• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar–Gross–Krook collision model?

    2021-05-06 08:55:10ZhaoyingWang王召迎LixinGuo郭立新andJiangtingLi李江挺
    Chinese Physics B 2021年4期

    Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺)

    School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China

    Keywords: dusty plasma,electromagnetic wave absorption,electromagnetic propagation,plasma sheaths

    1. Introduction

    Unlike ordinary plasma, dusty plasma is formed by ordinary plasma and suspended dust particles.[1–3]During the reentry of high-speed targets, dust particles are mainly produced by the ablation effect of thermal protective materials on the surface of the targets. This results from the high temperature and pressure caused by the friction between the target body and the surrounding atmosphere. Then,the dusty plasma sheath coated on the surface of the target is formed.[2,4–6]Meanwhile, dust particles can accumulate higher charges,which have larger mass and volume. Specifically, the charge amount of these particles generally varies. The ratio of charge to mass is many orders of magnitude smaller than that of the average ion.Due to the existence of dust particles,the physical phenomena in plasma become more complex,such as the collision,adsorption and shielding of electrons and ions on them,which will make the interaction between dust plasma and external EM waves more complex. Therefore, dusty plasma is also called complex plasma. Dusty plasma widely exists in interstellar space, near-Earth space, and all types of gas discharge in laboratories,[7–12]having potential application in industrial and military fields. Therefore, the studies of dusty plasma are becoming more and more extensive. Tsintsadze et al.[13]and Shukla et al.[14]studied the instabilities of EM waves in dusty plasmas. Khrapak et al.[15]investigated the dynamics of dust particles in plasmas. Shi et al.[16]deduced the complex dielectric constant of weakly ionized dusty plasmas. Tsytovich et al.[17]analyzed experimental phenomena and theories of dust particles.

    Due to the existence of dusty plasma sheath, the monitoring and communication between the high-speed aircraft and the ground are greatly affected, and the plasma sheath is usually regarded as weakly ionized dusty plasma. Therefore, in order to explore the interaction mechanism between EM waves and dusty plasma, scholars have carried out research on the propagation and attenuation characteristics of EM wave in weakly ionized dusty plasma. Wang et al.[18,19]investigated the propagation properties of terahertz waves in a weakly ionized dusty plasma sheath by the auxiliary differential equation of the finite-difference time-domain(FDTD)and propagation matrix methods. Juli et al.[20]studied the propagation characteristics of EM waves in the dusty plasma. Li et al.[21]researched the attenuation properties of the weakly ionized dusty plasma and found that the dust density and radius affected the attenuation constant. Jia et al.[22]derived dielectric relation and investigated the propagation of EM waves in weakly ionized dusty plasma. Prudskikh et al.[23]discussed the properties of low-frequency EM waves in a polydisperse dusty plasma environment. Hong et al.[24]analyzed the reflection, transmission, and absorption coefficient of microwaves in weakly ionized dusty plasma with multi-collisions. Our group has derived the modified complex dielectric constant in weakly ionized dusty plasma based on the BGK model, calculated the propagation characteristics of EM wave, and discussed the influence of dust parameters on reflection, as well as the transmission coefficient of EM wave.[25,26]Liu et al.[27]derived the BGK collision model in non-uniform magnetized dusty plasma and analyzed the influence of the external magnetic field on the propagation properties of THz circularly polarized waves. In this paper,the attenuation characteristics of obliquely incident EM waves in weakly ionized dusty plasma are discussed.

    The collision between electrons and other particles in plasma is the main reason for EM wave propagation and attenuation. The dielectric constant is modified based on the BGK collision model in weakly ionized plasma, considering that the minimum electron velocity is not zero and the second part of the collision cross-section is not ignored. The attenuation characteristics of obliquely incident EM wave propagating in the L-Ka frequency band in the weakly ionized dusty plasma are calculated by the WKB method. The structure of the paper is as follows: Section 2 is the theoretical deduction of EM wave attenuation based on the modified dielectric constant in the weakly ionized dusty plasma. Section 3 compares the attenuation results with different dielectric constants in traditional and modified models. Section 4 discusses the influence of dust density, dust radius, plasma thickness, electron density,electron temperature,and incident angle on the attenuation of EM wave. Section 5 analyzes the attenuation change of EM wave at different reentry heights of hypersonic vehicle.Finally,Section 6 gives a brief conclusion.

    2. Physical model

    In weakly ionized dusty plasma, collisions occur mainly between neutral molecules and electrons. Assuming that the weakly ionized dusty plasma is non-magnetized, the kinetic equation within the BGK collision model can be written as

    where νenis the collision frequency.

    The electron distribution function f(e)under small perturbations can be written as

    where

    is the Maxwell distribution function at equilibrium. f1is a perturbation term caused by the external EM field. neis the electron density, Teis the electron temperature, and kBis the Boltzmann constant.

    From Eqs.(1)–(3)the perturbation term can be obtained as[29]

    The νen(ν)can be substituted with the collision frequency formula νen=VTeσnnn,[30]where VTeis the velocity of electron thermal motion, VTe= (kBTe/me)0.5, σnis the effective cross-section of the molecules,[23]usually σn= 4.4×10?20m2,nnis the density of neutral molecules.

    The charge current caused by the perturbation function can be written as

    According to the orbit-limited motion theory, the collision cross-section of electron and dust particle can be expressed as[16]

    The Shukla charging equation can be written as

    where Ieland Iilare the charge current of electrons and ions under perturbation, respectively. qd1and vchare the charge and charge frequency of the dust particle,[30]respectively.

    Considering the law of electric charge conservation[22]

    where ρd=ndqd1is the charge density.

    To improve the dielectric constant model in weakly ionized dusty plasma,three modifications were made.Case 1:the minimum electron velocity was set to υmin=(?2e?d0/me)1/2.Case 2: the contribution of the electrical potential part in the second term of the collision cross-section to the charge current was considered. Case 3: both these two factors were modified simultaneously.

    Case 1:,ωp=

    where

    Case 2:

    where

    Case 3:

    where

    According to Maxwell’s equations, the wave equation in the weakly ionized dusty plasma can be written as[31]

    The electric field equation in the weakly ionized dusty plasma can be obtained by solving Eq. (13) with the WKB method

    where E0is the initial electric field intensity of the incident EM wave. Etis the electric field intensity after the EM wave passed through the weakly ionized dusty plasma.L is the dusty plasma thickness.

    Then the propagation function of the EM wave energy is

    where P0is the power of the EM wave before entering the weakly ionized dusty plasma.

    Therefore, the attenuation (Att) of EM wave can be obtained as follows:

    3. Comparison of the attenuation results of the traditional and the three modified dielectric constant models

    Fig.1. