• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ground-state structure and physical properties of YB3 predicted from first-principles calculations?

    2021-05-06 08:55:10BinHuaChu初斌華YuanZhao趙元andDeHuaWang王德華
    Chinese Physics B 2021年4期
    關(guān)鍵詞:德華

    Bin-Hua Chu(初斌華), Yuan Zhao(趙元), and De-Hua Wang(王德華)

    School of Physics and Opto-Electronic Engineering,Ludong University,Yantai 264025,China

    Keywords: first-principles,high pressures,convex hull

    1. Introduction

    Superhard materials are widely used in industrial applications such as abrasive substance and polishing tools to wearresistant coatings.[1–3]The most well-known superhard materials are diamond and c-BN.At present,the diamond is still the most rigid and the best thermal conducting material.However,over 800?C, diamond reacts readily with ferrous metals.[4]The hardness of cubic boron nitride(c-BN)is between 32 GPa and 50 GPa.[5]Unfortunately,it has to be synthesized at high pressure and high-temperature condition,which needs tremendous cost. This makes them expensive and rare.[6–9]Recently,we find that intercalating light elements(boron,carbon,nitrogen, or oxygen) into transition metals could be the right way for searching for potential superhard materials. These compounds,with strong directional covalent bonds,can effectively increase the resistance against the plastic deformations in no small extent. As we all know, the crystal structure is the key to solving the mechanical properties of materials. Therefore,researchers strive to explore novel superhard materials. Recently, many transition metal compounds have been studied,such as ReB2, OsB2, RuO2, WN2, and WB4.[10–17]In these borides,boron rich compounds,such as transition metal(TM)tetraborides and TM triborides have attracted a lot of attention.These compounds are expected to have high bulk and shear moduli. Moreover, they usually form the three-dimensional(3D)covalent bond networks,for example,CrB4,WB4,FeB4,MnB4,VB4,MoB4,and HfB4.[18–31]According to the report,the hardness of CrB4is 48 GPa and the hardness of WB4is 43 GPa. These compounds are regarded as superhard materials. Unfortunately, subsequent studies revealed that the WB3and MoB3are more stable than the earlier mentioned WB4and MoB4structures, and they have unique mechanical properties.[32]An idea raises: Will TM triborides with these similar structures be stable? Whether they have better physical properties? In this situation, many TM triborides,such as TaB3, OsB3, TcB3, RuB3, MoB3, ReB3, CrB3, IrB3,HfB3, and ScB3have been explored and discussed in many works.[33–42]In 2014,Zhang et al. predicted two orthorhombic Cmcm and Amm2 structures for ZrB4. The two structures have large shear modulus and high hardness (42.8 GPa for Cmcm and 42.6 GPa for Amm2).[43]They are all potentially superhard materials. A few more years passed, Zhang et al.predicted a novel C2/m phase for ZrB3. The hardness of this phase is up to 42 GPa. The strong covalent bonding contributes to the high hardness for ZrB3.[44]Yttrium is adjacent to the zirconium in the periodic table,so we expect that boronrich yttrium borides may have good physics properties. In previous studies, there are four phases can be experimentally observed(YB2, YB4, YB6, and YB12)in Y–B systems.[45,46]However, the ground state structure of YB3has never been solved theoretically or experimentally up to now. Therefore,exploring the crystal structure of YB3has an essential significance for high boron contents in Y–B systems.

    In the present work, the particle swarm optimization(PSO)algorithm for crystal structure prediction is used to explore the crystal structures of YB3. A novel Cmmm structure for YB3has been revealed under ambient conditions by using the CALYPSO crystal structure prediction method.This method has successfully confirmed by experiments. In our work, the Cmmm-YB3structure is energetically preferable to previously predicted WB3-type, ReB3-type, FeB3-type, and TcP3-type structures. The stability of Cmmm-YB3is confirmed through the study of the elastic constants and phonon.Besides,we also explore the formation enthalpy,elastic constants, and bonding properties of Cmmm-YB3by firstprinciple calculations.

