• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries?

    2021-05-06 08:55:16JunpingHu胡軍平ZhangyinWang王章寅GenruiZhang張根瑞YuLiu劉宇NingLiu劉寧WeiLi李未JianwenLi李健文ChuyingOuyang歐陽(yáng)楚英andShengyuanYang楊聲遠(yuǎn)
    Chinese Physics B 2021年4期
    關(guān)鍵詞:劉寧劉宇歐陽(yáng)

    Junping Hu(胡軍平), Zhangyin Wang(王章寅), Genrui Zhang(張根瑞), Yu Liu(劉宇), Ning Liu(劉寧),Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(歐陽(yáng)楚英), and Shengyuan A.Yang(楊聲遠(yuǎn))

    1Key Laboratory of Optoelectronic Materials and New Energy Technology,Nanchang Institute of Technology,Nanchang 330099,China

    2Department of Physics,Laboratory of Computational Materials Physics,Jiangxi Normal University,Nanchang 330022,China

    3Research Laboratory for Quantum Materials,Singapore University of Technology and Design,Singapore 487372,Singapore

    Keywords: first-principles calculations,Li-ion batteries,energy storage,physical propertyies

    1. Introduction

    The Li-ion batteries (LIBs) have been playing a significant role in the commercial energy storage market. The range of applications for different types of LIBs includes portable electronic devices, electric vehicles, and large-scale power grids, and continues to expand rapidly.[1–5]Under this development, a key challenge is to further increase the storage capacity of LIBs. This problem has attracted tremendous research effort, and it involves improving multiple components of the battery design.[6–15]

    As an important component of the LIB system,anode materials have received increasing attention in recent years. The traditional anode material is made of graphite. However, its theoretic capacity (~372 mA·h/g) is not high, and its rate performance is also poor.[16]Thus,there is large room of improvement to enhance the LIB capacity and performance by replacing graphite with some new anode materials.

    In the last decade, this direction of research has gained great impetus from the rapid advance of two-dimensional(2D)materials. 2D materials possess several advantages to be used as electrode materials:[17–32](i) 2D materials have large specific surface areas;(ii)they provide atomically sharp and clean interfaces;and(iii)many 2D materials have high electric conductivity. Feature(i)directly boosts the the Li storage capacity. Feature (ii) is beneficial for the Li diffusion on the surface,which is crucial for the battery rate performance.Feature(iii)is also a necessity for any electrode material. In addition,generally speaking,2D materials have relatively small volume changes during lithium ion embedding and de-embedding,which is a requirement for maintaining the structural integrity of the electrode.[33,34]

    Because of the above reasons, many 2D materials have been studied for LIB anode applications. In terms of their constituent elements, these 2D materials can be divided into two categories, those containing metal atoms and those not.Generally speaking, there are two approaches to increase the theoretical capacity of anode materials: one is by increasing the amount of embedded lithium, and the other is by minimizing the weight of the anode material. Compared to the materials made of light non-metal elements which are favored by the latter approach,2D materials with metal elements typically have a higher weight, but meanwhile, they also tend to accommodate more Li,and usually they exhibit good electric conductivity. A representative class of such materials is the MXenes, which has been extensively studied for LIB applications both theoretically and experimentally. However,their practical capacity is not satisfactory, possibly because of the undesired surface passivation during the preparation process.

    Recently, a new 2D material MnN was proposed and revealed to be a 2D nodal-loop half-metal.[35,36]The material can be synthesized by a spontaneous graphitic conversion from the ultrathin (111)-oriented cubic MnN.[37]It has an out-ofplane ferromagnetic ground state with interesting fully spinpolarized nodal loops.[35]Not considering the magnetic property,2D MnN manifests three features desirable for LIB applications. First,the material is of a single atom thickness,which further minimizes the volume and should facilitate the ion diffusion on its surface. Second, the material is metallic with a good conductivity. Third,both elements Mn and N are rich in nature. The metal element Mn comprises about 0.1% of the earth crust and is the 12thmost abundant element on earth.[38]This is important for lowering the cost.

    Motivated by the above considerations, based on firstprinciples calculations, we investigate here the physical and energy storage properties of 2D MnN as an electrode material for LIBs. We find that it satisfies almost all the requirements for a good anode material. Specifically, we demonstrate that MnN is mechanically, dynamically, and thermodynamically stable. The configurations before and after lithium adsorption exhibit good electrical conductivity. The study of Li diffusion on its surface reveals a very low diffusion barrier(~0.12 eV),indicating excellent rate performance. The calculated average open-circuit voltage of the half-cell at full charge is also very low (~0.22 V), which facilitates higher operating voltage.Its corresponding theoretical capacity is above 1554 mA·h/g,more than four times that of graphite. In addition, the lattice changes of the material during lithium intercalation are very small (~1.2%–~4.8%), which implies good cycling performance. Together,these results reveal that 2D MnN could be a promising anode material for LIBs.

