regarded as a potential dielectric of the memristorbased artificial synapse.[15,16]An ideal artificial synapse should be able to simulate bio-synapse behaviors as much as possible. Fast processing speed,greater processing capability and desirable linearity of weight change might be welcome to the application of an artificial synapse.[17,18]Presenting synaptic weights with electrical conductance favors the imitation of synaptic behavior. The conductance of a memristor is closely associated with internal defects.[19]Resistive switching mechanism of a memristor is complex and under debate.[20–23]Several techniques have been attempted to modify defects in a memristor.[3,19,24]Adding metal nanoparticles into the dielectric might significantly affect defects in the memristor to modulate its resistive switching behavior,[25–27]suggesting a possible way to improve synaptic behaviors. However,systematic researches on the nanoparticle-modulating synaptic properties of a memristor are still rare. Considering the good electrochemical activity and low-cost,Ag nanoparticles were embedded into the TaOxlayer in this work to study the effects of Ag nanoparticles on resistive switching and synaptic behavior. The physical model was also proposed to understand the improvements in synaptic behavior.

    2. Experimental details

    Figure 1(a) shows a schematic diagram of a biological synapse with a TaOxmemristor as its artificial counterpart. To fabricate the TaOxmemristor, ~15-nm TaOxthin films were firstly sputter-deposited onto a p+-Si bottom electrode (BE).Ultra-thin silver films were then deposited by thermal evaporation followed by 300-?C annealing for 3 min to form Ag nanoparticles (NPs). The morphologies of the Ag NPs covered surface are also shown in the inset of Fig.1(b) with the average Ag NPs diameter ~11 nm. Subsequently, ~15-nm TaOxthin films were deposited on the Ag NPs to complete the deposition of dielectric layer. Finally, the ~100-nm Ti top electrodes (TE) with a diameter of 75 μm were patterned to complete the fabrication of memristors. The TaOxmemristors without Ag NPs were also prepared for comparison.

    The current–voltage (I–V) characteristics of the devices were measured by using a semiconductor parameter analyzer(4200-SCS;Keithley,USA).Synaptic behaviors of the devices were also characterized using the same system with the top electrode as the pre-synapse and the bottom electrode as the post-synapse.

    Fig.1. (a)Schematic diagram of a biological synapse with a TaOx memristor as its artificial counterpart. (b)The morphologies of the annealed Ag/TaOx thin films(inset)with the size distribution of Ag NPs.

    3. Results and discussion

    3.1. Resistive switching

    Resistive switching properties of the devices with and without Ag NPs were shown in Fig.2. Resistance switches from a high resistance state (HRS) to a low resistance state(LRS) to finish a SET process if enough positive bias is applied[Fig.2(a)]. However, it switches from the LRS back to the HRS to complete a RESET process when enough negative bias is applied.

    Fig.2. Resistive switching characteristics of the memristors with and without Ag NPs. (a)I–V curves of the devices. (b)ln(I)–V1/2 fittings for the HRSs of the devices. (c)log(I)–log(V)fitting for the LRS of the device without Ag NPs,the inset shows the ln(I)–V1/2 fitting of the LRS under low voltage region. (d)ln(I/V)–V1/2 fitting for the LRS of the device with Ag NPs, the inset shows the ln(I)–V1/2 fitting of the LRS under low voltage region.

    To understand the conduction mechanism of the devices,we replotted the current as a function of the applied positive voltages,as shown in Figs.2(b)–2(d). As shown in Fig.2(b),the linear fittings of ln(I) versus V1/2imply a Schottkyemission driven HRS conduction for the two devices.[22]In this case,electrons have to overcome the barrier at the Si/TaOxinterface before getting into the TaOx, and they finally reach the Ti electrode to complete transport. We,therefore,can observe a Schottky-emission driven conduction in the HRS. As the increasing electrical field produces more traps in the TaOxto complete SET process,the device switches from an HRS to a LRS,exhibiting a space-charge-limited conduction(SCLC)for the memristor without Ag NPs due to three portions with different slopes (~1, ~2, and ~3) shown in Fig.2(c).[28]However,the embedment of Ag NPs significantly changes the conduction mechanism of the LRS device. Figure 2(d)shows a well linear fitting of ln(I/V) versus V1/2, which indicates that Poole–Frenkel emission dominates the conduction of the LRS of the Ag NPs embedded device. We could not deny Schottky-emission driven LRS conduction under low electric field,because the linear fittings of ln(I)versus V1/2in the insets of Figs. 2(c) and 2(d) might suggest Schottky-emission mechanism as well.