    2. Computation details

    In this work, the PSO methodology on crystal structural prediction has been performed in the CALYPSO. We have searched the potential crystal structures of YB3under ambient conditions containing 1–4 formula units in each simulation cell. CALYPSO has successfully solved the structures of various systems requiring only chemical compositions and specified external conditions.[47–49]The calculations are implemented in the Vienna ab initio simulation package(VASP)code.[50–52]The generalized gradient approximation (GGA)with the projector-augmented wave(PAW)potential is treated as the exchange–correlation functional.[53,54]The energy cutoff 500 eV and appropriate Monkhorst–Pack k meshes are chosen. Monkhorst–Pack k meshes of 3×4×8 for Cmmm phase,8×3×10 for Pmmm phase, 7×7×5 for WB3-type structure,13×13×7 for ReB3-type structure, 8×12×6 for FeB3-type structure, and 2×11×6 for TcP3-type structure. For hexagonal structures, we use Γ-centered grids. The formation enthalpy of YmBnis confirmed by the following equation:?H=H(YmBn)?mH(Y)?nH(B),in here,the solid α-B12element is considered as the referenced phases.[55]The phonon calculation is carried out in the PHONOPY code.[56,57]The calculated bulk modulus B and shear modulus G is obtained by the strain–stress method. The theoretical Vicker’s hardness is estimated by Chen’s model.[58]

    3. Results and discussion

    In the present work, a new orthorhombic Cmmm structure is revealed by the CALYPSO crystal structure prediction method. The orthorhombic Cmmm structure includes six YB3f.u. (a=11.598 ?A,b=7.761 ?A,c=3.491 ?A,α =β =γ =90?) in a unit cell at ambient conditions. The metal Y atoms have the Wyckoff 4i (0, 0.8093,0) and 4g (0.2754, 0,0)sites, and the four B atoms are at the Wyckoff 8q(0.4214,0.8829,0.5),8q(0.3247,0.7144,0.5),4h(0.8806,0,0.5),and 4l(0,0.5,0.7959)sites,respectively. The polyhedral view for the predicted Cmmm structure is presented in Fig.1. We can see that the Cmmm structure can be described as the alternative arrangement by Y atoms and puckered network formed by B atoms,there is an interesting B–Y–B sandwich stacking sequence along the c axis.

    For further investigate the stabilities of different YB3phases,we calculated the total energy per formula unit vs volume for these two candidate structures. For comparison, the four possible structures of the known TM compounds: WB3(P63/mmc, No. 194), ReB3(Pˉ6m2, No. 187), FeB3(P21/m,No.11), and TcP3(Pnma, No.62)are also considered as the potential phase for YB3, and we define them as the WB3-,ReB3-, FeB3-, and TcP3-type structures. The E–V curves of all considered phases of YB3are illustrated in Fig.2. Among these six considered structures, at first, the Pmmm phase has the lowest total energy minimum. However,with the increase of volume, we can see that the predicted Cmmm phase of YB3is lower in energy than the other phases. There is a phase transition process in our calculations. For aiding experimental synthesis in future,we explore the thermodynamic stability of YB3. The predicted Cmmm structure concerning the separate phases is investigated by the reaction route?H =H(YB3)?H(Y)?3H(B). The Y (space group: Fm-3m)and α-Boron(space group: R-3m)are chosen as the referenced phases. From Fig.3, it can be seen that the Cmmm phase has the negative formation enthalpy at about ?2.2 eV at ambient conditions, indicating that the Cmmm phase is thermodynamic stable and can be synthesized by elemental yttrium and boride. As the pressure increases, the stabilities of the Cmmm phase is gradually decreased. When the increasing pressure comes over 31 GPa, the phase transforms from the Cmmm phase to the Pmmm phase, indicating that the Pmmm phase is a high-pressure phase and more energetically stable at high pressure.

    Fig.1. Crystal structure of Cmmm-YB3. Small green spheres represent boron atoms and large red spheres represent yttrium atoms,respectively.

    Fig.2. The total energy per f.u. volume for YB3 as a function of volume with six different structures.

    Fig.3. Formation enthalpis versus pressure for different yttrium borides structures.

    Fig.4.The relative enthalpy–pressure diagrams of the Cmmm-YB3,Pmmm-YB3 and its respective competing phases with respect to elemental Y and B.The α-B(0 GPa–19 GPa),γ-B(19 GPa–89 GPa),and α-Ga phase(89 GPa–100 GPa)were used in the calculations.

    To further verify the stability of the Cmmm and Pmmm structures,we present the convex hull plots. We know that all the structures lie on a convex hull could be seen as thermodynamically stable and composable in theory. From Fig.4,the stability of the predicted Pmmm phase is superior to the competing phase YB2+YB4above 86 GPa,so we calculate the convex hull under the pressure of 100 GPa. The convex hull plots of the Y–B system at the selected pressures are depicted in Fig.5. From the convex hull in Fig.5(a), all enthalpies of formation of these compounds are negative, and four stable stoichiometry(YB2,YB4,YB6,and YB12)appear in our convex hull plots. Our proposed Cmmm-YB3is located above the curve of the convex hull,suggesting it is unstable and is going to decompose. Furthermore,from Fig.5(b),the Pmmm structure exactly sits on the curves of the convex hull,indicating it is stable and will not decompose.

