• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles calculations of F-,Cl-,and N-related defects of amorphous SiO2 and their impacts on carrier trapping and proton release?

    2021-05-06 08:55:22XinGao高鑫YunliangYue樂云亮YangLiu劉楊andXuZuo左旭
    Chinese Physics B 2021年4期
    關(guān)鍵詞:高鑫

    Xin Gao(高鑫), Yunliang Yue(樂云亮), Yang Liu(劉楊), and Xu Zuo(左旭),5,6,?

    1College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300071,China

    2School of Information Engineering,Yangzhou University,Yangzhou 225127,China

    3Microsystem and Terahertz Research Center,China Academy of Engineering Physics,Chengdu 610200,China

    4Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang 621999,China

    5Municipal Key Laboratory of Photo-electronic Thin Film Devices and Technology,Nankai University,Tianjin 300071,China

    6Engineering Research Center of Thin Film Optoelectronics Technology,Ministry of Education,Tianjin 300071,China

    Keywords: first-principles calculation,doping,defect,proton

    1. Introduction

    SiO2/Si interface plays an important role in semiconductor devices and has a great influence on device reliability. Ionization radiation can induce electron-hole pairs in SiO2,which will drift under the gate electric field. The holes will migrate to the interface transition area and activate the interface defects.[1]Protons will also activate the hydrogenated defects and degrade the interface performance. These reactions ultimately lead to ionization damage at the a-SiO2/Si interface that causes device degeneration or even failure.[2–5]

    In this paper, the first-principles calculations based on density functional theory are performed to study F-, Cl-, and N-related defects of a-SiO2and their impacts on proton release. There are two main processes for generating protons.First, hydrogenation defects and protons (H+) will form if hydrogen molecules break at positively charged oxygen vacancy defects.[6,7]Second, the H-containing defects could also release protons by hole capture under the irradiation condition.[7,8]Previous studies have also shown that the suspension bond of oxygen vacancy can be terminated by doping of Cl to reduce oxygen vacancy and improve the reliability of a-SiO2.[9]In this work, we have investigated the possible configurations formed by the interaction of F,Cl,and oxygen vacancy defects. After the conversion of the oxygen vacancy defects to F/Cl related structures,the concentration of oxygen vacancies is reduced,and the reaction of molecular hydrogen and positively charged oxygen vacancy defects is suppressed.The newly formed defects are found to be effective deep traps,which reduce the amount of the holes that can be trapped by the hydrogen-containing defects. Both effects suppress the proton release process.

    Due to the anti-radiation properties of N-containing SiO2,[10,11]Jeong et al. constructed several N-containing defect models and suggested that the coexistence of N and H improves the electrical reliabilities of Si oxynitride films.[12]Orellana et al. studied NO, NH, N2, and atomic N interacting with a Si-Si bond of an otherwise perfect SiO2.[13]In this paper, we discuss the neutral defect configuration of N in the a-SiO2model,positively charged structures formed after neutral defects trap holes,and the formation energy of these structures. N-containing defects will compete with oxygen vacancies defects or hydrogenated defects to reduce the latter’s probability of trapping holes. Further,the N-containing defects are found to be proton traps,which prevent protons from spreading to the interface.

    2. Methods

    Under the theoretical framework of density functional theory (DFT), the Perdew–Burke–Ernzerhof (PBE) parameterization of general gradient approximation(GGA)is used to perform the first-principles calculation in the Vienna ab initio simulation package(VASP)software. The role of the valence electron and the real part of the atom is described by the projected augmented-wave method. The cut-off energy of plane wave expansion is set to 520 eV.Brillouin-zone integration is performed on the Γ point due to the large size of the unit cell.The convergence criterion for structural optimization is that the total energy difference is lower than 10?4eV,and the criterion for electronic self-consistent iteration is raised to 10?5eV.The defect-free a-SiO2model is taken from Ref. [14], where 216 atoms in a periodic unit are considered and the dimension of the supercells in this work is about 16.5×16.5×12.4 ?A3.

    To determine the relative stability and electrical properties of the impurity-forming structure, the formation energy and transition energy levels of various defect structures in the neutral and positively charged states are calculated under the O-rich and Si-rich conditions. The bandgap of a-SiO2is underestimated by GGA. To relieve the problem, we apply the unscreened hybrid functional in which 35%of PBE exchange is replaced by the Hartree–Fock exchange. In the present work, the formula of formation energy is referred to as the formalism defined by Van de Walle et al.[15]

    where Etot[Xq]is the total energy of a-SiO2model containing defect X with charge q, and Etot[bulk] is the total energy of the same bulk a-SiO2model,niuiis the chemical potential for adding or subtracting atoms. At the O-rich condition(oxidizing condition), μO=1/2μO2. Ecorris the correction term due to system electrification. In this work, the energy of the state of charge is corrected by calculating the change in electrostatic potential from the period to the open boundary condition.Ecorris the correction for charged systems proposed by Freysoldt,Neugebauer,and Van de Walle.[16]