    Figure 3 shows the energy diagram of the Ag NPs embedded devices with the parameters extracted from reference.[29]With the application of electric fields on the Ag NPs embedded device,a large number of traps generate to assist electron transport even at the lower voltages as the Ag NPs enhance the surrounding electric fields.[30]As a result, more traps are generated at a lower voltage to facilitate the conduction driven by a Poole–Frenkel emission mechanism instead of an SCLC mechanism.Additionally,the Coulomb potential energy of the bound electrons could be reduced as well to facilitate electron transport.[22]Compared with the current of a device without Ag NPs, the LRS current of a device with Ag NPs slightly increases,which further confirms the enhancement of electric fields by Ag NPs to produce additional traps.

    Fig.3. Energy band diagrams of the Ag NPs embedded devices.

    3.2. Synaptic plasticity and learning

    In a biological system, the changes in synaptic strength can rapidly return to its initial state without sustaining stimulation,which is defined as short-term plasticity,[31]while if the synaptic strength is retained for a few hours or even a lifetime,long-term plasticity is available.[32]Long-term plasticity have been regarded as the basis of learning and memory.[33]Posttetanic potentiation (PTP) characteristics as a kind of shortterm plasticity, which corresponds to the enhancement effection on synaptic transmission efficiency after a series of repeated stimuli,[34]was mimicked by stimulating 10 electric pulses (amplitude=2 V). The currents in response to the 1st and 10th stimulating pulses are marked as I1and I10, respectively. Dependence of current change(?I=I10?I1)on pulse interval is then presented in Fig.4(a). The ?I decreases with the increase of pulse interval,indicating the same tendency for the two devices. However, the ?I margin of the Ag NPs embedded memristor is much larger,suggesting a larger learning strength by Ag NPs. The embedment of Ag NPs might take responsibility for the improvements. The enhanced electric fields by Ag NPs indeed increase the sensitivity of device to stimuli. The same stimuli usually trigger a much greater response for the Ag NPs embedded memristors. However,if the pulse interval extends,the traps excited by the enhanced electric fields might disappear before the arrival of next pulse.As a result,we can observe a greater margin for current modulation to favor a larger learning strength. Spike-timing-dependent plasticity(STDP)is a synaptic learning rule derived from biological Hebbian theory, which reflects the change of synaptic efficacy determined by the timing of the activity of pre- and post-neurons.[31]The synaptic weight changes (?w) can be obtained by modulating the temporal difference(?t)between pre- and post-synaptic spikes. Measurements were repeated three times for statistics. The relationship between ?w and ?t was calculated and the fitting formula is as follows:[35]

    The ?w is defined as (wpost–wpre)/wpre, where the wprerepresents initial conductance and the wpostrefers to the conductance after stimuli. A+/?and τ+/?mean the learning scaling factors and the learning time constants of the exponential functions, respectively. As shown in Fig.4(b), the stimuli of the pulse with width and interval of 20 ms were applied to the TE (pre-synapse) and the BE (post-synapse). When the presynaptic stimuli arrive earlier than the post-synaptic stimuli(?t >0), the synaptic weight is strengthened with the longterm potentiation(LTP).On the contrary,a decrease in synaptic weight would occur with long-term depression (LTD) if?t<0. Shorter temporal intervals lead to larger|?w|for both the potentiation and the depression processes. Ag NPs significantly extend the |?w| margin. The largest |?w| during the LTP process reaches ~150% instead of ~30% for the pure TaOxmemristor.The largest|?w|during the LTD process also increases to ~80%.The embedment of Ag NPs extends learning strength of the memristor,which is consistent with the observations in Fig.4(a). Additionally,both τ+and τ?extracted from the fitting curves slightly decrease, which suggests the embedded Ag NPs accelerate the learning speed of the device.It is known that the embedment of Ag NPs increases the surrounding electric fields even at a low voltage. Consequently,additional traps generate to shorten the distance between them under stimuli with even lower amplitude. Less displacement is required for those traps to reach another conductance state,and the memristor exhibits much faster learning speed.

    Fig.4. Synaptic behaviors of the TaOx memristors with and without Ag NPs. (a)PTP characteristics. The inset shows the pulse scheme and the response current. (b)STDP characteristics. The inset shows the pulse stimuli applied to the pre-and post-synapses. (c)Conductance change of the Ag NPs-embedded memristor after different numbers of stimuli. The inset shows the exciting(blue)and reading(green)pulse schemes.(d)Relationship between the correlation factor C0,relaxation time τ,and exciting pulse number during the transition from STP to LTP.EPSC of our devices without(e)and with(f)Ag NPs at an input presynaptic pulse of 2.3 V at 30 ms.

