• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resistivity minimum emerges in Anderson impurity model modified with Sachdev–Ye–Kitaev interaction*

    2021-05-06 08:55:22LanZhang張欄YinZhong鐘寅andHongGangLuo羅洪剛
    Chinese Physics B 2021年4期

    Lan Zhang(張欄), Yin Zhong(鐘寅),?, and Hong-Gang Luo(羅洪剛),2,?

    1School of Physical Science and Technology&Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,Lanzhou 730000,China

    2Beijing Computational Science Research Center,Beijing 100084,China

    Keywords: Anderson model,Sachdev–Ye–Kitaev interaction,non-Fermi liquid

    1. Introduction

    The Anderson model is at the heart position to understand Kondo physics and heavy fermion compounds.[1–7]As the first microscopic model for magnetic moments formation in metals,it implies that local moments form once the Coulomb interaction between d-electrons becomes large.[8]A low-energy effective Hamiltonian of the Anderson model is the Kondo model, which is derived from the Anderson model via the Schrieffer–Wolff transformation,[9]and it demonstrates that resistivity ultimately rises as temperature is lowered. This leads to the conduction electron’s resistivity emerges minimum versus temperature,which is one of the characteristics of the Kondo effect.[10]Correspondingly,there presents a sharppeak of the impurity electron’s spectral function at the Fermi surface, i.e., a Kondo resonance, when the Kondo screening appears to quench the local moments.[6]The evolution from localized magnetic moment state to the non-magnetic state,i.e., from Landau Fermi liquid to the localized Landau Fermi liquid,is a crossover among some rare-earth alloy and actinide compounds.[5,6]

    The Landau Fermi liquid theory has been the workhorse of the physics of interacting electrons for over 60 years.[11]However, some heavy-fermion quantum critical compounds such as CeCu6?xAux, YbRh2Si2and β-YbAlB4display the non-Fermi liquid(NFL)behavior in which the transport properties and specific heat capacity cannot be derived from the Fermi liquid(FL)theory.[12–14]This attracts much attention to the NFL behavior, and many theories have been proposed to interpret this phenomenon.[15–21]The lack of controlled theoretical techniques hinders the understanding of the strong electron correlation in the NFL;nevertheless,the invention of the Sachdev–Ye–Kitaev (SYK) model provides a chance to understand the correlation physics in related systems accurately since its solvable nature.[22–25]

    The SYK model is a quantum many-body model with random all-to-all interactions for fermions, which was studied in the 1990s and later as models for novel NFL or spinglass states.[26–32]It provides a solvable example in zero dimension and has been extended to higher dimensions.[33–39]In recent years, many exotic physical phenomena have been found in SYK models, e.g., supersymmetry,[40]quantum chaos,[34,41–43]many-body localization,[44,45]strongly correlated metal,[46,47]and quantum phase transition.[24,25,48–51]

    In a recent work[52]with an aim to provide a solvable model for a heavy-fermion system,the standard periodic Anderson model was modified with the SYK random interaction.This modified model was found to have a low temperature FL, and more interestingly, an NFL solution at elevated temperature and the rising of resistivity at high temperature can be attributed to the single SYK quantum impurity.[52]In the present paper, we consider the distinction between the impurity and the lattice models and study the SYK quantum impurity problem, modeled by the Anderson model with SYK random interaction. We call it Sachdev–Ye–Kitaev Anderson model(SYKAM).Importantly,SYKAM provides an interesting and counterintuitive example where resistivity minimum exists in the absence of Kondo resonance. In a conventional picture, the resistivity minimum is due to the formation of Kondo resonance.

    Fig.1. Schematic phase diagram of the SYKAM. Our system has an FL behavior at T T?,while it is FG at T ?T?.

    Under the large-N limit, the qualitative analysis of the conduction electron resistivity ρcelucidates that the SYKAM behaves as an FL when temperature T T?, where T?is a scaling temperature.The quantitative calculation gives a phase diagram as shown in Fig.1,where ρcexists a minimum at temperature T?,demonstrating SYKAM behaves as an FL when T T?,and at high temperature T ?T?,a free Fermi gas(FG)forms in SYKAM.It is emphasized that the NFL does not display in the standard Anderson model.From impurity electron’s entropy Sdand specific heat capacity Cv, a crossover, not a phase transition, exists between FL and the NFL. This is confirmed by a renormalization group(RG) analysis, whose flow equation is similar to the Kondo problem.[1–5]

    What is the relation between the standard Anderson and the SYK model? Compared with the standard Anderson model, the SYK random interaction does not provide localized interaction to the onsite different impurity spin states,leading to no local moment forming in our model. The hybridization between conduction and impurity electrons contributes to extending the localized impurity electron’s density of state(DOS)to the Lorentz-like lineshape,and the impurity electron has the scattering with conduction electron sea, but its DOS shows that there is no sharp-peak at the Fermi surface like the Kondo resonance.[5,6,53,54]The resistivity minimum emerges in our model when the system behaves as an NFL rather than FL, while the system is localized FL when it presents the resistivity minimum in the standard Anderson model. Compared with the SYK model, our model includes the hybridization between the conduction electrons and the impurity electron. Such hybridization has an effect on the transport property;the resistivity is a constant line when V =0 and has the resistivity minimum when hybridization is available,which the random interaction SYK system does not have.Both the SYK model,the standard Anderson model,and our model have similar thermodynamic properties (the entropy and the specific heat capacity). Our model and the standard Anderson model have the resistivity minimum, but the resistivity minimum emerges in our model approaching the non-Fermi liquid regime. Since the resistivity minimum and the Kondo resonance are two characteristics of the Kondo effect, in which the conduction electron screens the impurity electron’s local moments.[5,6,53,54]The Kondo resonance is the most important feature to detect Kondo screening,and the resistivity minimum may be not enough to interpret the Kondo effect.