    3. Results and discussions

    3.1. The configurations of atomic F/Cl decorated oxygen vacancies and N related defects

    To simulate the interaction between atomic F, Cl, and oxygen vacancies in a-SiO2,the central oxygen atom bonding with Si atoms is removed,and all systems are relaxed to make O vacancy in defect-free a-SiO2. Ten neutral dimer configurations are obtained. The length of the Si-Si dimer is 2.43 ?A on average,similar to the values in the previous report.[17]

    An atomic F is added in the a-SiO2model surrounding the vacancy as the starting structure. After relaxation, the structure shown in Fig.1 is obtained. The F atom is connected to one of the Si atoms, and the other Si atom carries an unpaired electron. The length between two Si atoms increases to 3.31 ?A,and the average Si–F length is 1.62 ?A.The interaction structure of the Cl atom and the oxygen vacancy is the same as that of the F atom,and the only difference is the bond length.For the Cl passivated defect,the length between two Si atoms increases to 3.06 ?A, and the average Si–Cl length is 2.12 ?A,which is 0.5 ?A longer than the Si–F length.

    Fig.1. Defect configuration generated by the interaction of an F or Cl atom and an oxygen vacancy.

    It has been reported that the coexistence of N and H can effectively eliminate the hole trap.[18]During the proton release process,N-doped a-SiO2may react with both holes and protons,thereby influencing the proton release process.Therefore, possible configurations of N-related defects in a-SiO2were investigated (Fig.2). Substituting an N atom for an O atom in the defect-free silica network, connecting two Si atoms and performing structural relaxation, the N(2)o structure is obtained (Fig.2(b)). The length of Si–N is 1.71 ?A on average.This article adopts the same structure naming method as in Ref.[19]. The symbol N represents N atom,the number represents the N atom coordination number, and the lowercase O represents N atom instead of O atom. In the N(2)o=O structure(Fig.2(c)),an O atom is added to the N(2)o structure and an N–O bond is formed;the average Si–N bond length is about 1.78 ?A.The structure of N(2)o–H is similar to N(2)o=O,an H atom is added to the N(2)o structure and an N–H bond is formed (Fig.2(d)), the Si–N bond length does not change much compared to that of N(2)o. The average value is about 1.72 ?A.Based on the N(2)o structure,the N atom is connected with another Si atom to form a threefold N atom, the N(3)o structure is obtained (Fig.2(f)); the connecting oxygen atom of this silicon atom is removed to form a new structure named N(3)o–Voas shown in Fig.2(e). The Si–N bond length is increased by 0.05 ?A compared to the N(2)o structure, reaching an average value of 1.76 ?A, and the bond angle of the threefold N atom is between 116?and 120?.In the meantime,the N atom and the three Si atoms connected are almost in the same plane. The bond length and bond angle of these structures are very similar to those previously reported in α-quartz.[12]All structures have been observed in experiments.[20–23]N(2)o and N(3)o are the two structures that occur most frequently.[20]

    Fig.2. Possible configurations of N-related defects in a-SiO2(a)defect-free a-SiO2,(b)N(2)o,(c)N(2)o=O,(d)N(2)o–H,(e)N(3)o–Vo,(f)N(3)o.

    3.2. Hole trapping at the neutral defect centers

    Hole trapping at a-SiO2doped defects was simulated by removing an electron from the unit cell and then optimized the structure. F- and Cl-defects of a-SiO2converge into two different structures via hole trapping(Fig.3). First,the atomic F or Cl is connected between two Si atoms to form a Si–F–Si/Si–Cl–Si bridge configuration(Fig.3(a)). Alternatively,the doping atoms are connected to the one Si atom,and the other is in an sp2state at a threefold coordinated silicon atom(Fig.3(b)).In this configuration, the Si–O bond decreases to an average value of 1.57 ?A compared to the neutral charge state and the four atoms are almost in the same plane.

    Fig.3. Positively charged F- and Cl-related defect configuration (a)Si–F/Cl–Si bridge configuration,(b)sp2 Si configuration.

    As for N-related defects, all of them still maintain the original configuration, but the bond length and the bond angle have changed with respect to the neutral structure. In the positively charged N(2)o configuration shown in Fig.4(a),the Si–Si distance increases to 3.46 ?A on average and the Si–N distance increases to about 1.78 ?A compared to the neutral charge state. The total magnetic moment increases from 1.0 μBto 2.0 μB, and the spin density mainly resides on the nitrogen atom. Some of them spread over the two connected silicon atoms and the three coordination oxygen atoms adjacent to the silicon atoms. In the positively charged N(2)o=O(Fig.4(b)),the Si–N bonds (bond lengths ~1.95 ?A) are longer than the Si–N bonds (average bond length ~1.78 ?A) in the neutral structure and the Si–N–Si bond angle increases from 105?to 112?. The positively charged structure is closer to a planar structure than a neutral structure. The total magnetic moment decreases from 1.0μBto 0μB. The spin densities in the neutral structure show that the unpaired electron spins are mainly located on p orbitals of the nitrogen and oxygen atoms. In the positively charged N(2)o–H configurations shown in Fig.4(c),the average Si–Si distance increases to 3.28 ?A and the Si–N distance increases to about 1.78 ?A compared to the neutral charge state.