    Fig.5. The convex hulls of YB3 at the pressure of(a)0 GPa and(b)100 GPa.

    Fig.6. The phonon-dispersion curves. (a) Cmmm phase at 0 GPa, and (b)Pmmm phase at 40 GPa,respectively.

    To obtain a deep insight into the dynamical stabilities of the two considered structures,we calculated their phonon dispersion curves. As shown in Fig.6(a),there are no imaginary phonon frequencies in the whole Brillouin zone for Cmmm structure indicates that it is dynamically stable at ambient conditions. From Fig.6(b), there is no soft mode at any vectors in the whole Brillouin zone,suggesting the stability of Pmmm structure at 40 GPa. Besides,the vibrational bands of the optical part into higher frequencies at high pressure.

    To further confirm the stabilization of the Cmmm structure,we studied its mechanical stabilities. Mechanical stability plays a crucial role in the stabilization of a crystal.The mechanical properties can also provide beneficial information for the stability and stiffness for materials. The elastic constants were obtained by fitting the stress of the strained structure and the strains. For an orthorhombic crystal, the elastic stability criteria are displayed as follows:

    C11>0,C22>0,C33>0, C44>0,C55>0,C66>0,

    [C11+C22+C33+2(C12+C13+C23)]>0,

    (C11+C22?2C12)>0,

    (C11+C33?2C13)>0,

    (C22+C33?2C23)>0.

    All the elastic constants of the Cmmm structure and Pmmm structure were calculated in comparison with the other transition metal triborides TMB3(TM=W, Cr, Os, and Ta)as seen in Table 1. As shown in Table 1, it is clear that the Cmmm structure satisfies these criteria, indicating that it is mechanically stable at zero pressure. So the Cmmm structure is both mechanically and dynamically stable at ambient conditions. The bulk modulus B and shear modulus G is calculated by using the elastic constants. Besides, Young’s modulus Y and Poisson’s ratio υ are obtained by the equations Y =(9BG)/(3B+G) and υ =(3B?2G)/(6B+2G).As seen in Table 1,the calculated C22for the Cmmm structure is bigger than C11and C33,indicating that the resistance to deformation along the b direction is stronger than that along a and c directions. Besides,the Cmmm structure has a G value of 132 GPa, so it is supposed that this structure can endure the shearing strain to a great extend. Young’s modulus can reflect the stiffness of materials. In Table 1,the Young’s modulus of the six structures exhibit a sequence of WB3>CrB3>OsB3> TaB3> Cmmm > Pmmm. As a result, a structure with a high Y value has a greater stiffness than a structure with a low Y value. Besides, the value of Poisson’s ratio (υ) can be used to describe the degree of directionality of the covalent bonding. From Table 1, we can be seen that all the υ value is below 0.33. Besides,the Cmmm structure has similar Poisson’s ratio to that of CrB3. The ratio value of B/G is a criterion to describe the ductility or brittleness of materials. A B/G value higher(or lower)than 1.75 is considered to be ductile(or brittle).[60]From Table 1,except TaB3,the B/G values of the other phases are under the critical value,implying their brittle nature. The Vickers hardness is calculated by using the Chen’s formula Hv=2(K2G)0.585?3,in which G denotes the shear modulus and K=G/B, respectively. According to this formula, the hardness value of the Cmmm structure is calculated to be 23.8 GPa at ambient conditions. This suggests that the Cmmm structure is a potentially hard material.

    Table 1. Calculated elastic constants(in unit GPa),bulk modulus B(in unit GPa),shear modulus G(in unit GPa),Young’s modulus Y (in unit GPa),Poisson’s ratio υ,and B/G ratio of the Cmmm phase,Pmmm phase,WB3,CrB3,OsB3,and TaB3.

    To understand the bonding mechanism and origin of materials’ physical properties, the electronic properties of the Cmmm and Pmmm phase were investigated by analyzing their total and partial density of states. From Fig.7(a),we can see that the Cmmm phase exhibits metallic character, with the finite value of the DOS at the Fermi level. Y-4d and B-2p electrons occupy the major orbital,which is the leading cause for the metallicity.Moreover,there is no clear overlap of yttrium’s d electron and boron’s p electron in the range of ?11 eV and 5 eV.From Fig.7(b),we can also see that the Pmmm phase exhibits metallic character. Meanwhile, for the two phases, the Y-4d states and B-2p states contribute to most of DOS, and the B-2s states are mainly situated at the bottom of the valence bands.