    The paper is organized as follows. In Section 2,we introduce SYKAM and derive self-energy and the impurity electron Green’s function. In Section 3,we present the conduction electron resistivity ρc. In Section 4, we compute thermodynamical behaviors of our model, i.e., impurity electron’s entropy Sdand its specific heat capacity Cv. In Section 5, we apply RG theory to analyze the above results. Finally, Section 6 is devoted to a brief conclusion and perspective.

    2. Model and method

    The Hamiltonian of SYKAM can be written as

    Fig.2. (a) Schematic crystal lattice of SYKAM, where the red dots are the conduction electrons,and the black dots are the impurity electron pseudospin states. (b)The SYK random interaction Uijml between different impurity electron pseudospin states 1,2,...,16,...,N.

    To solve the mentioned model Eq. (1), we consider the large-N limit as done in the SYK model,which means that the number of the component of pseudospin j=1,2,...,N is artificially enlarged to infinity. As a result,the partition function of our system can be approximated by its saddle point value(see the appendix). Equivalently,the large-N limit means that after the disorder average over Uijkl,the self-energy of impurity electron Σ(iωn)is dominated by the watermelon diagram as shown in Fig.3,

    Therefore,via the Dyson equation,the resulting Green’s function for the impurity electron reads

    where ωn=(2n+1)πT denotes the fermionic Matsubara frequency with n=0,±1,±2,...,±∞.

    Fig.3. The leading impurity electron self-energy Feynman diagrams for SYKAM under the large-N limit. (a) is the bare interaction vertex before average over random interaction Uijml. (b) illustrates the selfenergy after average.

    For conduction electron, its Green’s function Gc(k,iωn)is derived from the equation of motion[5]and reads

    Consequently,Gd(iωn)and Gc(k,iωn)can be found by solving Eqs.(2)–(4)self-consistently.

    When D ?|ωn|,we get

    According to the Feynman diagrams, we can get the impurity electron self-energy

    Therefore, we can obtain Gd(iωn) and Gc(k,iωn) by solving Eqs.(4),(6),and(7)self-consistently. Before presenting the numerical results, one can inspect two limiting cases(weak and strong coupling)and extract useful analytic formulas.

    2.1. Weak coupling limit

    In the weak coupling limit, the self-energy correction Σ(iωn) is assumed to be small compared with the free part iωn?Ed+i?in Gd(iωn). At zero temperature, one can use non-interacting impurity electron Green’s function

    and we use the analytic continuation iωn→ω+iδ to get the zero temperature impurity electron self-energy

    which indicates a local FL behavior.[56]Via the Kramers–Kronig relation,its real part is ReΣ(ω)∝ω.[6]

    We conclude that the system behaves like a local FL in the weak coupling limit, which is similar to the ground state of the standard Anderson impurity model.[5]

    2.2. Strong coupling limit

    In the strong coupling limit, the self-energy correction Σ(iωn) seems to be large. If Σ(iωn)??, one can approximate impurity electron Green’s function as

    which is identical to the cases in the SYK models. Thus,analytic continuation,the self-energy is found to be

    the quasiparticle weight is defined as

    which corresponds to the NFL behavior.[38]

    Therefore, at strong coupling, the self-energy should be approximated a mixture of FL and SYK form as

    where ΣFL(ω)has an FL-like form.

    Combining the results from weak and strong coupling analysis, one finds that our system is always an (local) FL at low-temperature or low energy below a characteristic energy scale E*. When elevating temperature or jumping into high energy regime above E*, the NFL behavior is driven by the SYK interaction.

    3. Transport properties

    Before performing calculations of transport quantities,we inspect the behavior of the single-particle Green’s functions.

    and here we set Boltzmann’s constant kB=1,we have

    At|ω|?E?,the impurity electron Green’s function is dominated by the self-energy term and has an NFL feature. When|ω|?E?,it shows FL-like behavior,the detailed formulas of Green’s function of the impurity electron and the conduction electron are given in the appendix.

    Since the static resistivity is inversely proportional to the static limit of optical conductivity, we can compute the latter quantitatively via the Kubo formula[6]

    and

    denotes the current–current response function. Here, the xcomponent of current operator ?Jxis given by[57]

    where the spectral function of conduction electrons is given in the appendix.

    Thus,the resistivity is constant at zero temperature.

    It means that our system behaves as FL at low temperature and has the NFL behavior at high temperature.

    Fig.4. The conduction electron resistivity ρc as a function of temperature T.For the different impurity electron concentrations nd as shown in(a),the black dots are T?=0.5246,0.6198,0.6674,0.6674 for nd=0.4,0.5,0.6,0.7,and the parameters are V =1,U=3,D=12,Ed=?U/2.In (b), ρc versus V/U at nd =0.7, the blue dashed line is the same as nd=0.7 in(a),and the red solid line is V/U =1/3 with T?=0.3818,the inset shows the low temperature case of ρc, where parameters are V =1,U =1,D=4,Ed =?U/2. The cyan lines are the basic linear fitting,which shows that ρc(T)∝T at T >T?.