    2. Computational details

    Our first-principles calculations are based on the density functional theory (DFT) using the plane-wave pseudopotentials[39,40]as implemented in the Vienna ab initio simulation package (VASP).[41,42]The exchange–correlation functional is modeled in the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE)realization.[43]Manganese 3d52s2, nitrogen 1s22s2p2, and lithium 1s22s electrons are deemed as valence electrons in all the following calculations. A cutoff energy of 520 eV is introduced for the plane wave expansion. The Brillouin zone is sampled with 5×5×1 Monkhorst–Pack k-point mesh[44]for the structural optimization, and with 9×9×1 mesh for the electronic structure calculations. The convergence criteria for the total energy and ionic forces are set to be 10?5eV and 10?3eV/?A,respectively.[33]In our calculations, periodic images of a monolayer are separated by vacuum layers with thickness larger than 18.0 ?A,so that the artificial interactions between the images are negligible.[33]

    The adsorption energy(Ead)[33]for Li atom on the surface is defined as

    Then the energy difference provides an estimated average open-circuit voltage for a half-cell reaction involving xLi ions

    The corresponding theoretic specific capacity could be estimated from the following equation:

    where x represents the maximum number of electrons involved in the electrochemical process,F is the Faraday constant with the value of 26789 mA·h/mol,and MMnNis the mass of MnN in g/mol.

    3. Results and discussion

    3.1. Lattice structure and stability

    Before proceeding to investigate its energy storage behavior,we first study the intrinsic crystal structure of 2D MnN in detail. The lattice structure is shown in Fig.1,which belongs to the space group of P-6M2(D3h-1). There is only one bond length in the structure, with the value of 1.928 ?A. The optimized lattice constants a and b are both equal to 6.679 ?A.These values agree with previous results.[35]

    Fig.1. (a)Top view of MnN monolayer,in which the unit cell and all considered adsorption sites are plotted,the θ dependence of(b)Young’s module and(c)Poisson’s ratio for MnN monolayer.

    Fig.2. (a) The calculated phonon spectrum and the corresponding Brillouin zone for monolayer MnN. (b) Result from AIMD simulation,including the time-resolved displacement of all atoms in MnN monolayer.(c)The structure of MnN monolayer after 10 ps in AIMD simulation.

    As for the dynamic and thermodynamic stability of 2D MnN, it can clearly be seen from the phonon spectrum and the molecular dynamics simulations. As shown in Fig.2(a),there is no imaginary-frequency phonon mode,indicating that the material is dynamically stable. Close to the point, there are two linearly dispersed in-plane acoustic branches, one of which has degeneracy with the out-of-plane acoustic (ZA)branch. We have also conducted the ab initio molecular dynamics(AIMD)simulations. The displacements of the atoms at 500 K over the simulation period of 10 ps are plotted in Fig.2(b),and the snapshot at 10 ps is plotted in Fig.2(c). The results show that the material remains stable. We have also tested the simulation up to 2000 K,and the atomic structure is still kept(see Fig.S1). All these results indicate that 2D MnN is very stable.

    3.2. Li adsorption

    The Li adsorption energy is a critical indicator to judge whether a material can be used as electrode material or not. In addition,it is required that the material remains a good metal during the adsorption process.

    To study Li adsorption on 2D MnN, the most favorable adsorption sites should be identified first. Based on the symmetry, we considered four initial adsorption sites, as shown in Fig.1. These initial positions can be classified into three categories: (1)the hollow site locating above a six-membered ring; (2) the top sites locating on top of Mn or N atoms; (3)the bridge site locating above the midpoint of the Mn–N bond.Moreover,due to the mirror symmetric structure,we symmetrically put two Li atoms on both sides of the 2D layer.

    Fig.3. Top view of Li adsorption on(a)hollow site,(b)Mn top site,(c)N top site,and(d)Mn–N bridge site;(e)–(h)the corresponding side view. The atomic color is the same as that in Fig.1.

    The adsorption energy is calculated by Eq. (1) to determine which adsorption site Li prefers. The lower the corresponding adsorption energy, the more stable the corresponding configuration. In addition, negative or positive value of the adsorption energy indicates whether Li can spontaneously adsorb or not. The calculated Li adsorption energies for the different sites are presented in Table 1. There,the stability of the adsorption is ranked in the order from high to low,for adsorption at the top site(N),the hollow site,the bridge site,and the top site(Mn).Among them,the most stable adsorption site is the hollow site.

    Table 1.Adsorption energies for Li at different adsorption sites on MnN monolayer,and the corresponding adsorption heights,which are defined as the vertical distance from the Li-ion to the center plane. The Li–Mn and Li–N distances are the distances from Li to its nearest neighboring Mn or N atoms.