    Transformation from short-term plasticity(STP)to longterm plasticity(LTP)is essential for the learning and memory process.[36]Different numbers(N)of exciting pulses were applied to the devices to simulate the transformation. As the pulse scheme shown in the inset of Fig.4(c), initial conductance was acquired by a 0.3-V reading pulse, followed by 5-V exciting pulses (width=50 ms, interval=50 ms, and N = 10, 15, 20, 25, 30, or 35) to perform LTP. Once the exciting stimuli were removed, 100 reading pulses (amplitude=0.3 V, width=100 ms, and interval=400 ms) were applied to acquire conductance. The dependence of normalized synaptic weight change on the number of reading pulses are illustrated in Fig.4(c). The decrease in conductance represents the forgetting process,and the Hermann Ebbinghaus’s forgetting curves were fitted to discover the long-term learning ability and forgetting speed. The normalized conductance changes and the forgetting curves were fitted according to C =C0+A·exp(?t/τ),[36,37]where C0and A are the correlation factors. The forgetting amount and forgetting speed decrease with the increase of C0and τ, which actually represent the normalized initial conductance and the relaxation time during the forgetting process, respectively. The C0and τ under different N were extracted and shown in Fig.4(d). The C0and τ show an increasing trend with the increase in exciting pulse number,which indicates the transformation from STP to LTP.The embedment of Ag NPs increases C0and τ of the device, which implies that the Ag NPs can effectively enhance the memory strength of the TaOxmemristor and reduce its forgetting speed.The enhanced electric field by Ag NPs produces additional traps in the TaOxto consolidate the connections in between, which indeed enhances the memory strength to reduce forgetting amount and to slow down forgetting.

    Excitatory postsynaptic current (EPSC) stimulated by presynaptic potential spike is the response current. The EPSC of the devices without and with Ag NPs are respectively shown in Figs.4(e)and 4(f).The energy to complete the spiking event is ~73 nJ for the device without Ag NPs, while the required energy is reduced to be ~1.8 nJ by the embedment of Ag NPs.

    As a necessary functionality of a bio-synapse, the learning rule of the devices was simulated and shown in Fig.5.Pulses are schematically shown in Fig.5(a) with the blue pulses for stimulating the device and the green pulses for reading weight(or conductance)of the device. The weight change was calculated according to ?wlearning=[(It?I0)/I0]×100%,where I0represents the initial current, Itrepresents the current at any time during one learning process. While the forgetting curves were fitted by ?wforgetting=w0+A·exp(?t/τ),[36]in which the w0represents memory capacity, and the τ again represents relaxation time during the forgetting process. As shown in the figures, gradually increased weight changes are available during the learning process. Then the pulses are removed to mimic the forgetting behavior. Memory capacity reaches a stable level after the first forgetting stage. It takes less number (26–30) of pulses to get 100% weight change to complete the second learning stage, indicating an increased learning speed. Meanwhile,memory capability increases further at the second forgetting stage. A tiny number (4–5) of pulses are required to obtain a 100% weight change during the third learning stage. The above observations suggest that the high-efficiency learning modes of experiential learning are successfully implemented. The values of w0and τ are extracted and marked in Fig.5(b)to analyze the role of Ag NPs on learning. Ag NPs have neglectful effects on the w0due to quite similar values. However, Ag NPs remarkably increase the relaxation time from 2.73 s to 29.23 s with 9.7 times increasement during the first forgetting stage. The relaxation time is even extended 14.2 times during the second forgetting stage.Consequently,Ag NPs can consolidate the memory strength of the devices by decreasing forgetting speed, which well agrees with the observations in Fig.4.

    Fig.5. Simulation of learning and forgetting processes of the two devices. (a)Pulse scheme for simulating learning with black pulses for stimulating and green ones for reading. (b)Simulation of learning and forgetting processes.