    Due to the impurity,electron occupation ndis

    where Ad(ω)is the spectral function of the impurity electron,f(x)=1/[e(x?μ)/T+1]is the Fermi–Dirac distribution function,μ is the system’s chemical potential for both conduction and the impurity electrons. Because the system has just one impurity electron with N pseudospins, we take the chemical potential asμcin our work. When we fixed the impurity electron occupation nd, Ad(ω) and f(ω) change versus temperature T,and the conduction electron spectral function Ac(k,ω)also change according to Eq. (A4). From Eq. (16), we plot the conduction electron resistivity ρcversus T at the impurity electron occupation nd=0.4,0.5,0.6,0.7,as shown in Fig.4.For the case of the fixed conduction electron occupation, the detailed discussion is given in the appendix.

    In Fig.4, the conduction electron resistivity ρchas a minimum at T?, which is similar to the Kondo effect.[5,6,60]When temperature T >T?,the line of nd=0.4 coincides with nd=0.7, which is similar to nd=0.5 and nd=0.6. At low temperature T T?, where the system behaves as the NFL.In Fig.4(b),it demonstrates that the line of V/U =1/3 with D=12 has a higher T?than V/U =1 with D=4, where the wide bandwidth 2D and the large random interaction U also induces a high T?, which coincides with Eq. (12). The red solid line of Fig.4(b) has the constant resistivity at low temperature as shown in the inset, which also demonstrates that our system has FL behavior at T T?because of linear resistivity,when T ?T?the system has the FG behavior as shown in Fig.1.

    We also have shown the conduction electron resistivity ρcversus temperature T for Ed=0,U/2 at different impurity concentrations nd=0.4,0.5,0.6,0.7 in Fig.5.Compared with Fig.4,both resistivity lines have the minimum and the larger Edinduces the smaller T?. It demonstrates that SYKAM is not symmetric around nd=0.5. Our model is different from the single-impurity Anderson model; the symmetric Anderson model Ed=?U/2 has the particle-hole symmetry around nd=0.5.[5]However,our model has the four-body SYK random all-to-all interaction, in contrast to the onsite two-body Coulomb interaction, which is not satisfied with the particlehole symmetry except for the case Uijml=0.

    Fig.5. The conduction electron resistivity ρc as a function of temperature T for the different impurity electron concentrations nd =0.4, 0.5,0.6, 0.7, respectively. (a) is the case Ed =0. (b) is the case Ed =1.5.The parameters are V =1,U =3,D=12.

    Fig.6. The impurity electron DOS Ad(ω)as a function of the frequency ω. (a)–(d)are for different temperature T with the limited impurity electron concentrations nd =0.4,0.5,0.6,0.7; the inset of(a)shows that two lines are not merged together. (e)describes Ad(ω)versus nd at T?=0.5246,0.6198,0.6674,0.6674,respectively. The parameters of(a)–(e)are V =1,U=3,D=12,Ed=?U/2. In(f),all lines are plotted with V =1,U =1,D=4,Ed=?U/2 at nd=0.7,and T?=0.3818,where the black solid line is the DOS of FL at the constant resistivity.

    Since the resistivity has the similarity as the Kondo effect,we also compute the DOS of the impurity electron

    which is shown in Fig.6. At the fixed impurity electron concentrations,peaks of the impurity electron DOS decrease versus temperature, and lines of Ad(ω)become broad, as shown in Figs.6(a)–6(d). The black solid lines of Figs.6(a)–6(d)and 6(f)are the case that the system behaves as FL,the red dotted lines of Figs.6(a)–6(d)and 6(f)are the case of T =T?,while blue dashed lines of Figs.6(a)–6(d)and 6(f)are the case that the system behaves as the NFL.When T =T?,peaks of Ad(ω)decrease versus nd, as shown in Fig.6(e). In Fig.6(f), both lines are similar to Figs. 6(a)–6(d), but Ad(ω) has a smaller peak than Fig.6(d)at T?on account of the smaller conduction electron bandwidth.

    Compared with the SYK model, our model has the hybridization between the conduction electrons and the impurity electron, while the standard SYK model does not have the hybridization, but the Lorentz lineshape of the impurity electron DOS is similar to the SYK model. Compared with the single-impurity Anderson model, our model has the random four-body SYK interaction between different pseudospin states of the impurity electron not the onsite Coulomb interaction between different impurity spins(spin up and spin down),which does not induce the sharp-peak like the Kondo resonance around the Fermi surface, while the single-impurity Anderson model has the Kondo resonance around the Fermi surface.[5,6,53,54]

    4. Thermodynamics

    The impurity electron contributes a free-energy as

    According to Eq.(18),the system behaves as an FL at low temperature, while at high temperature it is an NFL. Due to Refs.[24]and[48],there may exist a quantum phase transition in our model. We have got its entropy Sdand specific heat capacity Cvversus temperature T by Eq.(22),which is shown in Fig.7. For intermediate-T,Sdincreases with nd. All Sdgradually approach saturation at high-T limit with limT→∞Sd=ln2,as shown in Fig.7(a).[39,61]Cvhas a maximum at intermediate-T,which is similar to the SYK model.[39,62]Cvincreases with ndat low temperature,while it decreases for high temperature.