    Fig.4. Positively charged N-related defect configurations(a)N(2)o,(b)N(2)o=O,(c)N(2)o–H.

    The spin density is mostly localized at the silicon dangling bond in the neutral N(3)o–Voconfigurations, and the three coordination silicon atom is in the sp2state after capturing the hole,as shown in Fig.5(a). When the neutral structure in Fig.5(b)captures hole,unlike in Fig.5(a),the spin-charge density is localized on the three-coordinated N atom instead of being captured by the oxygen atom connected to the Si atom.The spin density mainly resides on the nitrogen and oxygen atoms, and the total magnetic moment changed from 1 μBto 2μB.

    Fig.5.Positively charged N-related defect configurations.(a)N(3)o-Vo,(b)N(3)o.

    3.3. Formation energy

    Based on the above research, the formation energies of neutral and ±1 charged F-, Cl-, and N-related defects were calculated. The results are shown in Fig.6. The slope of the straight line indicates the charged state, and the sloping-up,horizontal, and slopping down segments are associated with the+1,0,and ?1 charge states,respectively. The meter level is aligned with the top of the valence band of a-SiO2without defects,and the shaded area indicates the bandgap of Si. The transition levels of different structures can be obtained from Fig.6.

    Fig.6. Formation energy as a function of Fermi energy for the F-, Cl-,and N-related defect. The sloping-up,horizontal,and slopping down segments are associated with the+1,0,and ?1 charge states,respectively.

    The results show that the Cl formation energy is the highest when the system is uncharged. And the energy levels suggest the defects are deep energy traps that prevent the holes from diffusing to the interface.

    The Fermi energy lies approximately in the middle of silicon bandgap for most devices.For several structures obtained by N doping,N(2)o–H has the lowest formation energy while the Fermi level in the silicon bandgap. In contrast,N(3)structure has the highest formation energy. N(2)o–H, N(2)o=O,and N(3)o–Voduring device operation exist in a neutral state and act as shallow traps to transport holes. The N(2)o and N(3)o configurations, whose transition levels from neutral to negatively charged states are in the silicon bandgap,could be negatively charged as the deep electron traps during the oxide charge buildup after ionization radiation.

    3.4. Proton traps

    N-containing defects will become proton traps to prevent protons from spreading to the interface due to the coordination number of N. To simulate the reaction of a proton with an N-containing defect,an H atom is placed near the gap,and an electron is subtracted from the system to simulate a proton. According to the Bader charge analysis, the numbers of valence electrons on H atoms are zero in all four of these structures. The structures are shown in Fig.7.

    Fig.7. Proton captured by the N-related defects. (a)N(2)o,(b)N(2)o=O,(c)N(2)o–H,(d)N(3)o.

    In the N(2)o configuration shown in Fig.7(a),a proton attaches to the atomic N and the average Si–N distance increases to 1.78 ?A.In the N(2)o=O configuration, the proton attaches to the oxygen bonded to the atomic N.The Si–N bonds(bond lengths ~1.86 ?A) are longer than the Si–N bonds (average bond length ~1.78 ?A)in the structure without proton and the Si–N-Si bond angle increases from 105?to 112?. The latter configuration is closer to a planar structure than the former.For the N(2)o–H configuration, the proton attaches to atomic N and the Si–N bonds increase to 1.89 ?A on average. For the N(3)o configuration,the Si–N bonds(bond lengths ~1.89 ?A)are longer than the Si–N bonds(average bond length ~1.76 ?A)in the structure without proton.

    Previous studies have calculated the energies of the three coordination N configurations in SiO2before and after the trap of protons. It has been claimed that nitrogen can be an effective trapping center for hydrogen ions.[24]However,the paper only considered the capability to capture protons by the tricoordination N defect but did not consider that whether the trapped hydrogen ions can continue to diffuse along with the oxygen atoms or not. Protons usually jump and diffuse between adjacent oxygen atoms in silica.[25]Depassivation occurs when protons diffuse to the interface,which will degrade the interface performance.[26,27]For the N(2)o structure, the diffusion process of hydrogen ions from N-containing defects to oxygen atoms is simulated by the nudged elastic band calculation,which gives the reaction curve connecting the initial and final states and the transition state associated with the energy barrier(Fig.8). The reaction starts from the initial state where the proton is attached to an N atom. The energy of the reaction curve increases and reaches the maximum in the transition state when the proton moves to the adjacent oxygen atom. In the final state,the proton is connected to the O atom.The energy is 1.25 eV higher than the initial state,so the reaction is endothermic. The reaction from the initial state to the final state is more difficult;hence protons(H+)tend to attach to the nitrogen bridges in a-SiO2.

