• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultra-low Young’s modulus and high super-exchange interactions in monolayer CrN:A promising candidate for flexible spintronic applications?

    2021-05-06 08:55:22YangSong宋洋YanFangZhang張艷芳JinboPan潘金波andShixuanDu杜世萱
    Chinese Physics B 2021年4期

    Yang Song(宋洋), Yan-Fang Zhang(張艷芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱)

    Institute of Physics and School of Physical Sciences,University of Chinese Academy of Sciences,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: monolayer CrN,half-metallic ferromagnet,flexible material,spintronics

    1. Introduction

    Inspired by the first successful exfoliation of graphene from graphite in 2004,[1]two-dimensional (2D) materials are of wide interest for their promising application potentials in nanoscale devices owing to a wide range of superior properties from electrical, such as insulating,[2]semiconducting,[3,4]Dirac-metallic,[5,6]half-metallic,[7,8]metallic,[9,10]superconducting,[11,12]to magnetic,[13,14]as well as mechanical regimes.[15,16]One can expect combining multiple properties to explore novel applications.[17–19]Currently, the pursuing of wearable, intelligent, and implantable electronic systems has triggered the design and development of flexible and biocompatible materials for information collection, storage, and management.[20–23]The feature of 100% spin-polarized electrons at the Fermi level endows that 2D intrinsic half-metallic ferromagnets play an important role in spin-logic circuits in terms of energy efficiency and accuracy.[24–26]Thus,it is an alternative way to introduce spintronics to the realm of the flexible device to improve the performance of the device.

    To date, most half-metals are transition metal oxides,[27,28]sulfides,[29]double perovskites,[30,31]or Heusler alloys.[32]However,these compounds usually have large stiffness which are not favored by flexible devices. The recent experimental realization of monolayer CrI3and few-layer Cr2Ge2Te6,[33,34]has stimulated the research of 2D magnets. There are some encouraging theoretical progresses made in recent years, such as g-C3N4, MnPSe3, CrN, GaSe,Cr3X4(X =S, Se, Te), MO (M =Ga, In), Mn3X4(X =S,Se, Te),[35–43]doped graphene nanoribbons,[44]and doped GaSe.[40]Among them,the monolayer CrN attracts our attention because it has two stable phases(square and hexagon)and both phases show simple structures and FM half-metallicity with relatively high Curie temperature, as well as good biocompatibility.[37,38,45]However, to our knowledge, researches on the flexibility and the survival of its exceptional properties under strains, which are crucial to the practical applications, are still lacking. Moreover, the Curie temperature has been proposed to be high based on a 2D Ising model,in which the super-exchange interaction and the magnetic anisotropy energy have not been considered. However, these two parameters influence the Curie temperature significantly.[46–49]Thus,the Heisenberg model is preferred to explore how these parameters influence the Curie temperature.

    In this work, we explore a monolayer CrN in a square lattice as a binary half-metallic ferromagnet with ultra-low Young’s modulus,large critical strain,and high Curie temperature by performing first-principles calculations based on density functional theory. We first present that the bulk CrN in a square lattice is only 68 meV/atom above hull by using a convex hull analysis of formation enthalpy. The monolayer CrN is proved to be a soft material with superior mechanical flexibility benefit from its ultra-low Young’s modulus and large critical strain. The ferromagnetic half-metallicity is well retained under various strains. We further demonstrate that the half-metallicity and ferromagnetism are originated from the splitting of Cr-d orbitals in the CrN square crystal field, Cr–N bonding interaction,and Cr–Cr bonding interaction. Based on a Heisenberg model, we find that the monolayer CrN is a ferromagnet with high Curie temperature far above room temperature. All these intriguing features endow the monolayer CrN with exceptional potentials in nanoscale flexible devices and spintronic applications, and should attract experimentalists’attention to realize it in real devices.