    Since entropy and specific heat capacity are continuous and smooth,we expect a crossover,instead of phase transition,between FL and the NFL.Interestingly,similar transport properties also display in Kondo physics,and dilute magnetic alloy systems undergo a crossover from free local moment state to the non-magnetic FL state.[5,6]

    Fig.7. The thermodynamics of our model as a function of temperature T, for different impurity electron concentrations nd. (a) The entropy Sd and (b) the specific heat capacity Cv of the impurity electron. The parameters are V =1,U =3,D=12,Ed=?U/2.

    The two systems have similar transport and thermodynamics, and they undergo a crossover rather than phase transition.[5]Although both systems have the scattering between conduction electrons and the impurity electron, the DOS of the impurity electron is significantly different. Moreover,SYKAM has an NFL behavior ρc(T)∝T at temperature T >T?,while the Kondo screening is the localized FL below Kondo temperature and the NFL behavior does not appear in the standard Anderson model. Since no symmetry-breaking is involved,a crossover is expected between the FL and the NFL,and thermodynamics can not be used to detect crossover due to the lack of singularity.

    5. Renormalization group analysis

    In order to renormalize our model, we have a parameter λ(λ >1)to cut off the fermionic Matsubara frequency ωnand divide our model into the low energy part and the high energy part as follows:

    The effective action is given by

    In the light of the first-order and second-order correction,the detailed calculations are shown in the appendix, and the RG transformation relation can be written as

    We set λ = el,and its flow equation is

    In the fixed points, the scaling invariance has a consequence dU2/dl = 0; it demonstrates that SYKAM has two fixed points U2=0 and U2=∞, as shown in Fig.8. For U2=0,it scales to a weak coupling repulsive fixed point,forming FG.U2=∞is a strong coupling attractive fixed point of FL.Scaling proceeds from a repulsive fixed point via a crossover to an attractive fixed point,in which exists an NFL at finite U2.

    Fig.8. Schematic illustration of RG flow in the SYKAM.For U2=0,it scales to a weak coupling fixed point, forming the FG.U2 =∞is a strong coupling fixed point of FL. Here the weak and strong coupling does not mean the weak coupling limit and the strong coupling limit in this paper. Scaling proceeds from a repulsive fixed point via a crossover to an attractive fixed point,in which exists an NFL at finite U2.

    6. Summary and perspective

    We have computed the transport and thermodynamics of SYKAM,which demonstrates that the NFL exists at temperature T >T?. The RG analysis shows a crossover between FG(U2=0)and FL(U2=∞), which presents the NFL at finite U2. The impurity electron’s entropy Sdand the specific heat capacity Cvexhibit the similarity to the SYK model and the Kondo system.[5,39,62]The resistivity of SYKAM has a minimum at temperature T?,similar to Kondo temperature,but the impurity electron DOS of SYKAM does not have the sharp Kondo resonance peak around the Fermi surface.[5,6]

    Our model is an extension of the single-impurity Anderson model and the SYK model. Comparing with the singleimpurity Anderson model, the SYK random interaction can not provide the localized interaction to the onsite different impurity spin states,so our system does not form local moments.Compared to the SYK model, our system has the hybridization between the conduction electrons and impurity electron,which is present in the Kondo systems but does not exist in the SYK model. The resistivity minimum emerges in SYKAM when it behaves like an NFL,where the impurity electron has the SYK interaction without Coulomb interaction. Anderson model and our model both have the scattering between the conduction electrons and the impurity electron because of the hybridization, and except that the DOS of the impurity electron does not display the sharp-peak as the Kondo resonance and not have the localized magnetic moments in SYKAM.

    Finally,it may be helpful to lead to a new route to realize the Kondo systems(heavy-fermion compounds,various quantum dot devices, and novel material Kondo systems) and the SYK physics. With the development of ultracold atom technique for realizing the Kondo lattice model,[63–65]our results may be protocolled in near-future experiments.

    Appendix A:Transport properties

    When|ω|?E?,it shows FL-like behavior,Green’s function of the impurity electron and the conduction electron,i.e.,(T =0)

    The spectral function of conduction electrons is

    According to Eq.(16),we have presented the conduction electron resistivity ρcversus temperature T with fixed nd(tuning the chemical potential), as shown in Figs.4 and 5. However,when we fix ncby tuning the chemical potential,the conduction electron resistivity ρcis changed versus temperature T. We have plot conduction electron resistivity ρcas a function of temperature T at the conduction electron concentration nc=0.4, as shown in Fig.A1. It shows that the conduction electron resistivity ρcemerges a minimum versus temperature T when fixed the conduction electron occupation nc, which behaves like that in the Kondo effect.[5,6,60]

    Fig.A1.The conduction electron resistivity ρc as a function of temperature T at the conduction electron concentration nc=0.4,the red dashed line is the impurity electron concentration nd=0.4,the parameters are V =1,U =3,D=12,Ed=?U/2.