    Fig.8. The reaction curve of the detrap of the proton captured by the N(2)o configuration. The initial, transition, and final structures are illustrated in the insets.

    For the N(2)o–H structure,the diffusion process of a proton from N(2)o–H to oxygen atoms is also investigated, and the reaction curve is plotted in Fig.9. In the final state,the energy is 1.71 eV higher than the initial state. We can draw the same conclusion as N(2)o, that is N(2)o–H defects are easier to capture protons and it is difficult for the captured protons to diffuse along with the oxygen.

    Fig.9. The reaction curve of the detrap of the proton in N(2)o–H structure.The initial,transition,and final structures are illustrated in the insets.

    Fig.10. The reaction curve of the detrap of the proton captured by N(3)o structure. The initial, transition, and final structures are illustrated in the insets.

    For the N(3)o structure,the diffusion process of the proton is plotted in Fig.10. The reaction starts from the initial state where the proton is attached to a threefold N atom.When the proton moves to the adjacent oxygen atom,the positive reaction barrier is as high as 2.28 eV,and it is almost impossible to dissociate. In the final state, the energy is 0.72 eV higher than the initial state, so the reaction is also endothermic and protons tend to attach to nitrogen; thus, the defect center of tricoordinate N is more comfortable to capture proton.

    The diffusion of protons from the N(2)o=O structure to the oxygen atom has also been studied. However,in the NEB calculation process, the final state of the proton connected to the adjacent oxygen atom cannot be obtained because the oxygen atom connected to the N atom in the initial structure is easy to capture protons. In summary,N-containing defects are easier to capture protons,and it is challenging for the captured protons to diffuse along with the oxygen. Thus N-containing defects can prevent the occurrence of interface depassivation reaction.

    4. Conclusion

    The F-, Cl-, and N-related defects in a-SiO2are studied by the first-principles calculations based on density functional theory.The defects are obtained by interacting an F or Cl atom with an oxygen vacancy or by optimizing the N-related defects constructed in the defect-free models. The structure relation and the formation energies of the F-, Cl-, and N-related defects after trapping a hole are investigated. The results suggest that F and Cl atoms can passivate oxygen vacancy defects.The resulting defects induce the charge transition levels deep in the bandgap, which can trap holes and then suppress their diffusion. In a practical transistor, if the silicon base attached to the a-SiO2is not highly p-doped, the two configurations of N-related defects(N(2)o and N(3)o)are negative charge traps which can also compensate the excess holes excited by the irradiations. The capability of the N-related defects to capture protons is also investigated. It is shown by the calculations that the N-related defects can trap protons hence can serve as proton sink to suppress proton diffusion and the following depassivation of a-SiO2/Si interface. This work pushes forward the research of the impurity-related defects in a-SiO2by providing the fundamental parameters of the structure,formation energy, charge transition level, and proton capture reaction.These findings contribute to understanding the impacts of impurities on the ionization damage of semiconducting devices and pave a way to alleviate the damage by rationally doping of a-SiO2.