    To gain more in-depth insight into the bonding character of the predicted Cmmm structure,we calculated the electronic localization function(ELF).The electronic localization function(ELF)is widely used to describe chemical bonding. The ELF is a contour chart with the value from 0 to 1. Generally,ELF=1 suggests the entire localization property, ELF=0.5 offers homogeneous free-electron gas, and ELF=0 suggests perfect delocalization. It is worthwhile to note that the bonding type of materials (metallic, covalent, and ionic bonding)can be determined based on the ELF.We plot the contours of ELF=0.75 and(001)plane for the Cmmm structure.As shown in Fig.8,there is the existence of a strong covalent B–B bonding in the Cmmm structure. Therefore, the strong covalent interaction between B–B bonds is the primary reason for its high hardness and stability.

    Fig.7. Calculated total density of states(DOS)and partial density of states(PDOS)of the Cmmm phase(a),and Pmmm phase(b).

    Fig.8. The contours of the electronic localisation function (ELF) of the Cmmm phase on the(001)planes.

    4. Conclusions

    In summary, the calypso algorithm with first-principles calculations discovers two stable phases: one ground-state Cmmm-YB3and a high-pressure Pmmm-YB3. These two phases are dynamically and elastically stable. The estimated Vickers hardness values are 23.8 GPa for the Cmmm phase at ambient conditions. This means that the Cmmm structure is a potentially low compressible and rigid material. Analysis of chemical bonding indicates that there are strong covalent and directional B–B bonds in Cmmm-YB3. As we have updated the phase diagram of the Y–B system, we aim to stimulate a further experimental realization of boron-rich transition metal borides through our present theoretical investigation.