    2. Calculation method

    All density functional theory (DFT) calculations were performed using density functional theory within projectoraugmented wave (PAW) potentials[50,51]as implemented in the VASP code.[52,53]A vacuum slab of 20 ?A and a planewave basis set with an energy cutoff of 520 eV were used. An 8×8×1 Γ point centered k-mesh was applied to sample the Brillouin zone. GGA+U was employed to optimize the geometric structures,[54]where the U value was referred to Wang et al.’s work.[55]The structures were fully relaxed until energy and force were converged to 10?8eV and 0.001 eV/?A,respectively. The phase diagram was calculated using the GGA+U method at 0 K.The compounds are all in stable structures obtained from the Materials Project database.[56]Their formation energies are calculated by the following formula:

    where E(AxBy)is the total energy of AxBybulk material,E(A)and E(B)are the chemical potentials of elements A and B,respectively.

    3. Results and discussion

    The crystal structure of the monolayer CrN is displayed in Fig.1(a). CrN consists a single layer of Cr atoms and N atoms in the form of a square lattice. The lattice has a D4hpoint group with a lattice constant around 4.02 ?A. A convex hull analysis of formation enthalpy was performed to look for the most stable phase.Three different phases of CrN were considered. One phase is a square lattice with a planar structure.The other two phases are both hexagonal phases, while one is a planar structure and the other is a sandwich structure.[56]Different magnetic configurations were considered to find the ground states for the three different phases. Then the total energies of the ground states were used to get the formation enthalpy. The phase diagram is plotted as Fig.1(b). The formation energy of the square phase is 68 meV/atom higher(the red square in Fig.1(b)) than that of the most stable phase,while the hexagonal phase is 211 meV/atom higher (the blue hexagon).The relatively small energy difference with the most stable one suggests that there is a high probability to fabricate the square phase CrN by using molecular beam epitaxy method.[56–58]

    Fig.1. Geometric structure of monolayer CrN(a)and the convex hull phase diagram of the Cr–N compounds(b).

    The linear elastic constants of the monolayer CrN in the ferromagnetic ground state are calculated to further examine the mechanical stability. Based on the density functional perturbation theory(DFPT)method,the 2D linear elastic constants are as follows: C11= 117.07 N·m?1, C22=117.07 N·m?1,C12=62.68 N·m?1,and C44=7.19 N·m?1.Since the stability criteria for a square 2D lattice[59]are C11>0,C44>0, and C11>|C12|, the monolayer CrN is obviously stable. Furthermore, the in-plane Young’s modulus and Poisson’s ratio are evaluated to analyze the mechanical properties of the monolayer CrN.The Young’s modulus can be expressed as

    The Poisson’s ratio is

    where θ is the angle relative to the positive x direction in the square lattice,c=cosθ,and s=sinθ. Figures 2(a)and 2(b)present the Young’s modulus and the Poisson’s ratio.The lowest Young’s modulus is around 27 N·m?1, together with the large Poisson’s ratio(ranging from 0.54 to 0.85),demonstrating that the monolayer CrN is a promising material for flexible and stretchable electronic devices.

    The total energies versus different values of strain are plotted in Fig.2(c). One can expect that compressive strains induce similar structure changes under tensile strains due to the symmetry of the monolayer CrN.In addition,the change is asymmetric for compressive and tensile strains. For example,the monolayer CrN under a compress strain of 10%in x direction corresponds to that under a tensile strain of 25%in x direction,exhibiting a distorted hexagonal structure. Thus,only tensile strains are discussed in this work. There is one transition point labeled in red. The transition point corresponds to the break of one Cr–N bond, resulting in the transition of the monolayer CrN from a square lattice to a distorted hexagonal lattice, which is in accordance with two different phases of monolayer CrN.[37,38]There should be another peak referring to the crack of the monolayer hexagonal CrN, which is not discussed here. Figure 2(d)gives the crystal structures under different strains. It clearly shows that the Cr–N bonds break at strain 16%, forming a distorted hexagonal lattice (the second structure in Fig.2(d)).Moreover,the structure with a 30%tensile strain(the last one in Fig.2(d))is a monolayer CrN in a hexagonal lattice under a compressive strain of 8%. When the tensile strain reaches 41%, a monolayer CrN in a hexagonal lattice without strain can be obtained. Considering that both two phases of monolayer CrN show ferromagnetic halfmetallic behavior,the monolayer CrN is a promising material which can be used in flexible, stretchable, and biocompatible devices.

    Fig.2. Mechanic properties of the monolayer CrN. Polar diagrams for the (a) Young’s modulus and (b) Poisson’s ratio. (c) Total energy variation respect to strain. (d)Crystal structures at various strains.