    Appendix B:Thermodynamics

    Here the non-interacting action is

    with imaginary time τ ∈[0,β] (β =1/T) and ckj, djare the anticommuting Grassman fields. The SYK interaction reads

    After performing the standard Gaussian random average over each independent Uijmland focusing on one replica realization,[46]we obtain

    91成人精品电影| 亚洲伊人色综图| 国产又色又爽无遮挡免| 满18在线观看网站| 性少妇av在线| 91精品国产国语对白视频| 麻豆乱淫一区二区| 久久狼人影院| 边亲边吃奶的免费视频| 成人国产av品久久久| 最新中文字幕久久久久| 观看美女的网站| 亚洲国产色片| 丁香六月天网| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区在线观看av| 欧美国产精品一级二级三级| 五月天丁香电影| 熟妇人妻不卡中文字幕| 国产欧美亚洲国产| 黄片无遮挡物在线观看| 久久久久人妻精品一区果冻| 一二三四在线观看免费中文在| 亚洲精品一区蜜桃| 久久久久久久久久久免费av| 欧美日韩一级在线毛片| 久久精品久久精品一区二区三区| 亚洲欧美中文字幕日韩二区| 精品亚洲成国产av| 国产成人精品在线电影| 久久久精品国产亚洲av高清涩受| 一区二区三区四区激情视频| 欧美成人精品欧美一级黄| 宅男免费午夜| 青草久久国产| 色视频在线一区二区三区| 精品少妇一区二区三区视频日本电影 | 青春草亚洲视频在线观看| 在线 av 中文字幕| 国产色婷婷99| 久久久久久久久久久久大奶| 久久久国产一区二区| av电影中文网址| 伊人久久大香线蕉亚洲五| 伦精品一区二区三区| 一级毛片黄色毛片免费观看视频| 国产成人免费观看mmmm| 久久精品国产综合久久久| 在线亚洲精品国产二区图片欧美| 久久鲁丝午夜福利片| 国产精品偷伦视频观看了| www.熟女人妻精品国产| 精品少妇一区二区三区视频日本电影 | 国产人伦9x9x在线观看 | 1024香蕉在线观看| 国产片特级美女逼逼视频| 亚洲av男天堂| 亚洲av日韩在线播放| 九草在线视频观看| 亚洲人成网站在线观看播放| 精品人妻在线不人妻| 欧美日本中文国产一区发布| 精品亚洲成a人片在线观看| 久久久久精品性色| 一二三四在线观看免费中文在| 国产乱来视频区| 欧美成人午夜免费资源| 在线观看一区二区三区激情| 人人妻人人澡人人爽人人夜夜| 亚洲精品日韩在线中文字幕| 最新中文字幕久久久久| 亚洲天堂av无毛| 一二三四在线观看免费中文在| 少妇熟女欧美另类| 久热久热在线精品观看| 日本91视频免费播放| 人妻系列 视频| 久久久久精品性色| 在现免费观看毛片| 青青草视频在线视频观看| 青草久久国产| 七月丁香在线播放| 午夜久久久在线观看| 免费观看无遮挡的男女| 亚洲欧美中文字幕日韩二区| 亚洲少妇的诱惑av| 国产亚洲一区二区精品| 国产亚洲精品第一综合不卡| 亚洲国产毛片av蜜桃av| 看免费成人av毛片| 高清视频免费观看一区二区| 亚洲人成网站在线观看播放| 亚洲激情五月婷婷啪啪| 日韩制服骚丝袜av| 久久久久国产一级毛片高清牌| 久久久久精品久久久久真实原创| 亚洲美女视频黄频| 久久久久久久久久久久大奶| 日韩中字成人| 亚洲av成人精品一二三区| 欧美日韩精品成人综合77777| 国产亚洲午夜精品一区二区久久| xxx大片免费视频| 两个人看的免费小视频| 精品酒店卫生间| av电影中文网址| 国产 精品1| 亚洲欧美日韩另类电影网站| 天天躁日日躁夜夜躁夜夜| 美女国产高潮福利片在线看| 丰满饥渴人妻一区二区三| tube8黄色片| www.av在线官网国产| 日韩一本色道免费dvd| 美女国产视频在线观看| 我的亚洲天堂| 欧美日韩精品网址| 涩涩av久久男人的天堂| 日韩,欧美,国产一区二区三区| 美女国产高潮福利片在线看| 国产欧美日韩一区二区三区在线| 成年女人在线观看亚洲视频| 国产不卡av网站在线观看| 赤兔流量卡办理| 日韩一本色道免费dvd| 日韩av免费高清视频| 亚洲国产最新在线播放| 热re99久久精品国产66热6| 日本欧美视频一区| 亚洲成人av在线免费| 精品国产乱码久久久久久小说| 99九九在线精品视频| 午夜影院在线不卡| 欧美精品一区二区免费开放| 