    猜你喜歡
    德華
    陳德華
    拔雜草
    黃德華
    Constraints on the kinetic energy of type-Ic supernova explosion from young PSR J1906+0746 in a double neutron star candidate?
    收工
    溫言救夫
    “豬八戒”父親的寬容式家教
    老友(2019年9期)2019-10-23 03:31:58
    測(cè)謊器
    二則(二)
    “留德華”的中國(guó)胃
    海峽姐妹(2014年5期)2014-02-27 15:09:30
    一本一本综合久久| 99国产综合亚洲精品| 在线观看人妻少妇| 国产老妇伦熟女老妇高清| 丰满乱子伦码专区| 高清黄色对白视频在线免费看| 97超碰精品成人国产| 欧美精品高潮呻吟av久久| 亚洲欧美日韩另类电影网站| 国产视频首页在线观看| 亚洲美女黄色视频免费看| 欧美日韩综合久久久久久| 国产毛片在线视频| 熟妇人妻不卡中文字幕| 国产在视频线精品| 国精品久久久久久国模美| 亚洲av.av天堂| 超色免费av| 最新的欧美精品一区二区| 插逼视频在线观看| 国产成人freesex在线| 精品久久久噜噜| 99热这里只有是精品在线观看| 欧美日韩国产mv在线观看视频| 国产精品人妻久久久影院| 亚洲精品自拍成人| 亚洲成人av在线免费| 日日摸夜夜添夜夜添av毛片| 久久久精品免费免费高清| 天堂俺去俺来也www色官网| 热re99久久国产66热| 国产精品一区二区在线不卡| 精品熟女少妇av免费看| 青春草视频在线免费观看| 久久久a久久爽久久v久久| 欧美日韩av久久| 精品国产国语对白av| 日韩成人av中文字幕在线观看| 久久人人爽人人爽人人片va| 国产熟女午夜一区二区三区 | 黄片无遮挡物在线观看| 大陆偷拍与自拍| 日本免费在线观看一区| 国产成人freesex在线| 亚洲,欧美,日韩| 九草在线视频观看| 亚洲中文av在线| 一级毛片aaaaaa免费看小| 久久久久久久亚洲中文字幕| 天天影视国产精品| 另类精品久久| 成年人午夜在线观看视频| 亚洲高清免费不卡视频| av一本久久久久| xxx大片免费视频| 十分钟在线观看高清视频www| 美女大奶头黄色视频| 99视频精品全部免费 在线| 日韩成人伦理影院| a级片在线免费高清观看视频| 乱码一卡2卡4卡精品| 免费黄网站久久成人精品| 熟妇人妻不卡中文字幕| 99热这里只有精品一区| 99热全是精品| 国产精品久久久久久精品电影小说| 欧美 亚洲 国产 日韩一| 老司机亚洲免费影院| 亚洲婷婷狠狠爱综合网| 国产精品欧美亚洲77777| 91国产中文字幕| 国产一区二区三区av在线| .国产精品久久| 国产白丝娇喘喷水9色精品| 日本欧美视频一区| 亚洲不卡免费看| 九色亚洲精品在线播放| 国产黄色视频一区二区在线观看| 亚洲欧美日韩另类电影网站| 日韩制服骚丝袜av| 色婷婷av一区二区三区视频| 汤姆久久久久久久影院中文字幕| 国产成人freesex在线| 久久毛片免费看一区二区三区| 99久久人妻综合| 国产无遮挡羞羞视频在线观看| 成年人午夜在线观看视频| 91精品伊人久久大香线蕉| 9色porny在线观看| 97在线视频观看| 日本猛色少妇xxxxx猛交久久| 亚洲色图 男人天堂 中文字幕 | av免费观看日本| 母亲3免费完整高清在线观看 | 伦理电影免费视频| 国产精品秋霞免费鲁丝片| 亚洲色图 男人天堂 中文字幕 | a级毛色黄片| 大片免费播放器 马上看| 成人影院久久| 99热国产这里只有精品6| 欧美人与性动交α欧美精品济南到 | 欧美日韩亚洲高清精品| 国产精品久久久久成人av| 91在线精品国自产拍蜜月| 丰满迷人的少妇在线观看| 国产精品久久久久久av不卡| videossex国产| 国产日韩一区二区三区精品不卡 | 亚洲国产色片| 国产免费一区二区三区四区乱码| 国产精品女同一区二区软件| 精品久久久久久久久亚洲| 最新的欧美精品一区二区| 日本av免费视频播放| 天天操日日干夜夜撸| 天天操日日干夜夜撸| 一区在线观看完整版| 精品一区二区免费观看| 人人妻人人澡人人看| 欧美日韩精品成人综合77777| 欧美日韩精品成人综合77777| 免费观看a级毛片全部| 亚洲av国产av综合av卡| 18在线观看网站| 成人毛片60女人毛片免费| 国产成人免费观看mmmm| 在线观看国产h片| 午夜激情久久久久久久| 亚洲欧洲精品一区二区精品久久久 | 午夜激情av网站| 