    3.3. Linearity of conductance modulation

    The long-term characteristics of the devices are also important. The stimulating pulse scheme is schematically depicted in Fig.6(a). The dependence of conductance change on pulse number is shown in Fig.6(b) with the curves fitted by the following formula:[38]

    where G represents device conductance, t represents testing time, a and c are fitting parameters, β is an exponential factor to reflect the degree of deviation from linearity during the conductance modulation process. A small value of β,indicating better linearity, is welcome for the practical applications of the electronic synapse.[38]To further estimate the reproducibility of the devices, the LTP and LTD repeat five times and the acquired β presents in Fig.6(c). The β and its deviation are significantly decreased by Ag NPs during the LTP and LTD, which implies that the embedment of Ag NPs improves not only the linearity of conductance modulation but also reproducibility of the performance. The enhanced electric field by Ag NPs produces additional traps scattering in the TaOxto assist electron transport. Stimuli in smaller amplitude are able to trigger slight displacement of the traps to reach an intermediate conductance state. We could observe small conductance modulations in response to small increase in stimuli amplitude, exhibiting improved conductance linearity for the potentiation and depression processes. Also, additional traps in a large number suppress the effects of individual stochastic movements of traps on performance. Reproducibility of the memristor might be increased as well.

    Fig.6. Conductance modulation processes by stimuli. (a) Potentiating (in blue) and depressing (in red) pulse scheme. (b) Repeated conductance modulation during the LTP and LTD processes for the memristors with and without Ag NPs. (c)Comparison of β during the LTP and LTD processes.

    4. Conclusions

    The Ag NPs-embedded TaOxmemristors have been fabricated with a Poole–Frenkel emission governed conduction in the LRS and a Schottky-emission driven conduction in the HRS.The TaOxmemristors with and without Ag NPs are able to serve as artificial synapses to implement synaptic plasticity,learning and memory functions. The embedded Ag NPs improve synaptic performance of the device with a larger learning strength and faster learning speed. Additionally, the embedded Ag NPs significantly improve the linearity of conductance modulation and reproducibility of the devices. The enhanced electric fields by Ag NPs to produce additional traps are believed to be responsible for the above improvements.