    猜你喜歡
    高鑫
    “下沉”長壽里
    配電網(wǎng)防風(fēng)抗災(zāi)加固措施優(yōu)化決策方法
    中央支持零售高鑫免受貿(mào)戰(zhàn)沖擊
    高鑫阿里合作成效逐顯現(xiàn)
    跨越“婚變”門,“蘇明哲"和妻子一路《都挺好》
    饋贈與托孤:萍水相逢的溫暖何去何從(上)
    印象·杭州雪
    高鑫低調(diào)入戲
    鳳凰生活(2016年5期)2016-06-20 16:08:34
    高鑫:太子的深情
    意林(2016年9期)2016-05-31 23:20:11
    高鑫:不是每個太子都懂量子力學(xué)
    音樂周刊(2015年22期)2015-05-30 18:38:57
    99久国产av精品国产电影| 国产成人系列免费观看| 黄片小视频在线播放| 中文字幕另类日韩欧美亚洲嫩草| 日韩精品有码人妻一区| 人人澡人人妻人| 在线免费观看不下载黄p国产| 亚洲精品一区蜜桃| 十八禁网站网址无遮挡| 国产熟女午夜一区二区三区| av在线播放精品| 最近的中文字幕免费完整| 精品亚洲成a人片在线观看| 美女高潮到喷水免费观看| 亚洲一区二区三区欧美精品| 国产精品一区二区在线不卡| 天堂俺去俺来也www色官网| 国产av一区二区精品久久| 制服丝袜香蕉在线| 777米奇影视久久| 一区二区三区乱码不卡18| 丝瓜视频免费看黄片| 九草在线视频观看| 亚洲av成人精品一二三区| 久久99热这里只频精品6学生| 日韩一区二区三区影片| 狂野欧美激情性bbbbbb| 国产日韩欧美在线精品| 精品福利永久在线观看| 777米奇影视久久| 国产精品久久久久成人av| 亚洲少妇的诱惑av| 中文字幕人妻丝袜制服| 大片电影免费在线观看免费| 最近的中文字幕免费完整| 午夜免费观看性视频| 精品福利永久在线观看| 制服人妻中文乱码| 国产一级毛片在线| 女性生殖器流出的白浆| 亚洲av男天堂| 男人爽女人下面视频在线观看| 国产一区有黄有色的免费视频| 亚洲成人av在线免费| 人人妻人人澡人人看| 国精品久久久久久国模美| 超碰97精品在线观看| 欧美黄色片欧美黄色片| 制服诱惑二区| 久久国产亚洲av麻豆专区| 女人被躁到高潮嗷嗷叫费观| 国产精品一区二区在线观看99| 在线观看免费午夜福利视频| 欧美日韩视频高清一区二区三区二| 久久久久久免费高清国产稀缺| 欧美老熟妇乱子伦牲交| 国产熟女午夜一区二区三区| 国产免费视频播放在线视频| 涩涩av久久男人的天堂| 久久99一区二区三区| 成年女人毛片免费观看观看9 | 老司机亚洲免费影院| 在线观看人妻少妇| 亚洲国产精品一区二区三区在线| www.精华液| 水蜜桃什么品种好| 男女床上黄色一级片免费看| 日本av免费视频播放| 观看美女的网站| 国产一级毛片在线| 国产av码专区亚洲av| 狂野欧美激情性xxxx| 我要看黄色一级片免费的| 在线观看人妻少妇| 亚洲av日韩在线播放| www.精华液| 少妇 在线观看| 久久毛片免费看一区二区三区| 日韩一本色道免费dvd| 男女高潮啪啪啪动态图| netflix在线观看网站| 日本欧美国产在线视频| 777久久人妻少妇嫩草av网站| 亚洲精品国产区一区二| 国产成人精品在线电影| 久久这里只有精品19| netflix在线观看网站| 丁香六月天网| 亚洲国产欧美一区二区综合| 午夜免费鲁丝| 久久久久久人妻| 成人亚洲欧美一区二区av| 日日撸夜夜添| 亚洲欧美一区二区三区国产| 啦啦啦 在线观看视频| 日韩精品有码人妻一区| 日韩欧美精品免费久久| 人妻 亚洲 视频| 婷婷色麻豆天堂久久| 人人澡人人妻人| 午夜精品国产一区二区电影| 黄频高清免费视频| 国产高清国产精品国产三级| 亚洲美女搞黄在线观看| 欧美在线一区亚洲| 亚洲精品国产色婷婷电影| 9热在线视频观看99| 久久久久久久国产电影| 亚洲国产毛片av蜜桃av| 国产男女超爽视频在线观看| 精品久久蜜臀av无| 青春草国产在线视频| 亚洲在久久综合| 在线观看免费午夜福利视频| 美女国产高潮福利片在线看| 国产一区二区三区综合在线观看| 可以免费在线观看a视频的电影网站 | 国产淫语在线视频| 亚洲天堂av无毛| 亚洲成人手机| 秋霞伦理黄片| 欧美精品一区二区免费开放| 精品国产国语对白av| 在线观看一区二区三区激情| 中文欧美无线码| 少妇猛男粗大的猛烈进出视频| 高清在线视频一区二区三区| 欧美xxⅹ黑人| 看免费av毛片| avwww免费| 国产精品国产三级专区第一集| 黄色怎么调成土黄色| www.