老司机影院成人| 老司机影院成人| 熟女人妻精品中文字幕| 黄色视频在线播放观看不卡| 一本久久精品| 午夜老司机福利剧场| 久久久久网色| 久久精品国产亚洲网站| 秋霞在线观看毛片| 性色av一级| 美女视频免费永久观看网站| 狂野欧美激情性bbbbbb| 久久精品国产亚洲网站| 欧美日韩亚洲高清精品| 自线自在国产av| 久久久久网色| 最近手机中文字幕大全| 亚洲精品av麻豆狂野| 一二三四中文在线观看免费高清| 国产成人av激情在线播放 | 久久精品夜色国产| 国产精品嫩草影院av在线观看| 精品一区二区三区视频在线| 少妇人妻精品综合一区二区| 熟妇人妻不卡中文字幕| 国产日韩欧美在线精品| 伦精品一区二区三区| 国产精品一区二区在线观看99| 两个人免费观看高清视频| 在线观看一区二区三区激情| 女的被弄到高潮叫床怎么办| 午夜精品国产一区二区电影| 乱人伦中国视频| 高清毛片免费看| 国产精品人妻久久久久久| 熟女av电影| 黄色欧美视频在线观看| 午夜福利,免费看| 一个人免费看片子| 免费人成在线观看视频色| 国产色爽女视频免费观看| 亚洲第一av免费看| av视频免费观看在线观看| 国产精品一区二区三区四区免费观看| 免费大片黄手机在线观看| 亚洲中文av在线| 亚洲av欧美aⅴ国产| 少妇被粗大猛烈的视频| 2018国产大陆天天弄谢| 精品少妇久久久久久888优播| 日韩欧美精品免费久久| 久久精品国产亚洲网站| 自线自在国产av| av视频免费观看在线观看| 99视频精品全部免费 在线| 国产女主播在线喷水免费视频网站| 久久99蜜桃精品久久| 99久久中文字幕三级久久日本| 视频中文字幕在线观看| 热99国产精品久久久久久7| 免费黄色在线免费观看| videos熟女内射| www.av在线官网国产| 中文字幕人妻丝袜制服| 日韩精品有码人妻一区| 欧美精品国产亚洲| 美女内射精品一级片tv| 日韩一区二区三区影片| 国产成人精品一,二区| 精品少妇黑人巨大在线播放| 日韩一本色道免费dvd| 亚洲综合色惰| 国产成人av激情在线播放 | 又黄又爽又刺激的免费视频.| 国产欧美亚洲国产| av网站免费在线观看视频| 亚洲综合色惰| 久久99热这里只频精品6学生| a 毛片基地| 丝袜喷水一区| 在线观看人妻少妇| 三上悠亚av全集在线观看| 亚洲精品中文字幕在线视频| 大香蕉97超碰在线| 毛片一级片免费看久久久久| 黄片播放在线免费| 91久久精品国产一区二区三区| 黑人高潮一二区| 久久精品国产自在天天线| 国产黄频视频在线观看| av.在线天堂| 久久精品人人爽人人爽视色| 另类亚洲欧美激情| 久久精品国产鲁丝片午夜精品| 建设人人有责人人尽责人人享有的| 国模一区二区三区四区视频| 亚洲内射少妇av| 亚洲熟女精品中文字幕| 你懂的网址亚洲精品在线观看| 国产成人精品一,二区| 免费看av在线观看网站| 成年人午夜在线观看视频| 特大巨黑吊av在线直播| 日本91视频免费播放| 国产毛片在线视频| 纵有疾风起免费观看全集完整版| 国产精品无大码| 啦啦啦在线观看免费高清www| 久久ye,这里只有精品| 美女cb高潮喷水在线观看| 少妇人妻精品综合一区二区| 成人二区视频| 黄色欧美视频在线观看| 久久久久国产网址| 母亲3免费完整高清在线观看 | 黑人高潮一二区| xxxhd国产人妻xxx| 人妻少妇偷人精品九色| 国产精品蜜桃在线观看| 亚洲欧美色中文字幕在线| 人妻一区二区av| 国产女主播在线喷水免费视频网站| 制服诱惑二区| 日韩中文字幕视频在线看片| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产欧美日韩在线播放| 天天影视国产精品| 91精品三级在线观看| 成人毛片60女人毛片免费| 精品久久久久久久久亚洲| 一边亲一边摸免费视频| 精品少妇内射三级| 99热这里只有精品一区| 国产精品国产av在线观看| 在线天堂最新版资源| 国产精品一国产av| 国产男女内射视频| 国产免费又黄又爽又色| 免费人成在线观看视频色| 亚洲成人av在线免费| 久久精品国产自在天天线| 久久97久久精品| 热99国产精品久久久久久7| 亚洲成人一二三区av| tube8黄色片| 91精品一卡2卡3卡4卡| 精品熟女少妇av免费看| 哪个播放器可以免费观看大片| 国产男女内射视频| 精品国产国语对白av| 国产在线一区二区三区精| 99国产精品免费福利视频| 最新的欧美精品一区二区| 中文字幕最新亚洲高清| 国产日韩欧美视频二区| 午夜免费观看性视频| 日韩一本色道免费dvd| 欧美精品国产亚洲| 人妻人人澡人人爽人人| 