午夜老司机福利剧场| 精品一区二区三卡| 欧美日韩视频精品一区| 国语对白做爰xxxⅹ性视频网站| 日韩视频在线欧美| 成人黄色视频免费在线看| 久久韩国三级中文字幕| 精品视频人人做人人爽| 一区在线观看完整版| 欧美日韩国产mv在线观看视频| 新久久久久国产一级毛片| 久久鲁丝午夜福利片| 菩萨蛮人人尽说江南好唐韦庄| 国产精品嫩草影院av在线观看| 免费看不卡的av| 看非洲黑人一级黄片| 亚洲综合精品二区| 国产伦理片在线播放av一区| 性少妇av在线| 97人妻天天添夜夜摸| 人人妻人人爽人人添夜夜欢视频| 桃花免费在线播放| 三级国产精品片| 五月开心婷婷网| 国产精品人妻久久久影院| 久久精品夜色国产| 国产精品一区二区在线观看99| 国产精品人妻久久久影院| 日韩一区二区三区影片| 美女脱内裤让男人舔精品视频| 男女边吃奶边做爰视频| 日韩制服丝袜自拍偷拍| 久久久亚洲精品成人影院| 国产精品女同一区二区软件| 91成人精品电影| 视频在线观看一区二区三区| 久久精品久久精品一区二区三区| tube8黄色片| 中文天堂在线官网| 国产成人av激情在线播放| 极品少妇高潮喷水抽搐| 国产乱来视频区| 午夜福利乱码中文字幕| 日韩不卡一区二区三区视频在线| 久久久久网色| 90打野战视频偷拍视频| 国产亚洲午夜精品一区二区久久| 国产爽快片一区二区三区| 欧美xxⅹ黑人| 久久热在线av| 巨乳人妻的诱惑在线观看| 国产精品成人在线| av不卡在线播放| 宅男免费午夜| 自拍欧美九色日韩亚洲蝌蚪91| 国产乱来视频区| 免费高清在线观看日韩| 成人18禁高潮啪啪吃奶动态图| 精品亚洲乱码少妇综合久久| 免费高清在线观看视频在线观看| 欧美人与性动交α欧美软件| 亚洲久久久国产精品| 亚洲精品乱久久久久久| 亚洲av综合色区一区| 国产男女超爽视频在线观看| 久久综合国产亚洲精品| 久久久久久久亚洲中文字幕| 美女主播在线视频| 国产黄色视频一区二区在线观看| 日韩熟女老妇一区二区性免费视频| 欧美精品国产亚洲| 18禁观看日本| av网站免费在线观看视频| 亚洲色图综合在线观看| 赤兔流量卡办理| 精品国产一区二区久久| 一边摸一边做爽爽视频免费| 午夜福利在线观看免费完整高清在| 两个人看的免费小视频| 国产淫语在线视频| 国产成人91sexporn| 亚洲精品第二区| 精品国产一区二区三区久久久樱花| 久久久久人妻精品一区果冻| 亚洲第一av免费看| 日韩精品有码人妻一区| 三级国产精品片| 日本免费在线观看一区| 日日爽夜夜爽网站| 亚洲精华国产精华液的使用体验| 777米奇影视久久| 丝袜在线中文字幕| 男女边摸边吃奶| 午夜91福利影院| 国产精品不卡视频一区二区| 国产成人精品婷婷| 熟妇人妻不卡中文字幕| 大香蕉久久成人网| 欧美国产精品va在线观看不卡| 亚洲少妇的诱惑av| 汤姆久久久久久久影院中文字幕| 亚洲,一卡二卡三卡| 国产一级毛片在线| 日本-黄色视频高清免费观看| 黄色怎么调成土黄色| 国产免费又黄又爽又色| 精品久久久久久电影网| 美女视频免费永久观看网站| 1024视频免费在线观看| 中文乱码字字幕精品一区二区三区| 黄色一级大片看看| 久久热在线av| 精品一区二区三卡| 视频区图区小说| 日韩 亚洲 欧美在线| 国产精品一区二区在线观看99| 青春草亚洲视频在线观看| 久久久久久久亚洲中文字幕| 一区二区av电影网| 999精品在线视频| 成人毛片a级毛片在线播放| 美女福利国产在线| 亚洲精品美女久久av网站| 多毛熟女@视频| 十八禁高潮呻吟视频| 国产精品偷伦视频观看了| 免费日韩欧美在线观看| 在线天堂最新版资源| 91在线精品国自产拍蜜月| 日韩一区二区视频免费看| 日本vs欧美在线观看视频| 婷婷色av中文字幕| 国产精品国产三级专区第一集| 国产精品久久久久成人av| 日韩,欧美,国产一区二区三区| 男女国产视频网站| 自线自在国产av| 国产黄频视频在线观看| 久久人人爽人人片av| 大话2 男鬼变身卡| 成人18禁高潮啪啪吃奶动态图| 丝袜脚勾引网站| 一区二区日韩欧美中文字幕| 午夜av观看不卡| 91久久精品国产一区二区三区| 一区二区三区激情视频| 日韩熟女老妇一区二区性免费视频| 午夜久久久在线观看| 日韩中文字幕欧美一区二区 | 成人国语在线视频| 免费在线观看视频国产中文字幕亚洲 | 午夜老司机福利剧场| 国产一区有黄有色的免费视频| 伊人亚洲综合成人网| 国产日韩一区二区三区精品不卡| 亚洲精品中文字幕在线视频| 免费大片黄手机在线观看| 久久这里只有精品19| 国产精品熟女久久久久浪| 亚洲人成网站在线观看播放| 日本色播在线视频| 一区二区三区乱码不卡18| 