    The very low Young’s modulus inspired us to explore the robustness of strain effect on the electronic properties of the monolayer CrN, which is of great significance for its potential application in flexible spintronic devices. As is shown in Fig.3,the half-metallic ferromagnetism is well preserved under axial strains ranging from ?4% to 4%. The value of the band gap has a linear relationship with the axial strain. Under compressive strains,the band gap increases from 2.07 eV to 2.36 eV as the strain decreases from ?4% to ?1%. The band gap further increases to 2.52 eV when the tensile strain increases to 4%.

    Fig.3. Electronic structures of the monolayer CrN without strain and with compressive/tensile strains(from ?4%to 4%).

    Fig.4. Origins of the half metallicity. (a)Projected density of states on Cr-d orbitals. (b)Schematic representation of Cr-d orbital splitting.

    Since Curie temperature (TC) is a key feature for ferromagnetic materials, we then evaluate the TCby performing Monte Carlo (MC) simulations based on a 2D Heisenberg Hamiltonian model. A four-state mapping analysis[60]is applied to extract the magnetic exchange interactions. The Heisenberg Hamiltonian model is defined as

    A 4×4 supercell is used to calculate the J related total energy of different magnetic configurations. We set different magnetic configurations(↑↑, ↑↓, ↓↑, ↓↓)of two Cr atoms and keep the spins of all the other Cr atoms in the same zdirection when estimating their exchange coupling interaction.The magnetic configurations for J2calculations are provided in Figs.5(a)–5(c)as an example.The total energies are written as follows:

    E1=JijS2+KiS+KjS+EotherS+E0,

    E2=?JijS2+KiS?KjS+EotherS+E0,

    E3=?JijS2?KiS+KjS+EotherS+E0,

    E4=JijS2?KiS?KjS+EotherS+E0,

    The J1and J2exchange coupling parameters for monolayer CrN are obtained by computing the above equation. The relative total energies for different magnetic configurations are 0 meV(E1),163.6 meV(E2,E3),239.1 meV(E4for J1),and 79.6 meV(E4for J2),respectively. The J1and J2parameters are calculated to be ?9.8 meV and ?27.5 meV, respectively.The easy axis is along z-direction with an anisotropy energy parameter A of ?0.45 meV. The relatively large J2parameter and the large magnetic moment(3μBper Cr atom)suggest a high TC. From the variation of the average magnetic moment per Cr atom with respect to temperatures (Fig.5(d)), it is easy to see that the estimated TCis far above room temperature. It is important to note that the J2originated from the super-exchange interaction is larger than the J1derived from the direct-exchange interaction. This means that the super-exchange interaction contributes dominantly to the FM arrangement of monolayer CrN. It should be the reason that the predicted Curie temperature is higher than that in Wang’s work.[37]

    Fig.5. Configurations with different magnetic ordering and Monte Carlo simulations. (a) Configuration with ↑↑magnetic ordering. J1 and J2 are the Heisenberg exchange coupling between the nearest and the second-nearest neighbors,respectively.(b)Configuration with ↑↓or↓↑magnetic ordering. (c)Configuration with ↓↓magnetic ordering. (d)Temperature-dependent average magnetic moment per Cr atom based on Monte Carlo simulations.

    4. Conclusion

    In summary,the monolayer CrN material in a square lattice is explored as a promising binary half-metal ferromagnet with ultra-low Young’s modulus and large critical strain for flexible,stretchable,and biocompatible electronics. The halfmetallicity is well preserved under various strains. The ferromagnetism and the half-metallicity are originated from the splitting of Cr-d orbitals in the CrN square crystal field, the bonding interaction between Cr–N, and that between Cr–Cr atoms. Interestingly, the super-exchange interaction is superior to the direct-exchange interaction. The Curie temperature is estimated to be higher than 1000 K based on the Heisenberg model. The high probability to be fabricated, the remarkable mechanical,electrical,and magnetic properties deserve extensive experimental exploration.