    Next,we utilize the Bader charge analysis to analyze the charge transfer that occurs between Li atoms and the MnN host. For the hollow adsorption site,we find that each Li loses~0.84e, each Mn atom loses ~1.14e, and each N atom obtains ~1.56e. For the top adsorption site (N), we find that each Li loses ~0.82e,each Mn atom loses ~1.10e,and each N atom obtains ~1.51e. In both of these adsorption configurations, the Li atoms become positively charged, while the host is negatively charged.

    Then, let us check the metallicity of the material during the Li adsorption. In Fig.4,we plot the calculated local density of states (DOS)[47]of MnN before adsorption and after adsorbing Li at different sites. We find that 2D MnN can keep the metallic property before and after Li adsorption. This satisfies the requirement for a proper LIB electrode material.

    Fig.4. The electronic properties: (a)local density of states for pristine MnN monolayer,and(b)–(e)its corresponding four optimized adsorption configurations.

    3.3. Li migration on the MnN surface

    Besides electronic conductivity,ionic diffusion is another important property. The faster migration of Li ions in the electrode material,the better the rate performance of its corresponding lithium-ion battery.To investigate the Li diffusion on 2D MnN,we use a 4×4 supercell containing 16 Mn and 16 N for calculation. The climbing-image nudged elastic band(Cl-NEB) method[48]is used. This method determines not only the value of the diffusion potential barrier,but also the saddle point. Based on the previous adsorption energy calculations,we select the two nearest neighboring and most stable adsorption configurations as the initial and final states, respectively.Following from the symmetry,we consider the diffusion process along three paths,as shown in Fig.5(a). Path-I and path-III indicate that Li migrates through the top site of Mn and the hollow site,respectively,in the process of diffusion. Path-II represents that Li migrates directly from the initial to final positions.

    For all three diffusion processes, the calculated energy barrier diagrams are shown in Fig.5. After Cl-NEB relaxation, the optimized pathways of path-I and path-III are almost the same as the initial ones,but path-II relaxes into path-III.The lowest barrier occurs through path-III,with a value of 0.12 eV.Typically,a diffusion barrier below 0.6 eV is considered acceptable. In comparison, the value of 0.12 eV is very low, which indicates that excellent rate performance can be expected for 2D MnN.

    Fig.5. (a) The considered Li migration pathways and (b) the corresponding diffusion-barrier profile along the three pathways.

    3.4. Average open-circuit voltage and theoretic storage capacity

    The average open-circuit voltage (OCV) and the storage capacity are another two important properties for LIBs. To investigate these two,based on our discussion of the adsorption energies of Li at various adsorption sites in Subsection 3.2,we will progressively raise the amount of Li atoms symmetrically adsorbed on both sides of 2D MnN.In the calculation,we continue to adopt the 2×2 supercell. By launching the half-cell reaction model as follows:

    the average OCV can be obtained as an approximation from the energy difference according to Eq.(2).

    Based on the adsorption energy of different sites,the order is to cover the top site(N)first as the first layer(symmetrically on both sides),followed by the hollow site(Mn)as the second layer, and finally the top site (Mn) as the third layer.This is displayed in Fig.6. To evaluate the coupling between the Li layer and the host material, we compute the average adsorption energy of Li atoms in each sequential layer(Eav),which is defined as[49]

    The corresponding average adsorption energies are calculated to be ?0.343 eV,?0.106 eV,and ?0.039 eV when Li is adsorbed in the first, second, and third layers in sequence,respectively. The Eavvalues for both the first and the second layers are below ?0.1 eV,indicating that at least two layers of Li can be adsorbed on each side of 2D MnN(totally four layers of Li for both sides). Meanwhile,we note that the Eavvalue is still negative even for the third layer,implying that there may also form a third Li layer. However, this negative Eavvalue is small. As a conservative estimation, we do not take the third layer into account. Then,each 2×2 MnN supercell can accommodate up to 16 Li atoms. The corresponding chemical stoichiometry is Li16Mn4N4(or Li4MnN).The theoretical specific capacity is 1554 mA·h/g according to Eq.(3), which is four times that of graphite (~372 mA·h/g for LiC6) and~16 times that of pure graphene(~93 mA·h/g for LiC24).[33]If we further include the third layer on both sides of 2D MnN,the estimated capacity can even reach 2331 mA·h/g.

    Fig.6. Side view of the considered multilayer model: (a) Li8Mn4N4,(b)Li16Mn4N4,(c)Li24Mn4N4,and their corresponding side view: (d)Li8Mn4N4,(e)Li16Mn4N4,(f)Li24Mn4N4.