自偷自拍.com| 久久免费观看电影| 国产精品女同一区二区软件| 女人高潮潮喷娇喘18禁视频| 伊人亚洲综合成人网| 人人妻人人澡人人看| 国产亚洲欧美精品永久| 亚洲av男天堂| 伦理电影免费视频| 午夜福利影视在线免费观看| 在线观看www视频免费| 在线观看一区二区三区激情| 亚洲中文av在线| 99香蕉大伊视频| 黑人猛操日本美女一级片| 一级毛片我不卡| 女人被躁到高潮嗷嗷叫费观| 亚洲视频免费观看视频| 国产精品av久久久久免费| 少妇被粗大猛烈的视频| 中文字幕最新亚洲高清| 在线 av 中文字幕| 国产野战对白在线观看| 亚洲精品美女久久av网站| 99精品久久久久人妻精品| av天堂久久9| 80岁老熟妇乱子伦牲交| 亚洲天堂av无毛| 精品久久久精品久久久| 久久天堂一区二区三区四区| 十分钟在线观看高清视频www| 亚洲欧美精品综合一区二区三区| 啦啦啦 在线观看视频| 18禁裸乳无遮挡动漫免费视频| 久热爱精品视频在线9| 久久精品国产亚洲av涩爱| 少妇人妻久久综合中文| 久久久久国产精品人妻一区二区| 久久女婷五月综合色啪小说| svipshipincom国产片| 国产成人欧美| 欧美在线一区亚洲| 日韩成人av中文字幕在线观看| 亚洲国产精品国产精品| 只有这里有精品99| 高清欧美精品videossex| 国产精品久久久人人做人人爽| 69精品国产乱码久久久| 欧美精品亚洲一区二区| 90打野战视频偷拍视频| 丰满迷人的少妇在线观看| 亚洲av成人不卡在线观看播放网 | 欧美激情极品国产一区二区三区| 久久久精品94久久精品| 国产野战对白在线观看| 国产精品偷伦视频观看了| 精品卡一卡二卡四卡免费| 精品一品国产午夜福利视频| 亚洲av成人精品一二三区| 9热在线视频观看99| 亚洲国产日韩一区二区| 黑人猛操日本美女一级片| 男人舔女人的私密视频| 男的添女的下面高潮视频| 啦啦啦中文免费视频观看日本| 搡老岳熟女国产| 91国产中文字幕| 欧美日韩国产mv在线观看视频| 欧美变态另类bdsm刘玥| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美一区二区三区国产| 中文字幕另类日韩欧美亚洲嫩草| 一二三四中文在线观看免费高清| 亚洲视频免费观看视频| 午夜激情久久久久久久| 亚洲av在线观看美女高潮| 日韩一本色道免费dvd| 男男h啪啪无遮挡| 成年动漫av网址| 欧美日韩一级在线毛片| 精品少妇一区二区三区视频日本电影 | 中文欧美无线码| 我要看黄色一级片免费的| 高清视频免费观看一区二区| 亚洲精品国产一区二区精华液| 久久久久久久大尺度免费视频| 国产免费福利视频在线观看| 99久久综合免费| 久久久精品免费免费高清| 国产精品秋霞免费鲁丝片| 在线免费观看不下载黄p国产| 国产高清不卡午夜福利| 一区二区三区四区激情视频| 18禁国产床啪视频网站| 高清av免费在线| 午夜精品国产一区二区电影| 青草久久国产| 欧美精品亚洲一区二区| 久久人妻熟女aⅴ| 看免费av毛片| 尾随美女入室| 多毛熟女@视频| 亚洲精品一区蜜桃| 少妇被粗大猛烈的视频| 热re99久久精品国产66热6| 亚洲欧美一区二区三区黑人| 久久青草综合色| 青春草视频在线免费观看| 久久精品久久久久久噜噜老黄| 欧美精品亚洲一区二区| 满18在线观看网站| 日韩免费高清中文字幕av| 国产成人一区二区在线| 久久久精品94久久精品| 日韩电影二区| 久久久久国产一级毛片高清牌| 老汉色∧v一级毛片| 亚洲av欧美aⅴ国产| 国产成人a∨麻豆精品| 国产精品久久久人人做人人爽| 七月丁香在线播放| 18禁观看日本| 亚洲美女黄色视频免费看| www日本在线高清视频| 亚洲在久久综合| 美女扒开内裤让男人捅视频| 欧美av亚洲av综合av国产av | 国产精品麻豆人妻色哟哟久久| 日本av免费视频播放| a 毛片基地| 久久国产精品大桥未久av| 人人澡人人妻人| 久久婷婷青草| 又粗又硬又长又爽又黄的视频| 日韩制服丝袜自拍偷拍| 欧美人与性动交α欧美精品济南到| a 毛片基地| 欧美日韩亚洲综合一区二区三区_| 日本av手机在线免费观看| 午夜免费观看性视频| e午夜精品久久久久久久| 亚洲av综合色区一区| 国产精品久久久久久人妻精品电影 | a级片在线免费高清观看视频| 久久久久视频综合| 久久久久久久国产电影| 哪个播放器可以免费观看大片| 少妇 在线观看| 亚洲欧美精品自产自拍| 最近手机中文字幕大全| 伦理电影大哥的女人| 制服人妻中文乱码| 国产成人午夜福利电影在线观看| 欧美国产精品一级二级三级| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲免费av在线视频| 欧美日韩亚洲高清精品| 成人手机av| 欧美日韩精品网址| 