    精品一区在线观看国产| 亚洲aⅴ乱码一区二区在线播放| 少妇被粗大猛烈的视频| 色5月婷婷丁香| 九九爱精品视频在线观看| av在线观看视频网站免费| 久久综合国产亚洲精品| 成人一区二区视频在线观看| 精品人妻一区二区三区麻豆| 麻豆精品久久久久久蜜桃| 亚洲精品第二区| 在线观看人妻少妇| 国产高清不卡午夜福利| 免费av毛片视频| 午夜免费鲁丝| 成人鲁丝片一二三区免费| 精品久久久久久久人妻蜜臀av| 美女脱内裤让男人舔精品视频| av国产免费在线观看| 亚洲最大成人av| 精品一区二区三区视频在线| 久久这里有精品视频免费| 最近中文字幕2019免费版| 3wmmmm亚洲av在线观看| 日本av手机在线免费观看| 18禁在线无遮挡免费观看视频| 人妻一区二区av| 精品熟女少妇av免费看| xxx大片免费视频| av国产久精品久网站免费入址| 18禁动态无遮挡网站| 欧美日本视频| 国产精品无大码| 一级毛片电影观看| 在线免费十八禁| 老女人水多毛片| 一个人看的www免费观看视频| 看非洲黑人一级黄片| 成人漫画全彩无遮挡| av女优亚洲男人天堂| 在线观看人妻少妇| 纵有疾风起免费观看全集完整版| 国产国拍精品亚洲av在线观看| 一本久久精品| 亚洲三级黄色毛片| 亚洲精品日韩在线中文字幕| 国产成人福利小说| 青春草国产在线视频| 国产精品国产av在线观看| 午夜福利网站1000一区二区三区| 国产成人91sexporn| 国产av国产精品国产| 丝袜美腿在线中文| 99久久精品一区二区三区| 国产精品久久久久久av不卡| 精品久久久久久久久亚洲| 交换朋友夫妻互换小说| av专区在线播放| 亚洲精品第二区| 国产欧美另类精品又又久久亚洲欧美| 免费高清在线观看视频在线观看| 午夜免费男女啪啪视频观看| 熟女av电影| 在线看a的网站| 亚洲国产精品专区欧美| 精品久久久精品久久久| 欧美日韩亚洲高清精品| 精品酒店卫生间| 亚洲真实伦在线观看| 国产黄a三级三级三级人| 身体一侧抽搐| 精品国产乱码久久久久久小说| 99九九线精品视频在线观看视频| 久久人人爽人人片av| 国产探花在线观看一区二区| 男人舔奶头视频| 国产男女内射视频| 国产精品一区www在线观看| 免费黄频网站在线观看国产| 最近中文字幕2019免费版| 九九久久精品国产亚洲av麻豆| 99九九线精品视频在线观看视频| 国产精品伦人一区二区| 亚洲国产精品999| 国产爱豆传媒在线观看| 免费看a级黄色片| 80岁老熟妇乱子伦牲交| 久久精品久久精品一区二区三区| 观看美女的网站| 亚洲精品国产成人久久av| 久久久久久国产a免费观看| 成人黄色视频免费在线看| 中文乱码字字幕精品一区二区三区| 国产高清国产精品国产三级 | 日韩亚洲欧美综合| 国产亚洲91精品色在线| 日本猛色少妇xxxxx猛交久久| 国产精品人妻久久久影院| 午夜激情久久久久久久| 黄色视频在线播放观看不卡| av在线亚洲专区| 国产真实伦视频高清在线观看| 成人漫画全彩无遮挡| 91精品国产九色| 国产精品一区二区在线观看99| 美女国产视频在线观看| 亚洲国产精品成人久久小说| 伦精品一区二区三区| 婷婷色综合大香蕉| 亚洲精品影视一区二区三区av| 亚洲国产色片| 日韩欧美一区视频在线观看 | 久久久久久久久久久丰满| 国产69精品久久久久777片| 美女高潮的动态| av国产久精品久网站免费入址| 久热久热在线精品观看| 国产永久视频网站| 91精品一卡2卡3卡4卡| 91精品一卡2卡3卡4卡| 成年女人看的毛片在线观看| 