    The capacity of 2D MnN is remarkably high. To illustrate this, we compare this value with those of several other 2D anode materials proposed so far. In Fig.7, we compare MnN’s performance separately with the 2D materials containing metal elements and the 2D materials without metal elements. One can observe that MnN’s capacity outperforms most members in each figure. Particularly, comparing with the materials containing metal elements, MnN is the second best among the materials reported to date. Its value is only lower than that of Mg3N2. We need to point out that the value 1554 mA·h/g of 2D MnN used for comparison here is a conservative estimation. The value of 2331 mA·h/g when including the third Li layer would outperform all previous reported values.

    Fig.7. Comparison of the theoretical Li storage capacity values between MnN monolayer and other 2D anode materials (plus graphite):(a)Host materials only contains non-metallic elements,(b)Host materials contain metal elements.

    Finally, by using Eq. (2), the calculated average OCV is 0.22 V, which is quite low, desired for anode materials. And the lattice parameters change from 1.2%to 4.8%during intercalation,indicating that 2D MnN should also enjoy great cycle performance.

    4. Conclusion

    By using first-principles calculations,we predict that 2D MnN can be a promising high-capacity LIB anode material.We demonstrate that the material has excellent mechanically,dynamically, and thermodynamically stability, good electrical conductivity before and after Li adsorption, very low diffusion barrier (~0.12 eV), low average open circuit voltage(~0.22 V), and small lattice expansion (~1.2% to ~4.8%)during Li intercalation. These properties ensure its superior rate,cycle,and stability performances. More importantly,we find that its theoretical capacity can be above 1554 mA·h/g(Li4MnN), which is four times that of graphite. The high capacity is connected with the facts that (1) the single-atomthickness allows the exposure of more adsorption sites;and(2)the adsorption energies of Li are very close to each other for sites on the top of the hollow site and the N site. Our work not only predicts a promising anode material for LIBs with ultrahigh capacity,but also provides new insights into engineering materials for energy storage applications.

    Acknowledgements

    The results described in this paper are obtained on the China National Grid (http://www.cngrid.org) and China Scientific Computing Grid(http://www.scgrid.cn).[50]