    久久青草综合色| 亚洲av国产av综合av卡| 精品久久久久久久末码| 日本av免费视频播放| 国产免费又黄又爽又色| 在线免费观看不下载黄p国产| 精品久久久久久久久av| av在线观看视频网站免费| 伦精品一区二区三区| 欧美成人午夜免费资源| 干丝袜人妻中文字幕| 国产中年淑女户外野战色| 老司机影院成人| 久久韩国三级中文字幕| 亚洲av电影在线观看一区二区三区| 大片电影免费在线观看免费| 亚洲av.av天堂| av免费观看日本| 自拍偷自拍亚洲精品老妇| 久久婷婷青草| 国产久久久一区二区三区| 日本爱情动作片www.在线观看| 国产精品99久久久久久久久| 中文在线观看免费www的网站| 国产v大片淫在线免费观看| 在现免费观看毛片| 精品少妇久久久久久888优播| 亚洲怡红院男人天堂| 日本vs欧美在线观看视频 | 少妇人妻精品综合一区二区| 亚洲成人手机| 成人18禁高潮啪啪吃奶动态图 | 一边亲一边摸免费视频| 观看av在线不卡| 高清黄色对白视频在线免费看 | 91精品一卡2卡3卡4卡| 熟妇人妻不卡中文字幕| 99热这里只有是精品在线观看| 在现免费观看毛片| 2021少妇久久久久久久久久久| 亚洲综合色惰| 久久av网站| 日韩亚洲欧美综合| 国产精品国产三级国产av玫瑰| 最近中文字幕2019免费版| 久久亚洲国产成人精品v| 精品亚洲成国产av| 三级国产精品片| 亚洲内射少妇av| 久久女婷五月综合色啪小说| 国产乱来视频区| 精品久久国产蜜桃| 国产高清不卡午夜福利| 久久99热6这里只有精品| 成人国产av品久久久| av播播在线观看一区| 亚洲最大成人中文| 亚洲丝袜综合中文字幕| 亚洲精品一区蜜桃| 一级av片app| 日本av手机在线免费观看| 少妇的逼好多水| 国产欧美另类精品又又久久亚洲欧美| 国产精品无大码| 亚洲欧美一区二区三区黑人 | 中文精品一卡2卡3卡4更新| av播播在线观看一区| 免费观看av网站的网址| 一个人看的www免费观看视频| 亚洲久久久国产精品| 国产乱人偷精品视频| 国产亚洲一区二区精品| 久久久久国产精品人妻一区二区| videossex国产| 亚洲av电影在线观看一区二区三区| 青青草视频在线视频观看| 久久久国产一区二区| 亚洲av福利一区| 七月丁香在线播放| 看非洲黑人一级黄片| 精品人妻视频免费看| 久久99精品国语久久久| 汤姆久久久久久久影院中文字幕| 成人毛片60女人毛片免费| 亚洲av日韩在线播放| 老司机影院毛片| 亚洲色图av天堂| 免费黄网站久久成人精品| 成人特级av手机在线观看| 日本黄大片高清| 精品亚洲成国产av| av卡一久久| 欧美日韩精品成人综合77777| 日日摸夜夜添夜夜添av毛片| 韩国av在线不卡| 色哟哟·www| 亚洲熟女精品中文字幕| 色婷婷久久久亚洲欧美| 日日啪夜夜撸| 91精品一卡2卡3卡4卡| av专区在线播放| av专区在线播放| 午夜免费男女啪啪视频观看| 在线播放无遮挡| 免费看不卡的av| 蜜桃在线观看..| 欧美高清成人免费视频www| 亚洲人成网站在线观看播放| 国产淫语在线视频| 最近最新中文字幕大全电影3| 久久婷婷青草| 欧美老熟妇乱子伦牲交| 日韩欧美一区视频在线观看 | 久久人人爽人人片av| 精品久久久久久久末码| 女人十人毛片免费观看3o分钟| 美女xxoo啪啪120秒动态图| 欧美国产精品一级二级三级 | 搡女人真爽免费视频火全软件| 男女下面进入的视频免费午夜| 国产一区二区在线观看日韩| 亚洲精品国产成人久久av| 黄色欧美视频在线观看| av一本久久久久| 亚洲激情五月婷婷啪啪| 永久免费av网站大全| 国产精品久久久久久久电影| 欧美三级亚洲精品| 成人毛片a级毛片在线播放| 国产成人精品福利久久| 成人免费观看视频高清| 大香蕉久久网| 国产男女超爽视频在线观看| 免费观看在线日韩| 成年美女黄网站色视频大全免费 | 久久久久久久久大av| 日韩一本色道免费dvd| 制服丝袜香蕉在线| 永久网站在线| 一个人看的www免费观看视频| 国产精品久久久久久久电影| 五月开心婷婷网| 99视频精品全部免费 在线| .国产精品久久| 看十八女毛片水多多多| 大香蕉久久网| 亚洲欧美精品自产自拍| 日日啪夜夜撸| 街头女战士在线观看网站| 免费观看a级毛片全部| www.