国产精品国产三级国产av玫瑰| 99久国产av精品国产电影| 精品亚洲乱码少妇综合久久| 欧美变态另类bdsm刘玥| 1000部很黄的大片| 纵有疾风起免费观看全集完整版| 亚洲最大成人av| 久久久久精品久久久久真实原创| 欧美最新免费一区二区三区| 亚洲天堂国产精品一区在线| 熟女av电影| 日本-黄色视频高清免费观看| 一级毛片aaaaaa免费看小| 女的被弄到高潮叫床怎么办| 秋霞伦理黄片| 国产精品一区二区在线观看99| 久久国产乱子免费精品| 永久免费av网站大全| 大码成人一级视频| 在线观看免费高清a一片| 99久久精品国产国产毛片| 777米奇影视久久| 欧美日韩综合久久久久久| 亚洲,欧美,日韩| 成人综合一区亚洲| 另类亚洲欧美激情| freevideosex欧美| 好男人视频免费观看在线| 内地一区二区视频在线| 九九在线视频观看精品| 国产精品精品国产色婷婷| 国产精品一二三区在线看| 久久久a久久爽久久v久久| 午夜福利高清视频| 自拍欧美九色日韩亚洲蝌蚪91 | 丝瓜视频免费看黄片| 国产成人精品福利久久| 视频区图区小说| 日本一二三区视频观看| 不卡视频在线观看欧美| 国产精品人妻久久久影院| 国产精品国产三级国产专区5o| 女人久久www免费人成看片| 一本色道久久久久久精品综合| 99久国产av精品国产电影| 国产精品不卡视频一区二区| 亚洲欧美清纯卡通| 麻豆成人午夜福利视频| 亚洲国产色片| 免费av毛片视频| 精品久久久久久电影网| 日韩av免费高清视频| 亚洲色图综合在线观看| 九九在线视频观看精品| 日本-黄色视频高清免费观看| 黄片wwwwww| 亚洲成人中文字幕在线播放| 婷婷色综合大香蕉| 婷婷色综合大香蕉| 狂野欧美白嫩少妇大欣赏| 亚洲av中文字字幕乱码综合| av在线蜜桃| 欧美日韩视频高清一区二区三区二| 超碰97精品在线观看| 亚洲欧美日韩东京热| 亚洲精品乱久久久久久| 秋霞在线观看毛片| 80岁老熟妇乱子伦牲交| 亚洲精品日韩av片在线观看| 久久99热这里只频精品6学生| 亚洲精品第二区| 国产精品一区二区三区四区免费观看| 国产欧美另类精品又又久久亚洲欧美| 日韩 亚洲 欧美在线| 亚洲国产日韩一区二区| 亚洲精品成人久久久久久| 久久97久久精品| 精品99又大又爽又粗少妇毛片| 波野结衣二区三区在线| 大片电影免费在线观看免费| 亚洲精品456在线播放app| 女人久久www免费人成看片| 国产精品秋霞免费鲁丝片| 亚洲人与动物交配视频| 国产毛片a区久久久久| 亚洲欧洲国产日韩| 狂野欧美激情性bbbbbb| 精品少妇黑人巨大在线播放| 精品国产三级普通话版| 久久精品国产亚洲网站| 波野结衣二区三区在线| 我要看日韩黄色一级片| 免费黄网站久久成人精品| 大香蕉久久网| 我要看日韩黄色一级片| 亚洲欧美中文字幕日韩二区| 国产男女超爽视频在线观看| 国产一区亚洲一区在线观看| 蜜桃亚洲精品一区二区三区| 看十八女毛片水多多多| 免费电影在线观看免费观看| 日韩免费高清中文字幕av| 高清在线视频一区二区三区| 在现免费观看毛片| 少妇猛男粗大的猛烈进出视频 | 日本黄色片子视频| 99热这里只有精品一区| a级一级毛片免费在线观看| 不卡视频在线观看欧美| 最近中文字幕2019免费版| 成年女人看的毛片在线观看| 国产乱人视频| 国产欧美另类精品又又久久亚洲欧美| 色播亚洲综合网| 一本久久精品| 亚洲精品aⅴ在线观看| 一级毛片黄色毛片免费观看视频| 国产乱人视频| 国内精品美女久久久久久| 一本色道久久久久久精品综合| 免费电影在线观看免费观看| 