日韩电影二区| 久久99精品国语久久久| 日日摸夜夜添夜夜爱| 丝袜喷水一区| 最新的欧美精品一区二区| 日日爽夜夜爽网站| a级片在线免费高清观看视频| 亚洲av福利一区| 亚洲精品一区蜜桃| 精品国产乱码久久久久久小说| 一区二区三区激情视频| 高清黄色对白视频在线免费看| 久久久久人妻精品一区果冻| 国产 精品1| 赤兔流量卡办理| 免费观看在线日韩| 可以免费在线观看a视频的电影网站 | 国产精品免费大片| 国产精品99久久99久久久不卡 | 丝袜喷水一区| 日韩一本色道免费dvd| 男男h啪啪无遮挡| av视频免费观看在线观看| 日韩不卡一区二区三区视频在线| videossex国产| 1024香蕉在线观看| 色婷婷av一区二区三区视频| 在现免费观看毛片| 黄片小视频在线播放| 久久99一区二区三区| 高清在线视频一区二区三区| 丝袜美腿诱惑在线| xxx大片免费视频| 韩国高清视频一区二区三区| 欧美激情高清一区二区三区 | 国产黄频视频在线观看| 丰满乱子伦码专区| 中文字幕制服av| 午夜日本视频在线| 亚洲综合精品二区| 亚洲精品美女久久久久99蜜臀 | 亚洲av日韩在线播放| 日日爽夜夜爽网站| 国产成人午夜福利电影在线观看| 看非洲黑人一级黄片| 女性被躁到高潮视频| 日韩电影二区| 亚洲一码二码三码区别大吗| 伦理电影免费视频| 老汉色∧v一级毛片| 在线天堂中文资源库| 久久久国产一区二区| 女人被躁到高潮嗷嗷叫费观| 亚洲国产精品一区二区三区在线| 9色porny在线观看| 国产爽快片一区二区三区| 电影成人av| av卡一久久| 亚洲视频免费观看视频| av片东京热男人的天堂| 少妇熟女欧美另类| 99精国产麻豆久久婷婷| 久久影院123| 免费黄频网站在线观看国产| 国产精品国产三级专区第一集| av国产久精品久网站免费入址| 黄片小视频在线播放| 18禁裸乳无遮挡动漫免费视频| 国产成人欧美| 午夜福利网站1000一区二区三区| 国精品久久久久久国模美| 亚洲国产看品久久| 最新的欧美精品一区二区| 777久久人妻少妇嫩草av网站| 纵有疾风起免费观看全集完整版| 美女国产高潮福利片在线看| 男的添女的下面高潮视频| a 毛片基地| 在线看a的网站| 亚洲一区中文字幕在线| 亚洲av中文av极速乱| 97精品久久久久久久久久精品| 一级,二级,三级黄色视频| 在线免费观看不下载黄p国产| a级毛片在线看网站| 免费黄色在线免费观看| 91aial.com中文字幕在线观看| 亚洲精品中文字幕在线视频| 视频区图区小说| 久久精品国产a三级三级三级| 性少妇av在线| 国产xxxxx性猛交| 亚洲精品国产一区二区精华液| 久久精品熟女亚洲av麻豆精品| 欧美中文综合在线视频| 尾随美女入室| 啦啦啦在线免费观看视频4| 伦理电影大哥的女人| 午夜日韩欧美国产| 欧美激情高清一区二区三区 | 国产xxxxx性猛交| 亚洲精品国产一区二区精华液| 日韩欧美一区视频在线观看| 制服人妻中文乱码| 久久鲁丝午夜福利片| 美女福利国产在线| 免费女性裸体啪啪无遮挡网站| 2021少妇久久久久久久久久久| 成年美女黄网站色视频大全免费| 欧美日韩精品网址| 国产精品成人在线| 亚洲美女搞黄在线观看| 国产精品亚洲av一区麻豆 | 人成视频在线观看免费观看| 少妇 在线观看| 久久精品亚洲av国产电影网| 亚洲精品国产av蜜桃| 人人妻人人澡人人看| 亚洲av在线观看美女高潮| 性少妇av在线| 久久狼人影院| 在线观看国产h片| 亚洲国产精品999| xxxhd国产人妻xxx| 久久久久久久久久人人人人人人| 在线 av 中文字幕| 少妇猛男粗大的猛烈进出视频| 亚洲第一青青草原| 免费观看无遮挡的男女| 在线天堂最新版资源| 国产片特级美女逼逼视频| 亚洲精品自拍成人| 国产精品久久久久久久久免| 99热网站在线观看| 日韩电影二区| 黄片播放在线免费| 90打野战视频偷拍视频| 老司机影院成人| 亚洲一区二区三区欧美精品| 国产成人欧美| 七月丁香在线播放| 80岁老熟妇乱子伦牲交| 看免费av毛片| 一级毛片黄色毛片免费观看视频| 最近2019中文字幕mv第一页| 日本色播在线视频| 精品亚洲成a人片在线观看| 又粗又硬又长又爽又黄的视频| 赤兔流量卡办理| 日韩成人av中文字幕在线观看| 成人亚洲精品一区在线观看| 国产精品熟女久久久久浪| 一级,二级,三级黄色视频| 国产精品久久久久久精品古装| 人人妻人人澡人人看| 亚洲国产毛片av蜜桃av| 中文字幕最新亚洲高清| 婷婷色av中文字幕| 久久精品亚洲av国产电影网| 狠狠精品人妻久久久久久综合| 一级毛片 在线播放| 精品视频人人做人人爽| 人人妻人人添人人爽欧美一区卜| 