成年av动漫网址| 亚洲性久久影院| 日产精品乱码卡一卡2卡三| 一级a做视频免费观看| 热99国产精品久久久久久7| 精品亚洲成a人片在线观看| 欧美人与善性xxx| 制服诱惑二区| xxxhd国产人妻xxx| 少妇熟女欧美另类| 亚洲人成网站在线观看播放| 男女免费视频国产| 一区二区av电影网| 亚洲精品av麻豆狂野| 啦啦啦啦在线视频资源| 一区二区日韩欧美中文字幕 | 久久久久久久久久久丰满| 精品少妇黑人巨大在线播放| 69精品国产乱码久久久| 午夜久久久在线观看| 久久久久精品性色| tube8黄色片| 夜夜看夜夜爽夜夜摸| 亚洲伊人久久精品综合| 18禁在线无遮挡免费观看视频| 久久99热6这里只有精品| 国产午夜精品一二区理论片| 国产熟女欧美一区二区| 成人国产麻豆网| 91久久精品国产一区二区成人| 国产精品蜜桃在线观看| 亚洲中文av在线| 日日撸夜夜添| 欧美 亚洲 国产 日韩一| av在线老鸭窝| 99国产综合亚洲精品| 哪个播放器可以免费观看大片| 成人18禁高潮啪啪吃奶动态图 | 午夜影院在线不卡| 色94色欧美一区二区| 美女主播在线视频| av国产精品久久久久影院| 性色av一级| 日日摸夜夜添夜夜添av毛片| 亚洲av国产av综合av卡| 黄片播放在线免费| 热re99久久精品国产66热6| 高清视频免费观看一区二区| 成人手机av| 91精品国产国语对白视频| 亚洲av不卡在线观看| 热99久久久久精品小说推荐| 只有这里有精品99| 欧美性感艳星| 啦啦啦啦在线视频资源| 热99久久久久精品小说推荐| 亚洲精品日韩在线中文字幕| 校园人妻丝袜中文字幕| 少妇人妻精品综合一区二区| 少妇的逼水好多| 亚洲av欧美aⅴ国产| 中文精品一卡2卡3卡4更新| 日韩一区二区三区影片| 国产一区二区三区综合在线观看 | 男的添女的下面高潮视频| 有码 亚洲区| 狂野欧美白嫩少妇大欣赏| 久久这里有精品视频免费| 午夜福利在线观看免费完整高清在| 爱豆传媒免费全集在线观看| 在线 av 中文字幕| 久久婷婷青草| 久久99蜜桃精品久久| 亚洲,一卡二卡三卡| 国产精品久久久久久久久免| 黄色一级大片看看| 精品国产乱码久久久久久小说| 美女cb高潮喷水在线观看| 国产午夜精品一二区理论片| 两个人的视频大全免费| a级毛片免费高清观看在线播放| 妹子高潮喷水视频| 免费av不卡在线播放| 18禁裸乳无遮挡动漫免费视频| 精品人妻熟女av久视频| 99国产精品免费福利视频| 久久久久精品久久久久真实原创| 国产在视频线精品| 青春草视频在线免费观看| 岛国毛片在线播放| 国产精品 国内视频| 成人国语在线视频| 国产成人av激情在线播放 | 欧美日韩国产mv在线观看视频| 下体分泌物呈黄色| 久久精品国产a三级三级三级| 日韩视频在线欧美| av有码第一页| 亚洲av中文av极速乱| 国产精品人妻久久久影院| 91久久精品国产一区二区三区| 日韩欧美精品免费久久| 亚洲经典国产精华液单| 精品人妻偷拍中文字幕| 亚洲精品乱久久久久久| 久久午夜福利片| 亚洲不卡免费看| 九草在线视频观看| 一本色道久久久久久精品综合| 狂野欧美激情性bbbbbb| 国产白丝娇喘喷水9色精品| 大片电影免费在线观看免费| 国产精品久久久久久精品古装| 全区人妻精品视频| 久久午夜综合久久蜜桃| 丁香六月天网| 欧美日韩在线观看h| 久久国内精品自在自线图片| 91精品一卡2卡3卡4卡| www.色视频.com| 三级国产精品片| 日本-黄色视频高清免费观看| 91久久精品国产一区二区三区| 日本91视频免费播放| 高清黄色对白视频在线免费看| 高清不卡的av网站| 日韩视频在线欧美| 制服诱惑二区| 久久国内精品自在自线图片| 人人妻人人爽人人添夜夜欢视频| 国产成人免费观看mmmm| 在线观看www视频免费| 国产熟女欧美一区二区| 久久久久人妻精品一区果冻| 丁香六月天网| 国产黄色免费在线视频| 最后的刺客免费高清国语| 97超碰精品成人国产| 最近最新中文字幕免费大全7| 三级国产精品片| 成人毛片a级毛片在线播放| 精品卡一卡二卡四卡免费| 色5月婷婷丁香| 欧美精品国产亚洲| 老熟女久久久| 超色免费av| 99久国产av精品国产电影| 亚洲久久久国产精品| 欧美精品国产亚洲| 熟妇人妻不卡中文字幕| 亚洲av欧美aⅴ国产| 美女内射精品一级片tv| 亚洲久久久国产精品| 一边亲一边摸免费视频| 自线自在国产av| 国产精品偷伦视频观看了| 一本久久精品| 日韩,欧美,国产一区二区三区| 国产精品人妻久久久影院| 三上悠亚av全集在线观看| 这个男人来自地球电影免费观看 | 少妇人妻精品综合一区二区| 