中文天堂在线官网| 欧美国产精品va在线观看不卡| 波野结衣二区三区在线| 中文字幕av电影在线播放| 日本91视频免费播放| 香蕉丝袜av| 亚洲精品乱久久久久久| av不卡在线播放| 亚洲第一av免费看| 成年美女黄网站色视频大全免费| 午夜久久久在线观看| 亚洲欧美日韩另类电影网站| 国产午夜精品一二区理论片| 91国产中文字幕| 久久国产亚洲av麻豆专区| 热99久久久久精品小说推荐| 亚洲国产中文字幕在线视频| 在线观看免费视频网站a站| 亚洲熟女精品中文字幕| 一区二区三区乱码不卡18| 成年动漫av网址| 丝袜人妻中文字幕| 久久热在线av| 天天躁夜夜躁狠狠躁躁| 成年美女黄网站色视频大全免费| 国产片内射在线| 久久精品aⅴ一区二区三区四区| 亚洲精品视频女| 国产免费视频播放在线视频| 亚洲第一av免费看| 91aial.com中文字幕在线观看| 9191精品国产免费久久| 久久久精品免费免费高清| 日韩精品有码人妻一区| 一级毛片我不卡| 亚洲国产看品久久| 国产 一区精品| 亚洲欧美清纯卡通| 一级爰片在线观看| 国产精品无大码| av电影中文网址| 精品人妻在线不人妻| 又大又黄又爽视频免费| 国产片特级美女逼逼视频| 欧美老熟妇乱子伦牲交| 亚洲av男天堂| 女性被躁到高潮视频| 99精国产麻豆久久婷婷| 日日摸夜夜添夜夜爱| 久久国产精品男人的天堂亚洲| 国产女主播在线喷水免费视频网站| 黑人欧美特级aaaaaa片| 黄片小视频在线播放| 一边亲一边摸免费视频| 亚洲国产成人一精品久久久| 久久精品国产亚洲av高清一级| 色视频在线一区二区三区| 国产在线一区二区三区精| 91国产中文字幕| 欧美成人午夜精品| 亚洲人成电影观看| 在线免费观看不下载黄p国产| 国产精品 国内视频| 9热在线视频观看99| 成人毛片60女人毛片免费| 夜夜骑夜夜射夜夜干| 国产高清不卡午夜福利| 夜夜骑夜夜射夜夜干| 一级毛片黄色毛片免费观看视频| 2021少妇久久久久久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 无限看片的www在线观看| 久久精品国产亚洲av涩爱| 久久久久国产一级毛片高清牌| 亚洲成人一二三区av| 交换朋友夫妻互换小说| 97人妻天天添夜夜摸| 人成视频在线观看免费观看| 丝袜脚勾引网站| 国产女主播在线喷水免费视频网站| 亚洲国产最新在线播放| 国产毛片在线视频| 99久久精品国产亚洲精品| 人妻人人澡人人爽人人| 午夜福利,免费看| 亚洲成国产人片在线观看| 在线观看www视频免费| 狠狠婷婷综合久久久久久88av| 黄色怎么调成土黄色| 精品国产一区二区三区四区第35| 日本av免费视频播放| 色婷婷久久久亚洲欧美| 国产一卡二卡三卡精品 | 久久青草综合色| 在线观看免费视频网站a站| 一区二区av电影网| 少妇人妻精品综合一区二区| 视频在线观看一区二区三区| 婷婷色av中文字幕| 久久精品久久久久久噜噜老黄| 男人舔女人的私密视频| 桃花免费在线播放| 久久国产精品男人的天堂亚洲| 国产亚洲欧美精品永久| 蜜桃在线观看..| 天堂8中文在线网| 亚洲国产日韩一区二区| 亚洲欧美一区二区三区久久| 亚洲国产精品一区二区三区在线| 亚洲欧美精品综合一区二区三区| 街头女战士在线观看网站| 国产成人欧美| 国产欧美日韩综合在线一区二区| 精品人妻一区二区三区麻豆| 日韩中文字幕视频在线看片| 精品一品国产午夜福利视频| 成人漫画全彩无遮挡| 久久久久精品人妻al黑| netflix在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| 老司机在亚洲福利影院| 亚洲人成电影观看| 午夜精品国产一区二区电影| 最近最新中文字幕免费大全7| 国产精品久久久av美女十八| 男女国产视频网站| 欧美人与善性xxx| 久久久久久久精品精品| 午夜福利在线免费观看网站| 老司机深夜福利视频在线观看 | 丝袜美腿诱惑在线| 老司机亚洲免费影院| 亚洲国产欧美一区二区综合| 免费看av在线观看网站| 欧美日韩福利视频一区二区| 国产亚洲av片在线观看秒播厂| 成人三级做爰电影| a级片在线免费高清观看视频| 精品少妇久久久久久888优播| 五月开心婷婷网| 女人爽到高潮嗷嗷叫在线视频| 亚洲第一区二区三区不卡| 一边摸一边抽搐一进一出视频| 男女边摸边吃奶| 亚洲精品国产区一区二| 极品人妻少妇av视频| videos熟女内射| 亚洲国产欧美在线一区| 熟女av电影| 丁香六月欧美| 你懂的网址亚洲精品在线观看| 999精品在线视频| 欧美精品一区二区免费开放| 亚洲av在线观看美女高潮| 午夜老司机福利片| 中文字幕亚洲精品专区| 黄片无遮挡物在线观看| 