色视频.com| 国产国拍精品亚洲av在线观看| 成人18禁高潮啪啪吃奶动态图 | 我要看日韩黄色一级片| 日韩av免费高清视频| 日韩大片免费观看网站| 五月玫瑰六月丁香| 五月玫瑰六月丁香| 国产亚洲午夜精品一区二区久久| 成人国产av品久久久| 少妇精品久久久久久久| 黄色欧美视频在线观看| 欧美激情国产日韩精品一区| 欧美日韩一区二区视频在线观看视频在线| 成人毛片60女人毛片免费| 国产极品天堂在线| 又大又黄又爽视频免费| 亚洲自偷自拍三级| 视频中文字幕在线观看| 春色校园在线视频观看| 99热全是精品| 日日啪夜夜爽| 一级毛片aaaaaa免费看小| 高清视频免费观看一区二区| 久久人妻熟女aⅴ| 亚洲成人中文字幕在线播放| 九色成人免费人妻av| 卡戴珊不雅视频在线播放| 中文在线观看免费www的网站| 成年免费大片在线观看| 国产精品久久久久久久久免| 伊人久久国产一区二区| 国产精品国产av在线观看| 国产男女超爽视频在线观看| 亚洲精品,欧美精品| 中国三级夫妇交换| 一区二区三区四区激情视频| 亚洲精品成人av观看孕妇| 99热这里只有精品一区| 国产欧美日韩精品一区二区| 伊人久久精品亚洲午夜| 成人毛片60女人毛片免费| 国产伦精品一区二区三区视频9| 男女国产视频网站| 91精品国产国语对白视频| 少妇人妻精品综合一区二区| 一级爰片在线观看| 黄色一级大片看看| 国产极品天堂在线| 久久久久久伊人网av| 国产综合精华液| 亚洲精品国产av成人精品| 男人狂女人下面高潮的视频| 成年女人在线观看亚洲视频| .国产精品久久| 国产 一区精品| 日韩av免费高清视频| 国产成人a∨麻豆精品| 久久久久性生活片| 日本欧美视频一区| 久久久久久久久久久免费av| 国内少妇人妻偷人精品xxx网站| 一区二区av电影网| 一级毛片久久久久久久久女| 中文乱码字字幕精品一区二区三区| 欧美高清性xxxxhd video| 国产精品国产av在线观看| 亚洲电影在线观看av| 国产一区二区在线观看日韩| 成人特级av手机在线观看| 日韩免费高清中文字幕av| 内地一区二区视频在线| 日韩在线高清观看一区二区三区| 大陆偷拍与自拍| 亚洲怡红院男人天堂| 久久久久久久精品精品| 少妇 在线观看| 男女无遮挡免费网站观看| 久久久久久久久久久免费av| 国产黄频视频在线观看| 欧美少妇被猛烈插入视频| 中文乱码字字幕精品一区二区三区| 干丝袜人妻中文字幕| 亚洲精品一二三| 91久久精品电影网| 精品国产三级普通话版| 伦理电影免费视频| 国产精品嫩草影院av在线观看| 国产深夜福利视频在线观看| 人人妻人人看人人澡| 国产女主播在线喷水免费视频网站| 日本vs欧美在线观看视频 | 亚洲自偷自拍三级| 国产精品久久久久久av不卡| 香蕉精品网在线| 人人妻人人爽人人添夜夜欢视频 | 国产精品人妻久久久久久| 色网站视频免费| 久久精品久久久久久噜噜老黄| 亚洲av电影在线观看一区二区三区| 在现免费观看毛片| tube8黄色片| av.在线天堂| 久久久久久久久大av| 国产高清国产精品国产三级 | 免费观看av网站的网址| 国产一区二区在线观看日韩| 青青草视频在线视频观看| 免费黄色在线免费观看| 日韩一区二区视频免费看| 亚洲欧美一区二区三区黑人 | 久久久a久久爽久久v久久| 91精品一卡2卡3卡4卡| 男女啪啪激烈高潮av片| 一级片'在线观看视频| 免费观看的影片在线观看| 亚洲图色成人| 岛国毛片在线播放| 成人国产麻豆网| 久久 成人 亚洲| 九九爱精品视频在线观看| 色综合色国产| 草草在线视频免费看| 国产成人a∨麻豆精品| 亚洲不卡免费看| 五月开心婷婷网| 一区二区av电影网| 91久久精品国产一区二区成人| 国产精品蜜桃在线观看| 91狼人影院| 只有这里有精品99| 18禁在线播放成人免费| 建设人人有责人人尽责人人享有的 | 亚洲精品国产色婷婷电影| 99久国产av精品国产电影| 熟妇人妻不卡中文字幕| 久久久久国产网址| 国产真实伦视频高清在线观看| 一级毛片电影观看| 日韩亚洲欧美综合| h视频一区二区三区| 欧美三级亚洲精品| 国产成人免费观看mmmm| 激情 狠狠 欧美| 亚洲va在线va天堂va国产| 久久精品国产a三级三级三级| 亚洲色图av天堂| 美女国产视频在线观看| 国语对白做爰xxxⅹ性视频网站| 尤物成人国产欧美一区二区三区| 99视频精品全部免费 在线| 97超视频在线观看视频| 一本一本综合久久| 亚洲国产毛片av蜜桃av| 欧美三级亚洲精品| av又黄又爽大尺度在线免费看| 