久久久久国产网址| 日韩免费高清中文字幕av| 亚洲国产欧美人成| 少妇人妻精品综合一区二区| 国产av码专区亚洲av| 国产成人精品婷婷| 国产精品久久久久久精品古装| 大话2 男鬼变身卡| 一二三四中文在线观看免费高清| 成年免费大片在线观看| 国产成人精品久久久久久| 欧美少妇被猛烈插入视频| 性色av一级| 成年女人看的毛片在线观看| av一本久久久久| 亚洲精品中文字幕在线视频 | 黄色怎么调成土黄色| 久久精品国产a三级三级三级| 国产探花极品一区二区| 一级二级三级毛片免费看| 成人亚洲精品av一区二区| 国产熟女欧美一区二区| 国产亚洲午夜精品一区二区久久 | 久久99蜜桃精品久久| 丝袜美腿在线中文| 精品一区二区三卡| 一区二区三区精品91| av卡一久久| 日韩电影二区| 国产爱豆传媒在线观看| 午夜免费鲁丝| 青春草视频在线免费观看| 日韩av在线免费看完整版不卡| 男女国产视频网站| 少妇熟女欧美另类| 99精国产麻豆久久婷婷| 欧美一区二区亚洲| 狠狠精品人妻久久久久久综合| 亚洲精品自拍成人| 好男人视频免费观看在线| 99re6热这里在线精品视频| 黑人高潮一二区| 成人亚洲精品av一区二区| 亚洲国产最新在线播放| 欧美日本视频| 国产精品成人在线| 日韩亚洲欧美综合| 国产精品99久久久久久久久| 中国三级夫妇交换| 亚洲人与动物交配视频| 欧美日韩国产mv在线观看视频 | 欧美变态另类bdsm刘玥| 日本三级黄在线观看| 欧美成人a在线观看| 人妻制服诱惑在线中文字幕| 午夜福利高清视频| 爱豆传媒免费全集在线观看| 亚洲国产最新在线播放| 麻豆乱淫一区二区| 色综合色国产| 欧美国产精品一级二级三级 | 亚洲成人av在线免费| 插逼视频在线观看| 久久99蜜桃精品久久| 亚洲av免费在线观看| 性色avwww在线观看| 国产精品99久久99久久久不卡 | 久久久久久久久久成人| 亚洲精品日韩av片在线观看| 深爱激情五月婷婷| 亚洲精品成人av观看孕妇| 日日摸夜夜添夜夜添av毛片| 麻豆久久精品国产亚洲av| 一级片'在线观看视频| 亚洲精品国产av蜜桃| 身体一侧抽搐| 日本猛色少妇xxxxx猛交久久| 晚上一个人看的免费电影| 精品酒店卫生间| 成人黄色视频免费在线看| 男的添女的下面高潮视频| 亚洲欧美成人精品一区二区| 亚洲av不卡在线观看| 国产综合精华液| 日本欧美国产在线视频| av在线老鸭窝| 80岁老熟妇乱子伦牲交| 欧美高清成人免费视频www| 日韩人妻高清精品专区| 日日啪夜夜撸| 久久久久国产网址| 菩萨蛮人人尽说江南好唐韦庄| 3wmmmm亚洲av在线观看| 日韩成人伦理影院| 人人妻人人澡人人爽人人夜夜| 国产亚洲5aaaaa淫片| 亚洲精品色激情综合| videossex国产| 国产伦精品一区二区三区四那| 亚洲国产av新网站| 如何舔出高潮| 日韩欧美精品v在线| 最近手机中文字幕大全| 欧美激情国产日韩精品一区| 国产精品爽爽va在线观看网站| 免费看日本二区| 黄片无遮挡物在线观看| 国产黄色视频一区二区在线观看| 成人毛片a级毛片在线播放| 嫩草影院入口| 日韩欧美一区视频在线观看 | av国产久精品久网站免费入址| 在线精品无人区一区二区三 | 久久人人爽人人爽人人片va| 一区二区三区乱码不卡18| 伊人久久精品亚洲午夜| 国国产精品蜜臀av免费| 精品99又大又爽又粗少妇毛片| 3wmmmm亚洲av在线观看| 日本黄色片子视频| 中文欧美无线码| 国产精品熟女久久久久浪| 大陆偷拍与自拍| 欧美性感艳星| 