    猜你喜歡
    劉寧劉宇歐陽(yáng)
    我家的健忘老媽
    歐陽(yáng)彥等
    快樂(lè)的事
    不怕打針
    我沒(méi)有不聽(tīng)話
    跨越13年的暗戀
    37°女人(2019年9期)2019-12-16 06:50:12
    依依送別歐陽(yáng)鶴先生
    專題III物質(zhì)的化學(xué)變化
    歐陽(yáng)麗作品
    劉寧詩(shī)詞選
    亚洲成国产人片在线观看| 久久午夜综合久久蜜桃| 久久久国产成人免费| 一二三四社区在线视频社区8| 韩国精品一区二区三区| 色老头精品视频在线观看| 色综合欧美亚洲国产小说| 久久久久视频综合| 亚洲性夜色夜夜综合| 精品人妻1区二区| 精品第一国产精品| 别揉我奶头~嗯~啊~动态视频| 男女下面插进去视频免费观看| 中文字幕人妻丝袜制服| 99精国产麻豆久久婷婷| 久久久国产精品麻豆| 国产精品九九99| 精品一品国产午夜福利视频| ponron亚洲| 黄色 视频免费看| 久久香蕉精品热| 亚洲专区字幕在线| 窝窝影院91人妻| 欧美最黄视频在线播放免费 | 国产又爽黄色视频| 国产高清视频在线播放一区| 亚洲五月色婷婷综合| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久精品久久久| 好看av亚洲va欧美ⅴa在| 国产精品一区二区在线不卡| 亚洲第一欧美日韩一区二区三区| 十分钟在线观看高清视频www| 99精品久久久久人妻精品| 在线看a的网站| 在线看a的网站| 免费女性裸体啪啪无遮挡网站| 免费高清在线观看日韩| 五月开心婷婷网| 亚洲av成人av| 在线观看免费视频网站a站| 免费黄频网站在线观看国产| 亚洲少妇的诱惑av| 精品电影一区二区在线| 久久久精品区二区三区| 好看av亚洲va欧美ⅴa在| 免费在线观看日本一区| 久久青草综合色| 久久午夜综合久久蜜桃| 欧美另类亚洲清纯唯美| 成年女人毛片免费观看观看9 | 一级毛片精品| 99精品在免费线老司机午夜| 亚洲色图综合在线观看| 国精品久久久久久国模美| 怎么达到女性高潮| 国产人伦9x9x在线观看| 国内久久婷婷六月综合欲色啪| 精品久久蜜臀av无| 国产97色在线日韩免费| 国产精品亚洲av一区麻豆| 国产亚洲欧美98| 国产成人欧美在线观看 | 999精品在线视频| 天堂俺去俺来也www色官网| 麻豆乱淫一区二区| 久久久久国产精品人妻aⅴ院 | 久热这里只有精品99| 热99久久久久精品小说推荐| 一本一本久久a久久精品综合妖精| 宅男免费午夜| 国产精品免费一区二区三区在线 | 久久久久久久精品吃奶| 亚洲av日韩在线播放| 久久人妻熟女aⅴ| 亚洲国产精品一区二区三区在线| 一进一出抽搐动态| 亚洲一卡2卡3卡4卡5卡精品中文| 操出白浆在线播放| 精品无人区乱码1区二区| 国产97色在线日韩免费| 国产精品亚洲av一区麻豆| 最新在线观看一区二区三区| 国产单亲对白刺激| 精品午夜福利视频在线观看一区| 老司机午夜福利在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 免费久久久久久久精品成人欧美视频| 亚洲国产中文字幕在线视频| 成人18禁高潮啪啪吃奶动态图| 欧美大码av| 国产精品免费大片| 精品久久久久久久久久免费视频 | 久久九九热精品免费| 波多野结衣一区麻豆| 日本撒尿小便嘘嘘汇集6| 亚洲第一欧美日韩一区二区三区| 成人三级做爰电影| 亚洲国产中文字幕在线视频| 欧美久久黑人一区二区| 国产成人av激情在线播放| 亚洲色图综合在线观看| 午夜91福利影院| 久久久久国产精品人妻aⅴ院 | 一级,二级,三级黄色视频| 国产精品偷伦视频观看了| 亚洲欧美激情综合另类| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久电影网| 国产成人欧美在线观看 | 女人高潮潮喷娇喘18禁视频| 欧美av亚洲av综合av国产av| 99久久人妻综合| 久久国产精品男人的天堂亚洲| 极品少妇高潮喷水抽搐| 亚洲国产精品sss在线观看 | 国产成人一区二区三区免费视频网站| 一区在线观看完整版| 亚洲人成伊人成综合网2020| 热99re8久久精品国产| 久久久国产一区二区| 一级片'在线观看视频| 国产片内射在线| 精品国产乱子伦一区二区三区| 亚洲午夜理论影院| 亚洲va日本ⅴa欧美va伊人久久| 9热在线视频观看99| 在线观看www视频免费| 成人国产一区最新在线观看| 免费看a级黄色片| av视频免费观看在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲成av片中文字幕在线观看| 