免费观看的影片在线观看| 夜夜爽夜夜爽视频| 亚洲精品,欧美精品| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产鲁丝片午夜精品| 精品熟女少妇av免费看| 国产男女内射视频| 51国产日韩欧美| 国产精品人妻久久久久久| 午夜日本视频在线| 免费大片18禁| 晚上一个人看的免费电影| 久久久久久久久久人人人人人人| 国产精品国产三级国产av玫瑰| 一级毛片我不卡| 国产精品麻豆人妻色哟哟久久| 91久久精品电影网| 舔av片在线| 嘟嘟电影网在线观看| 久久久久国产网址| 又大又黄又爽视频免费| 18禁在线无遮挡免费观看视频| tube8黄色片| 男的添女的下面高潮视频| 国产精品爽爽va在线观看网站| 建设人人有责人人尽责人人享有的 | 日韩视频在线欧美| 欧美精品人与动牲交sv欧美| 又粗又硬又长又爽又黄的视频| 亚洲国产精品成人久久小说| 亚洲av中文字字幕乱码综合| 国产黄频视频在线观看| 春色校园在线视频观看| 亚洲欧美日韩另类电影网站 | 亚洲精品日韩在线中文字幕| 国产高清国产精品国产三级 | 亚洲真实伦在线观看| 国产av国产精品国产| 亚洲不卡免费看| av天堂中文字幕网| 日韩中文字幕视频在线看片 | 精品国产露脸久久av麻豆| 久久久久视频综合| 少妇人妻精品综合一区二区| 人妻一区二区av| 亚洲美女视频黄频| 男男h啪啪无遮挡| 日韩电影二区| 欧美日韩视频精品一区| 一本久久精品| 99久久精品一区二区三区| 中文欧美无线码| 国模一区二区三区四区视频| 国产免费又黄又爽又色| 久久久午夜欧美精品| av在线播放精品| 精品亚洲成国产av| 1000部很黄的大片| 丰满迷人的少妇在线观看| 韩国av在线不卡| 亚洲,欧美,日韩| 少妇人妻 视频| 国产精品嫩草影院av在线观看| 在线观看免费视频网站a站| 精品人妻视频免费看| 夜夜骑夜夜射夜夜干| 国产精品国产av在线观看| 少妇人妻 视频| 最近的中文字幕免费完整| 成人免费观看视频高清| 高清av免费在线| 亚洲av综合色区一区| 亚洲欧美日韩另类电影网站 | 永久网站在线| 免费不卡的大黄色大毛片视频在线观看| 51国产日韩欧美| 岛国毛片在线播放| 免费不卡的大黄色大毛片视频在线观看| 大香蕉97超碰在线| h视频一区二区三区| 日本与韩国留学比较| 午夜福利视频精品| 夜夜爽夜夜爽视频| 欧美精品一区二区免费开放| av国产久精品久网站免费入址| 日韩欧美一区视频在线观看 | 久久精品久久久久久噜噜老黄| 日韩亚洲欧美综合| 精品少妇黑人巨大在线播放| 九九久久精品国产亚洲av麻豆| 人妻少妇偷人精品九色| 国产伦在线观看视频一区| 日韩制服骚丝袜av| 日韩 亚洲 欧美在线| 看十八女毛片水多多多| 男女边吃奶边做爰视频| 成年av动漫网址| 国产精品一区二区性色av| 丰满乱子伦码专区| 日本黄色片子视频| 夜夜看夜夜爽夜夜摸| 97在线视频观看| 亚洲人成网站在线播| 国产精品一区二区性色av| 深爱激情五月婷婷| 老师上课跳d突然被开到最大视频| 免费高清在线观看视频在线观看| 久久韩国三级中文字幕| 人妻 亚洲 视频| 少妇被粗大猛烈的视频| 六月丁香七月| 亚洲丝袜综合中文字幕| 看非洲黑人一级黄片| 久久久久网色| 黑丝袜美女国产一区| 成人漫画全彩无遮挡| 久久久久久久亚洲中文字幕| 深夜a级毛片| 老司机影院成人| 黄色配什么色好看| 丰满乱子伦码专区| 国产深夜福利视频在线观看| 在线观看免费日韩欧美大片 | 亚洲av日韩在线播放| 超碰av人人做人人爽久久| 免费播放大片免费观看视频在线观看| 国产高清国产精品国产三级 | 亚洲国产精品专区欧美| 下体分泌物呈黄色| 国产黄片美女视频| 在线观看国产h片| 观看免费一级毛片| 亚洲av中文av极速乱| 美女福利国产在线 | 制服丝袜香蕉在线| 偷拍熟女少妇极品色| 美女中出高潮动态图| 日韩不卡一区二区三区视频在线| 午夜激情福利司机影院| 欧美日韩综合久久久久久| 99九九线精品视频在线观看视频| 亚洲精品一区蜜桃| freevideosex欧美| 最近手机中文字幕大全| 99re6热这里在线精品视频| 中国三级夫妇交换| 久久久久久人妻| 在线观看av片永久免费下载| 王馨瑶露胸无遮挡在线观看| 97超碰精品成人国产| 成人国产av品久久久| 少妇的逼好多水| 18禁动态无遮挡网站| 亚洲精品自拍成人| 97热精品久久久久久| 