亚洲人成网站在线观看播放| 亚洲av电影在线观看一区二区三区 | 99热全是精品| 91精品伊人久久大香线蕉| 啦啦啦中文免费视频观看日本| 国产亚洲一区二区精品| 日韩,欧美,国产一区二区三区| 亚洲自偷自拍三级| 禁无遮挡网站| 欧美变态另类bdsm刘玥| 日日撸夜夜添| 色婷婷久久久亚洲欧美| 色视频在线一区二区三区| 性色av一级| 夫妻性生交免费视频一级片| 欧美性感艳星| 亚洲av不卡在线观看| 日韩人妻高清精品专区| 又粗又硬又长又爽又黄的视频| 少妇熟女欧美另类| 国产精品久久久久久精品古装| 国产精品久久久久久精品电影| 91久久精品电影网| 成年女人看的毛片在线观看| 久久久久久伊人网av| 国产成人免费无遮挡视频| 色视频www国产| 欧美高清成人免费视频www| 日产精品乱码卡一卡2卡三| 精品一区在线观看国产| 久久久久精品性色| 日韩一区二区视频免费看| 国内精品美女久久久久久| 九色成人免费人妻av| 麻豆乱淫一区二区| 亚洲av二区三区四区| 国产精品秋霞免费鲁丝片| 亚洲成人一二三区av| 永久网站在线| 最近2019中文字幕mv第一页| 日本免费在线观看一区| 国产人妻一区二区三区在| 欧美日韩一区二区视频在线观看视频在线 | 成人美女网站在线观看视频| 91狼人影院| 亚洲成人中文字幕在线播放| 久久97久久精品| 久久精品熟女亚洲av麻豆精品| 又大又黄又爽视频免费| 建设人人有责人人尽责人人享有的 | 欧美激情久久久久久爽电影| 成人国产av品久久久| 欧美极品一区二区三区四区| 18+在线观看网站| 交换朋友夫妻互换小说| 亚洲国产av新网站| 久久久久九九精品影院| 国产伦精品一区二区三区四那| 神马国产精品三级电影在线观看| 日韩强制内射视频| 少妇 在线观看| 亚洲最大成人中文| 亚洲欧美成人综合另类久久久| 亚洲精品国产av成人精品| 亚洲天堂国产精品一区在线| 免费av不卡在线播放| av网站免费在线观看视频| 舔av片在线| 国产精品伦人一区二区| 久久鲁丝午夜福利片| 在线观看一区二区三区| 久久韩国三级中文字幕| 乱码一卡2卡4卡精品| 三级国产精品欧美在线观看| 精品久久久久久久久av| 最近的中文字幕免费完整| 高清视频免费观看一区二区| 亚洲成人中文字幕在线播放| 欧美日韩国产mv在线观看视频 | 色综合色国产| 亚洲av男天堂| 亚洲精品成人久久久久久| 在现免费观看毛片| 亚洲经典国产精华液单| 少妇熟女欧美另类| 秋霞伦理黄片| 久久精品久久久久久噜噜老黄| 免费看日本二区| 国产精品福利在线免费观看| 建设人人有责人人尽责人人享有的 | 亚洲欧美精品自产自拍| 成人毛片60女人毛片免费| 69av精品久久久久久| 在线精品无人区一区二区三 | 我要看日韩黄色一级片| 久久亚洲国产成人精品v| 丰满乱子伦码专区| 九草在线视频观看| 亚洲欧美清纯卡通| 三级国产精品欧美在线观看| 日韩欧美精品免费久久| a级一级毛片免费在线观看| 九九在线视频观看精品| 亚洲国产最新在线播放| 99久久九九国产精品国产免费| 亚洲精品乱码久久久v下载方式| 十八禁网站网址无遮挡 | 亚洲精品日韩在线中文字幕| 久久影院123| 国产亚洲一区二区精品| 色综合色国产| 在线观看一区二区三区| 国产美女午夜福利| 1000部很黄的大片| 天美传媒精品一区二区| 国产高清三级在线| 日日啪夜夜撸| 一二三四中文在线观看免费高清| 黄色一级大片看看| 男女边吃奶边做爰视频| 亚洲美女搞黄在线观看| 男女啪啪激烈高潮av片| 中文乱码字字幕精品一区二区三区| 国产成人午夜福利电影在线观看| 