亚洲av美国av| 久久人妻福利社区极品人妻图片| 久久精品91无色码中文字幕| 成人黄色视频免费在线看| 99热国产这里只有精品6| 99久久综合精品五月天人人| 伦理电影免费视频| 国产激情欧美一区二区| 又黄又粗又硬又大视频| 在线十欧美十亚洲十日本专区| 一级黄色大片毛片| 欧美日韩黄片免| 免费看a级黄色片| 欧美午夜高清在线| 女性生殖器流出的白浆| 女人久久www免费人成看片| 丝袜美腿诱惑在线| cao死你这个sao货| 久9热在线精品视频| 国产麻豆69| 狂野欧美激情性xxxx| 男女高潮啪啪啪动态图| 亚洲中文日韩欧美视频| 91九色精品人成在线观看| 久久香蕉精品热| 老熟女久久久| 99re在线观看精品视频| 天堂动漫精品| 国产亚洲精品久久久久5区| 欧美乱色亚洲激情| 热99国产精品久久久久久7| 亚洲欧美日韩另类电影网站| 悠悠久久av| 国产真人三级小视频在线观看| 女人久久www免费人成看片| 亚洲av第一区精品v没综合| 久久午夜亚洲精品久久| 欧美黄色淫秽网站| 午夜成年电影在线免费观看| 日日爽夜夜爽网站| 又紧又爽又黄一区二区| 国产成人欧美| 精品国产一区二区三区四区第35| 十八禁网站免费在线| 国内毛片毛片毛片毛片毛片| 久久精品国产亚洲av高清一级| 久久九九热精品免费| 777米奇影视久久| 国产成人免费无遮挡视频| 手机成人av网站| 黑人巨大精品欧美一区二区蜜桃| 久久久精品免费免费高清| 国产亚洲精品久久久久5区| 精品熟女少妇八av免费久了| 日韩欧美在线二视频 | 美女高潮到喷水免费观看| 中亚洲国语对白在线视频| 国产亚洲欧美98| 啦啦啦在线免费观看视频4| 久久香蕉精品热| 亚洲国产看品久久| 国产成人精品在线电影| 波多野结衣一区麻豆| 高清av免费在线| av国产精品久久久久影院| av电影中文网址| 亚洲av片天天在线观看| 9热在线视频观看99| 日韩制服丝袜自拍偷拍| 欧美av亚洲av综合av国产av| 亚洲国产毛片av蜜桃av| 天天影视国产精品| 国产精品香港三级国产av潘金莲| 女性生殖器流出的白浆| 又大又爽又粗| 夜夜夜夜夜久久久久| 久久热在线av| 免费在线观看视频国产中文字幕亚洲| 女同久久另类99精品国产91| 亚洲欧美色中文字幕在线| 五月开心婷婷网| 在线观看午夜福利视频| 亚洲一区高清亚洲精品| 亚洲精品av麻豆狂野| 国产亚洲一区二区精品| 国产蜜桃级精品一区二区三区 | 韩国av一区二区三区四区| 丰满饥渴人妻一区二区三| 一a级毛片在线观看| 黄色视频,在线免费观看| tocl精华| 国产激情久久老熟女| 一本综合久久免费| www.自偷自拍.com| 欧美日本中文国产一区发布| 色精品久久人妻99蜜桃| 成年女人毛片免费观看观看9 | 国产精品影院久久| 亚洲,欧美精品.| 最近最新免费中文字幕在线| 老司机午夜福利在线观看视频| 亚洲一区二区三区不卡视频| 精品电影一区二区在线| 精品人妻熟女毛片av久久网站| 免费看十八禁软件| 日韩欧美在线二视频 | 国产免费现黄频在线看| 欧美日韩成人在线一区二区| 免费av中文字幕在线| 欧美性长视频在线观看| 午夜视频精品福利| 捣出白浆h1v1| 91国产中文字幕| 国产高清国产精品国产三级| 无限看片的www在线观看| 12—13女人毛片做爰片一| 另类亚洲欧美激情| 国产精品 国内视频| 国产精品亚洲av一区麻豆| 一区二区三区国产精品乱码| 建设人人有责人人尽责人人享有的| 搡老岳熟女国产| 男女之事视频高清在线观看| 免费在线观看亚洲国产| 99精品在免费线老司机午夜| 久久婷婷成人综合色麻豆| 在线免费观看的www视频| 高清黄色对白视频在线免费看| 成人国语在线视频| 黑人操中国人逼视频| 午夜免费成人在线视频| 老汉色av国产亚洲站长工具| 久久久久国内视频| 18禁裸乳无遮挡动漫免费视频| 看黄色毛片网站| 999精品在线视频| 国产精品二区激情视频| 在线观看免费日韩欧美大片| 久久久久久久久免费视频了| 在线观看免费视频日本深夜| 欧美黑人精品巨大| 大型av网站在线播放| 老司机午夜福利在线观看视频| 好看av亚洲va欧美ⅴa在| av线在线观看网站| 色94色欧美一区二区| 日本黄色视频三级网站网址 | 欧美人与性动交α欧美精品济南到| 久久影院123| 女同久久另类99精品国产91| 他把我摸到了高潮在线观看| 久久天躁狠狠躁夜夜2o2o| av片东京热男人的天堂| 王馨瑶露胸无遮挡在线观看| 极品少妇高潮喷水抽搐| 成在线人永久免费视频| 麻豆国产av国片精品| 国产成人av激情在线播放| 在线观看免费视频日本深夜| av欧美777| 精品乱码久久久久久99久播| 国产三级黄色录像| 天天添夜夜摸| 国产精品久久久久久人妻精品电影| 中亚洲国语对白在线视频| 午夜福利在线观看吧| tocl精华| 欧美丝袜亚洲另类 | www.