欧美日韩精品网址| av在线观看视频网站免费| 在线亚洲精品国产二区图片欧美| 亚洲免费av在线视频| 精品视频人人做人人爽| 国产成人av激情在线播放| 美女高潮到喷水免费观看| 国语对白做爰xxxⅹ性视频网站| 天天操日日干夜夜撸| 秋霞在线观看毛片| 国产极品粉嫩免费观看在线| 国产精品麻豆人妻色哟哟久久| 免费av中文字幕在线| 久久av网站| 毛片一级片免费看久久久久| 日本黄色日本黄色录像| 七月丁香在线播放| 久久久精品94久久精品| 亚洲美女搞黄在线观看| 亚洲av国产av综合av卡| 久久久久视频综合| 欧美日韩精品网址| 精品国产露脸久久av麻豆| 亚洲婷婷狠狠爱综合网| 久久久久久久久久久免费av| 成人影院久久| 国产午夜精品一二区理论片| 国产成人啪精品午夜网站| 日韩视频在线欧美| av又黄又爽大尺度在线免费看| 国产野战对白在线观看| 极品人妻少妇av视频| 99久久人妻综合| 亚洲国产av新网站| www.自偷自拍.com| 亚洲欧洲国产日韩| 中文字幕亚洲精品专区| 欧美日韩一级在线毛片| 久久久久久人人人人人| av福利片在线| 国产欧美日韩一区二区三区在线| 99精品久久久久人妻精品| 飞空精品影院首页| 国产精品无大码| 蜜桃在线观看..| 免费av中文字幕在线| 久久av网站| 日本爱情动作片www.在线观看| 国产精品二区激情视频| 成人18禁高潮啪啪吃奶动态图| 蜜桃在线观看..| 成人影院久久| a级片在线免费高清观看视频| 久久久精品94久久精品| 久久婷婷青草| 777米奇影视久久| 国产成人系列免费观看| av福利片在线| 五月天丁香电影| 久热这里只有精品99| 日韩制服骚丝袜av| 国产精品99久久99久久久不卡 | 久久久久视频综合| 免费在线观看完整版高清| 亚洲欧美一区二区三区久久| 国产黄色免费在线视频| 亚洲av成人不卡在线观看播放网 | 狂野欧美激情性xxxx| 亚洲,欧美精品.| 99九九在线精品视频| 久久天躁狠狠躁夜夜2o2o | 黑丝袜美女国产一区| a 毛片基地| 国产欧美日韩综合在线一区二区| 亚洲精品久久成人aⅴ小说| 日本爱情动作片www.在线观看| 老司机影院毛片| 亚洲精品第二区| 精品一区二区免费观看| 国产不卡av网站在线观看| 99久久99久久久精品蜜桃| 久久久亚洲精品成人影院| 成年av动漫网址| 夫妻午夜视频| 亚洲人成77777在线视频| 在线免费观看不下载黄p国产| 日本wwww免费看| 国产精品久久久人人做人人爽| 丝袜美足系列| 亚洲av国产av综合av卡| 涩涩av久久男人的天堂| 亚洲情色 制服丝袜| 免费观看av网站的网址| 亚洲成人一二三区av| 大码成人一级视频| 日韩欧美一区视频在线观看| 伦理电影免费视频| 深夜精品福利| 日本爱情动作片www.在线观看| 国产一区二区激情短视频 | 男的添女的下面高潮视频| 国产在视频线精品| 久久人妻熟女aⅴ| 丰满少妇做爰视频| 国产黄色免费在线视频| 日本91视频免费播放| 91老司机精品| 亚洲第一区二区三区不卡| 黄色 视频免费看| 777米奇影视久久| 黄色视频不卡| 一二三四在线观看免费中文在| 性少妇av在线| 国产毛片在线视频| 色婷婷久久久亚洲欧美| 日本一区二区免费在线视频| av视频免费观看在线观看| 精品卡一卡二卡四卡免费| 超色免费av| 一级爰片在线观看| 中文字幕av电影在线播放| 男女边摸边吃奶| videos熟女内射| 色视频在线一区二区三区| 高清黄色对白视频在线免费看| 亚洲国产欧美日韩在线播放| √禁漫天堂资源中文www| 亚洲成人av在线免费| 在线观看www视频免费| 成人三级做爰电影| 久久精品人人爽人人爽视色| 亚洲熟女毛片儿| 中国三级夫妇交换| 成年人免费黄色播放视频| 亚洲国产精品成人久久小说| 精品久久久久久电影网| 高清视频免费观看一区二区| 一边摸一边抽搐一进一出视频| 久久久精品国产亚洲av高清涩受| 欧美激情 高清一区二区三区| 超碰成人久久| 美女主播在线视频| 在线观看人妻少妇| 国产精品三级大全| 亚洲男人天堂网一区| 亚洲精品av麻豆狂野| av有码第一页| 精品久久久精品久久久| 美女大奶头黄色视频| 黄网站色视频无遮挡免费观看| 婷婷色综合大香蕉| 精品人妻一区二区三区麻豆| xxx大片免费视频| 亚洲精华国产精华液的使用体验| av在线播放精品| 一级毛片黄色毛片免费观看视频| 国产黄色视频一区二区在线观看| 日本av免费视频播放| 99久久人妻综合| 2018国产大陆天天弄谢| 考比视频在线观看| 无限看片的www在线观看| 少妇被粗大猛烈的视频| 18禁国产床啪视频网站| 老司机影院成人| 亚洲国产av新网站| 国产探花极品一区二区|