91aial.com中文字幕在线观看| 亚洲国产最新在线播放| 真实男女啪啪啪动态图| 汤姆久久久久久久影院中文字幕| 欧美性感艳星| 黄色欧美视频在线观看| 国产成年人精品一区二区| 交换朋友夫妻互换小说| 欧美日韩视频高清一区二区三区二| 人妻少妇偷人精品九色| 亚洲经典国产精华液单| 高清av免费在线| 日韩一区二区三区影片| 一个人看视频在线观看www免费| 黑人高潮一二区| 国产老妇伦熟女老妇高清| 乱系列少妇在线播放| 97超碰精品成人国产| 亚洲成人中文字幕在线播放| 久久久久久久精品精品| 国产综合懂色| 中文字幕av成人在线电影| 久久97久久精品| 中文字幕久久专区| 精品国产三级普通话版| 久久精品国产a三级三级三级| 久久久久久伊人网av| 干丝袜人妻中文字幕| 色网站视频免费| 中国国产av一级| 日韩伦理黄色片| 欧美性感艳星| 中文在线观看免费www的网站| 欧美xxⅹ黑人| 国产亚洲精品久久久com| 亚洲性久久影院| 亚洲美女视频黄频| 国产精品一区www在线观看| 国产精品久久久久久久电影| 久久精品久久精品一区二区三区| 五月开心婷婷网| 青青草视频在线视频观看| 国产伦精品一区二区三区四那| 黑人高潮一二区| 国产日韩欧美在线精品| 免费不卡的大黄色大毛片视频在线观看| 亚洲av在线观看美女高潮| 少妇丰满av| 成年av动漫网址| 99热国产这里只有精品6| 久久久久国产精品人妻一区二区| 伊人久久国产一区二区| 国产精品秋霞免费鲁丝片| 国产久久久一区二区三区| 成人黄色视频免费在线看| 免费在线观看成人毛片| 男人舔奶头视频| 国产精品嫩草影院av在线观看| 亚洲精品,欧美精品| 插逼视频在线观看| 一级二级三级毛片免费看| 真实男女啪啪啪动态图| 亚洲一级一片aⅴ在线观看| 在线观看人妻少妇| 亚洲av男天堂| 熟女人妻精品中文字幕| 成年版毛片免费区| 国产av国产精品国产| 99久久精品一区二区三区| eeuss影院久久| 水蜜桃什么品种好| 免费大片黄手机在线观看| 视频中文字幕在线观看| 男女那种视频在线观看| 青草久久国产| 成年人午夜在线观看视频| 亚洲成人国产一区在线观看 | 999久久久国产精品视频| 婷婷色麻豆天堂久久| 黄网站色视频无遮挡免费观看| 伊人久久国产一区二区| 精品一区二区三卡| 又大又爽又粗| 欧美精品亚洲一区二区| 久久久久久久久久久久大奶| 麻豆精品久久久久久蜜桃| 最黄视频免费看| av免费观看日本| 一二三四中文在线观看免费高清| 美女中出高潮动态图| 看免费成人av毛片| 国产亚洲欧美精品永久| 男人爽女人下面视频在线观看| 五月开心婷婷网| 中文字幕av电影在线播放| 午夜日本视频在线| 精品国产超薄肉色丝袜足j| 午夜av观看不卡| 精品一品国产午夜福利视频| 亚洲国产精品一区三区| 成人亚洲精品一区在线观看| 亚洲精品国产av成人精品| 69精品国产乱码久久久| 一个人免费看片子| 国产成人啪精品午夜网站| 欧美激情 高清一区二区三区| 欧美国产精品va在线观看不卡| 日韩av在线免费看完整版不卡| 欧美日韩亚洲高清精品| av片东京热男人的天堂| 在线精品无人区一区二区三| 天天躁日日躁夜夜躁夜夜| 永久免费av网站大全| 亚洲三区欧美一区| 大码成人一级视频| 黄片小视频在线播放| 99久久综合免费| 久久免费观看电影| 欧美精品av麻豆av| 19禁男女啪啪无遮挡网站| √禁漫天堂资源中文www| 99国产精品免费福利视频| 伦理电影免费视频| 99九九在线精品视频| av视频免费观看在线观看|