自偷自拍.com| 色在线成人网| 他把我摸到了高潮在线观看| 亚洲av成人av| 国产有黄有色有爽视频| 欧美丝袜亚洲另类 | 亚洲精品国产一区二区精华液| 老司机亚洲免费影院| 少妇被粗大的猛进出69影院| 最近最新免费中文字幕在线| 国产人伦9x9x在线观看| 日韩免费av在线播放| 免费女性裸体啪啪无遮挡网站| 老司机福利观看| 国产精品98久久久久久宅男小说| 久久精品国产亚洲av香蕉五月 | 国产亚洲精品久久久久久毛片 | 日韩人妻精品一区2区三区| 亚洲国产中文字幕在线视频| 久热爱精品视频在线9| 亚洲成人国产一区在线观看| 91国产中文字幕| 怎么达到女性高潮| 12—13女人毛片做爰片一| 国产一区二区激情短视频| 免费不卡黄色视频| 免费在线观看视频国产中文字幕亚洲| 一级a爱片免费观看的视频| 男女之事视频高清在线观看| 中出人妻视频一区二区| 亚洲专区国产一区二区| 男女床上黄色一级片免费看| 久99久视频精品免费| 亚洲国产欧美网| 欧美av亚洲av综合av国产av| 大型av网站在线播放| 欧美精品av麻豆av| 身体一侧抽搐| 精品久久久久久久毛片微露脸| 国产区一区二久久| 老熟妇乱子伦视频在线观看| 久久久精品免费免费高清| 欧美乱妇无乱码| 精品高清国产在线一区| 国产精品影院久久| 男女下面插进去视频免费观看| 免费av中文字幕在线| 黄色 视频免费看| 日韩视频一区二区在线观看| 在线av久久热| 九色亚洲精品在线播放| 99re6热这里在线精品视频| 日本一区二区免费在线视频| 欧美人与性动交α欧美软件| 欧美午夜高清在线| 欧美日韩福利视频一区二区| 精品高清国产在线一区| 天天影视国产精品| 在线观看免费日韩欧美大片| 久久青草综合色| 女人高潮潮喷娇喘18禁视频| 久久久久久久精品吃奶| 人人澡人人妻人| 精品亚洲成a人片在线观看| 一级片免费观看大全| 国产成人av激情在线播放| 日本五十路高清| 亚洲黑人精品在线| 久久人妻av系列| 女人被躁到高潮嗷嗷叫费观| 亚洲国产精品一区二区三区在线| 亚洲情色 制服丝袜| 久久久久久久国产电影| 在线看a的网站| 国产高清国产精品国产三级| 精品电影一区二区在线| 久久人妻熟女aⅴ| 久久ye,这里只有精品| 嫩草影视91久久| 在线看a的网站| 9色porny在线观看| 国产在线一区二区三区精| 久久人妻熟女aⅴ| 精品一区二区三区av网在线观看| 亚洲av成人不卡在线观看播放网| 黄频高清免费视频| 最新美女视频免费是黄的| ponron亚洲| 欧美在线一区亚洲| 少妇猛男粗大的猛烈进出视频| 日韩欧美一区视频在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品乱码一区二三区的特点 | 国产高清国产精品国产三级| 一边摸一边做爽爽视频免费| 天堂动漫精品| 女人被狂操c到高潮| 亚洲成人免费电影在线观看| 国产一区二区三区综合在线观看| 久久久久国产一级毛片高清牌| 欧美黑人精品巨大| 在线观看午夜福利视频| 好看av亚洲va欧美ⅴa在| 80岁老熟妇乱子伦牲交| 欧美日韩福利视频一区二区| 一边摸一边抽搐一进一出视频| 十八禁网站免费在线| 成年女人毛片免费观看观看9 | 一区二区日韩欧美中文字幕| 精品熟女少妇八av免费久了| 757午夜福利合集在线观看| 在线免费观看的www视频| 色综合欧美亚洲国产小说| 久热爱精品视频在线9| 国产午夜精品久久久久久| 欧美黄色淫秽网站| 久久香蕉精品热| 99国产综合亚洲精品| 9色porny在线观看| 国产真人三级小视频在线观看| 如日韩欧美国产精品一区二区三区| 亚洲成人手机| 亚洲第一青青草原| 国产激情久久老熟女| 精品亚洲成a人片在线观看| 欧美乱妇无乱码| 在线观看66精品国产| 中文字幕人妻丝袜制服| 亚洲 欧美一区二区三区| 国产一卡二卡三卡精品| www.精华液| 丁香欧美五月| 久99久视频精品免费| 国产视频一区二区在线看| 99国产综合亚洲精品| 欧美最黄视频在线播放免费 | 欧美日韩黄片免| av超薄肉色丝袜交足视频| 亚洲专区字幕在线| 国产亚洲欧美在线一区二区| 久久人人爽av亚洲精品天堂| 国产精品.