欧美日韩一区二区视频在线观看视频在线| 日韩视频在线欧美| 亚洲欧美日韩另类电影网站| 国产免费又黄又爽又色| 肉色欧美久久久久久久蜜桃| 成人国产av品久久久| a级毛片在线看网站| 亚洲精品久久久久久婷婷小说| 美女大奶头黄色视频| 一级毛片黄色毛片免费观看视频| 天天躁夜夜躁狠狠久久av| 美女xxoo啪啪120秒动态图| 国产精品麻豆人妻色哟哟久久| av免费观看日本| 人妻系列 视频| 大话2 男鬼变身卡| av国产久精品久网站免费入址| 免费大片黄手机在线观看| 国国产精品蜜臀av免费| 午夜福利视频在线观看免费| 免费观看a级毛片全部| 国产老妇伦熟女老妇高清| 亚洲成色77777| 在线观看美女被高潮喷水网站| 免费少妇av软件| 亚洲国产av影院在线观看| 日本黄色片子视频| 91久久精品电影网| 最近手机中文字幕大全| 日韩在线高清观看一区二区三区| 各种免费的搞黄视频| 如何舔出高潮| 这个男人来自地球电影免费观看 | 久久久久网色| 亚洲av二区三区四区| 人人澡人人妻人| 精品视频人人做人人爽| 色吧在线观看| 欧美日韩亚洲高清精品| 国产黄频视频在线观看| a 毛片基地| 高清午夜精品一区二区三区| 亚洲欧美日韩卡通动漫| 欧美激情 高清一区二区三区| 国产精品免费大片| 国产色爽女视频免费观看| 欧美人与性动交α欧美精品济南到 | 好男人视频免费观看在线| 九草在线视频观看| 观看美女的网站| 两个人免费观看高清视频| 中文精品一卡2卡3卡4更新| 老女人水多毛片| 精品久久久久久电影网| 18禁动态无遮挡网站| 久久99蜜桃精品久久| 少妇 在线观看| 亚洲国产av影院在线观看| 午夜激情av网站| 日本免费在线观看一区| 免费观看性生交大片5| 热99久久久久精品小说推荐| 亚洲综合色网址| 熟妇人妻不卡中文字幕| 制服诱惑二区| 三级国产精品片| 亚洲激情五月婷婷啪啪| 欧美日韩av久久| 国产成人精品无人区| 人妻人人澡人人爽人人| 夫妻性生交免费视频一级片| 国产av国产精品国产| 不卡视频在线观看欧美| 搡老乐熟女国产| 少妇的逼水好多| 精品一区在线观看国产| 久久这里有精品视频免费| 国产精品三级大全| 久久狼人影院| 一级片'在线观看视频| 午夜福利视频在线观看免费| 日本vs欧美在线观看视频| av线在线观看网站| 精品国产一区二区久久| av线在线观看网站| 26uuu在线亚洲综合色| 欧美日韩亚洲高清精品| 国产精品无大码| 超碰97精品在线观看| 如日韩欧美国产精品一区二区三区 | 国产精品一区www在线观看| 亚洲第一区二区三区不卡| 国内精品宾馆在线| 高清黄色对白视频在线免费看| 在线 av 中文字幕| 亚洲精品aⅴ在线观看| 国产精品久久久久久精品电影小说| 日本黄大片高清| 美女国产高潮福利片在线看| 国产成人精品无人区| 久久久久精品性色| 母亲3免费完整高清在线观看 | 精品少妇黑人巨大在线播放| 人人妻人人添人人爽欧美一区卜| 欧美+日韩+精品| 亚洲精品久久午夜乱码| 不卡视频在线观看欧美| 久久97久久精品| 日韩熟女老妇一区二区性免费视频| 嫩草影院入口| 精品国产一区二区三区久久久樱花| 亚洲欧美清纯卡通| 亚洲欧美精品自产自拍| av女优亚洲男人天堂| 久久久亚洲精品成人影院| 久久人人爽人人片av| 亚洲熟女精品中文字幕| 中文字幕制服av| 国产精品秋霞免费鲁丝片| 国产亚洲精品第一综合不卡 | 一本—道久久a久久精品蜜桃钙片| 精品亚洲成国产av| 精品久久蜜臀av无| 99久久精品一区二区三区| 精品一区在线观看国产| 色5月婷婷丁香| 一区二区三区四区激情视频| 伦理电影大哥的女人| 能在线免费看毛片的网站| 亚洲欧美精品自产自拍| 女性被躁到高潮视频| 亚洲一区二区三区欧美精品| 另类精品久久| 欧美bdsm另类| 涩涩av久久男人的天堂| 久久久国产一区二区| 久久久精品免费免费高清| 国产精品一区二区在线不卡| 伊人久久精品亚洲午夜| 亚洲成人手机| 你懂的网址亚洲精品在线观看| 久久久久网色| 2022亚洲国产成人精品| 啦啦啦啦在线视频资源| 成人国产麻豆网| 免费黄频网站在线观看国产| 啦啦啦在线观看免费高清www| 久久这里有精品视频免费| 丰满迷人的少妇在线观看| 久久鲁丝午夜福利片| 欧美日韩国产mv在线观看视频| 亚洲欧美精品自产自拍| 狂野欧美激情性bbbbbb| 日本色播在线视频| av黄色大香蕉| 国国产精品蜜臀av免费| 欧美日本中文国产一区发布| 91在线精品国自产拍蜜月| 国产男女超爽视频在线观看| 国产精品熟女久久久久浪| 婷婷色麻豆天堂久久| 91精品国产九色| 一区二区av电影网|