黑丝袜美女国产一区| 亚洲精品日本国产第一区| 最新的欧美精品一区二区| 欧美日韩亚洲高清精品| 日韩三级伦理在线观看| 欧美激情 高清一区二区三区| 免费观看无遮挡的男女| 久久精品国产亚洲av高清一级| 亚洲欧美日韩另类电影网站| 免费播放大片免费观看视频在线观看| 国产又爽黄色视频| 精品第一国产精品| 欧美最新免费一区二区三区| 午夜激情av网站| 国产精品无大码| av线在线观看网站| 午夜久久久在线观看| 欧美+日韩+精品| 99久久综合免费| 亚洲一码二码三码区别大吗| 婷婷色av中文字幕| 国产精品亚洲av一区麻豆 | 国产极品天堂在线| 久久精品国产亚洲av天美| xxx大片免费视频| 亚洲国产精品999| 王馨瑶露胸无遮挡在线观看| 精品福利永久在线观看| 香蕉精品网在线| 国产97色在线日韩免费| 亚洲精品一二三| 卡戴珊不雅视频在线播放| 亚洲第一区二区三区不卡| 亚洲欧美日韩另类电影网站| 搡女人真爽免费视频火全软件| 国产免费又黄又爽又色| 黄色怎么调成土黄色| 日本免费在线观看一区| 天堂俺去俺来也www色官网| 久久久精品国产亚洲av高清涩受| 日韩欧美一区视频在线观看| 啦啦啦视频在线资源免费观看| 亚洲欧美一区二区三区黑人 | 菩萨蛮人人尽说江南好唐韦庄| 成年女人在线观看亚洲视频| 亚洲,一卡二卡三卡| 国产成人精品久久久久久| 韩国高清视频一区二区三区| 亚洲伊人久久精品综合| 久久久欧美国产精品| 综合色丁香网| 亚洲精品美女久久av网站| 日日摸夜夜添夜夜爱| 久久久久久久久久久免费av| 大片免费播放器 马上看| 国产一区二区激情短视频 | 少妇熟女欧美另类| 寂寞人妻少妇视频99o| 人妻人人澡人人爽人人| 久久国产精品大桥未久av| 丰满少妇做爰视频| 国产av精品麻豆| 午夜福利影视在线免费观看| 欧美激情高清一区二区三区 | 777久久人妻少妇嫩草av网站| 午夜福利网站1000一区二区三区| 亚洲av免费高清在线观看| 国产免费福利视频在线观看| 日本欧美国产在线视频| 国产成人精品久久久久久| 超碰成人久久| 亚洲国产精品一区二区三区在线| 国产精品久久久久成人av| 大话2 男鬼变身卡| 99久久精品国产国产毛片| 你懂的网址亚洲精品在线观看| 亚洲四区av| 寂寞人妻少妇视频99o| 夜夜骑夜夜射夜夜干| 免费观看在线日韩| 中文字幕精品免费在线观看视频| 久久人妻熟女aⅴ| 99久国产av精品国产电影| 免费观看av网站的网址| 曰老女人黄片| 边亲边吃奶的免费视频| 亚洲精品日本国产第一区| 亚洲一码二码三码区别大吗| 中文乱码字字幕精品一区二区三区| 亚洲av欧美aⅴ国产| 国产黄色视频一区二区在线观看| 国产黄色免费在线视频| 婷婷色av中文字幕| 少妇人妻 视频| 国产野战对白在线观看| 成年女人毛片免费观看观看9 | 最近中文字幕2019免费版| 超碰成人久久| 久久免费观看电影| 在线观看www视频免费| 69精品国产乱码久久久| 亚洲美女搞黄在线观看| 亚洲一级一片aⅴ在线观看| 精品视频人人做人人爽| 中国国产av一级| 国产一区二区三区综合在线观看| 亚洲欧美中文字幕日韩二区| 久久久精品国产亚洲av高清涩受| 欧美97在线视频| 2018国产大陆天天弄谢| 欧美日韩亚洲高清精品| 午夜福利一区二区在线看| 精品一区在线观看国产| 欧美+日韩+精品| 久久午夜福利片| 男女免费视频国产| 秋霞在线观看毛片| 看非洲黑人一级黄片| 国产成人精品一,二区| 国产日韩一区二区三区精品不卡| 成年人免费黄色播放视频| 欧美人与性动交α欧美软件| 免费人妻精品一区二区三区视频| 国产爽快片一区二区三区| 爱豆传媒免费全集在线观看| 免费看不卡的av| 精品少妇内射三级| 欧美日韩综合久久久久久| 97人妻天天添夜夜摸| 最黄视频免费看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品国产一区二区精华液| 宅男免费午夜| 热re99久久国产66热| 成人毛片a级毛片在线播放| 国产精品久久久久久精品古装| 菩萨蛮人人尽说江南好唐韦庄| 成年女人在线观看亚洲视频| 美女xxoo啪啪120秒动态图| 性高湖久久久久久久久免费观看| 欧美 亚洲 国产 日韩一| 日韩av在线免费看完整版不卡| 国产一级毛片在线| 久久久久国产一级毛片高清牌| 久久av网站| 亚洲婷婷狠狠爱综合网| 亚洲精品aⅴ在线观看| 午夜激情av网站| 国产 一区精品| 高清黄色对白视频在线免费看| 国产精品熟女久久久久浪| 汤姆久久久久久久影院中文字幕| 国产精品久久久久久久久免| 十分钟在线观看高清视频www| 两个人免费观看高清视频| 国产av国产精品国产|