久久久| 嫁个100分男人电影在线观看| 动漫黄色视频在线观看| 午夜老司机福利片| 日本欧美视频一区| 成人影院久久| 欧美黑人欧美精品刺激| 黑人欧美特级aaaaaa片| 欧美日韩中文字幕国产精品一区二区三区 | av天堂久久9| 国产欧美日韩一区二区三| 国产精品永久免费网站| 国产一区二区三区综合在线观看| 热re99久久国产66热| 国产伦人伦偷精品视频| 黑人巨大精品欧美一区二区mp4| 欧美精品一区二区免费开放| 成人国产一区最新在线观看| 欧美一级毛片孕妇| 黄片小视频在线播放| 日日夜夜操网爽| 亚洲性夜色夜夜综合| 岛国在线观看网站| 桃红色精品国产亚洲av| 亚洲 国产 在线| 久久久久视频综合| 国产精品国产av在线观看| 久久ye,这里只有精品| 久久久水蜜桃国产精品网| 亚洲欧美日韩高清在线视频| 成在线人永久免费视频| 欧美精品亚洲一区二区| 波多野结衣一区麻豆| 午夜视频精品福利| 国产成人欧美在线观看 | 久久青草综合色| 成在线人永久免费视频| av免费在线观看网站| 制服诱惑二区| 国产在线一区二区三区精| 大片电影免费在线观看免费| 男女床上黄色一级片免费看| 91九色精品人成在线观看| av网站免费在线观看视频| 动漫黄色视频在线观看| 免费不卡黄色视频| 国产免费av片在线观看野外av| 精品国内亚洲2022精品成人 | 脱女人内裤的视频| 狠狠婷婷综合久久久久久88av| 一二三四在线观看免费中文在| 久9热在线精品视频| 国产野战对白在线观看| 正在播放国产对白刺激| 久久久国产精品麻豆| 欧美日韩瑟瑟在线播放| 国产精品成人在线| ponron亚洲| 中出人妻视频一区二区| 国产主播在线观看一区二区| 午夜久久久在线观看| 欧美黑人精品巨大| 人成视频在线观看免费观看| 亚洲七黄色美女视频| 一本综合久久免费| 交换朋友夫妻互换小说| 精品福利观看| 亚洲国产欧美一区二区综合| 欧美激情久久久久久爽电影 | 天堂俺去俺来也www色官网| 国产精品成人在线| 亚洲精品在线美女| 制服诱惑二区| 黄色 视频免费看| 视频区图区小说| 欧美日韩亚洲高清精品| a级毛片在线看网站| 亚洲自偷自拍图片 自拍| 少妇裸体淫交视频免费看高清 | 国产精品av久久久久免费| 黑人操中国人逼视频| 99国产综合亚洲精品| 国产在视频线精品| 国产精品自产拍在线观看55亚洲 | 精品国产乱码久久久久久男人| 精品一区二区三区四区五区乱码| 亚洲综合色网址| 国产一区有黄有色的免费视频| 99久久国产精品久久久| 国产亚洲精品久久久久久毛片 | 日本vs欧美在线观看视频| 国产精品久久久av美女十八| 大片电影免费在线观看免费| 亚洲片人在线观看| www.熟女人妻精品国产| 老司机深夜福利视频在线观看| 国产精品综合久久久久久久免费 | 啦啦啦免费观看视频1| 18禁黄网站禁片午夜丰满| 伊人久久大香线蕉亚洲五| 很黄的视频免费| 国产亚洲精品第一综合不卡| 女人被狂操c到高潮| 午夜福利欧美成人| www.精华液| 国产精品免费一区二区三区在线 | 久久久久久久精品吃奶| 一本综合久久免费| 最近最新中文字幕大全免费视频| 女性被躁到高潮视频| 亚洲国产精品一区二区三区在线| 亚洲午夜精品一区,二区,三区| 久久精品91无色码中文字幕| 建设人人有责人人尽责人人享有的| 欧美精品一区二区免费开放| ponron亚洲| av片东京热男人的天堂| 国产真人三级小视频在线观看| 国产高清videossex| 中文字幕人妻丝袜一区二区| 一级毛片高清免费大全| 亚洲九九香蕉| 中文字幕av电影在线播放| 黄网站色视频无遮挡免费观看| 香蕉国产在线看| av天堂久久9| 久久久久久久午夜电影 | 成人永久免费在线观看视频| 18禁美女被吸乳视频| 亚洲五月色婷婷综合| 18禁裸乳无遮挡免费网站照片 | 天天影视国产精品| 欧美国产精品一级二级三级| 精品乱码久久久久久99久播| 在线观看免费高清a一片| 亚洲av日韩在线播放| 国产视频一区二区在线看| 一进一出抽搐动态| 日韩 欧美 亚洲 中文字幕| 久久人人爽av亚洲精品天堂| 成在线人永久免费视频| 水蜜桃什么品种好| 免费观看a级毛片全部| 欧美av亚洲av综合av国产av| 男女高潮啪啪啪动态图| 国产一区二区三区综合在线观看| 午夜福利影视在线免费观看| 最近最新免费中文字幕在线| 不卡一级毛片| 日本vs欧美在线观看视频| 日韩精品免费视频一区二区三区| 欧美久久黑人一区二区| 亚洲中文av在线| 757午夜福利合集在线观看| 免费人成视频x8x8入口观看| 老熟妇乱子伦视频在线观看| 亚洲av熟女| 久久久久国产精品人妻aⅴ院 | 99精品在免费线老司机午夜| 欧美激情 高清一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av成人不卡在线观看播放网| 制服诱惑二区| 久热爱精品视频在线9| 免费观看人在逋| 一区二区三区国产精品乱码| 99国产精品免费福利视频| 91大片在线观看| 日韩欧美一区二区三区在线观看 | 丰满人妻熟妇乱又伦精品不卡| 精品国产一区二区三区四区第35| 久久久久视频综合| 精品亚洲成国产av|