中文资源天堂在线| 黑人高潮一二区| 免费黄网站久久成人精品| 2022亚洲国产成人精品| 国语对白做爰xxxⅹ性视频网站| 十八禁网站网址无遮挡 | 欧美bdsm另类| 在线免费观看不下载黄p国产| 欧美日韩一区二区视频在线观看视频在线| av在线播放精品| 日韩在线高清观看一区二区三区| 99久久中文字幕三级久久日本| 成年美女黄网站色视频大全免费 | 狠狠精品人妻久久久久久综合| 亚洲欧美日韩东京热| 成人国产av品久久久| 亚洲欧美一区二区三区黑人 | 自拍偷自拍亚洲精品老妇| videossex国产| 亚洲国产精品999| 欧美少妇被猛烈插入视频| videos熟女内射| 3wmmmm亚洲av在线观看| 国产精品国产三级国产专区5o| 大话2 男鬼变身卡| 最后的刺客免费高清国语| 久久久久国产网址| 青青草视频在线视频观看| 赤兔流量卡办理| 一级片'在线观看视频| 国产日韩欧美亚洲二区| 欧美bdsm另类| 妹子高潮喷水视频| 天天躁夜夜躁狠狠久久av| 日韩免费高清中文字幕av| 性高湖久久久久久久久免费观看| 国产黄片视频在线免费观看| av专区在线播放| 黑人高潮一二区| 国产乱人偷精品视频| 3wmmmm亚洲av在线观看| 美女高潮的动态| 2022亚洲国产成人精品| 国产亚洲精品久久久com| 久久久精品免费免费高清| 午夜视频国产福利| 久久国产乱子免费精品| 国产片特级美女逼逼视频| 人体艺术视频欧美日本| 毛片一级片免费看久久久久| 免费看不卡的av| 多毛熟女@视频| 国产免费又黄又爽又色| 色吧在线观看| 久久精品国产亚洲av天美| 国内揄拍国产精品人妻在线| 男人狂女人下面高潮的视频| 亚洲真实伦在线观看| 国产 精品1| 成人毛片60女人毛片免费| 男人爽女人下面视频在线观看| 成人亚洲精品一区在线观看 | 午夜免费鲁丝| a级毛色黄片| 在线精品无人区一区二区三 | 王馨瑶露胸无遮挡在线观看| 涩涩av久久男人的天堂| 寂寞人妻少妇视频99o| 亚洲精品国产色婷婷电影| 国产爽快片一区二区三区| 人妻夜夜爽99麻豆av| 欧美成人a在线观看| 亚洲国产日韩一区二区| 久久99热这里只频精品6学生| 91狼人影院| 免费大片18禁| 麻豆成人av视频| 最近中文字幕高清免费大全6| 99国产精品免费福利视频| 欧美一区二区亚洲| 国产毛片在线视频| 欧美一区二区亚洲| 亚洲国产精品999| 美女xxoo啪啪120秒动态图| 成人午夜精彩视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美亚洲二区| 色吧在线观看| av在线老鸭窝| 中国三级夫妇交换| 一级爰片在线观看| 精品午夜福利在线看| 国产日韩欧美在线精品| 日日撸夜夜添| 亚洲av成人精品一区久久| 在线观看三级黄色| 男人添女人高潮全过程视频| 色哟哟·www| 人人妻人人看人人澡| 久久久久人妻精品一区果冻| 麻豆成人av视频| 女人十人毛片免费观看3o分钟| 色综合色国产| 美女福利国产在线 | 亚洲av成人精品一二三区| 久久久久久人妻| 精品久久久久久电影网| 在线观看人妻少妇| 成人国产av品久久久| 一二三四中文在线观看免费高清| 女人久久www免费人成看片| 黄色怎么调成土黄色| 国产成人精品福利久久| 久久6这里有精品| 色网站视频免费| 毛片女人毛片| 我的老师免费观看完整版| av女优亚洲男人天堂| 中文字幕av成人在线电影| 久久99热6这里只有精品| 只有这里有精品99| 国产v大片淫在线免费观看| 男女下面进入的视频免费午夜| 欧美高清性xxxxhd video| 久久久久久伊人网av| 国产免费又黄又爽又色| av一本久久久久| 亚洲在久久综合| 国产精品久久久久久av不卡| 免费av不卡在线播放| 春色校园在线视频观看| 欧美精品一区二区大全| 免费黄色在线免费观看| 国产午夜精品久久久久久一区二区三区| 免费看日本二区| 亚洲欧洲国产日韩| 一级爰片在线观看| 激情五月婷婷亚洲| 国产毛片在线视频| 久久韩国三级中文字幕| 成人亚洲欧美一区二区av| 99久久精品国产国产毛片| 成人毛片60女人毛片免费| 少妇人妻精品综合一区二区| 国产真实伦视频高清在线观看| 狠狠精品人妻久久久久久综合| 色吧在线观看| 久久久精品免费免费高清| 18禁在线播放成人免费| 国产在线免费精品| 18禁裸乳无遮挡免费网站照片| 91久久精品电影网| 欧美3d第一页| 精品一区二区免费观看|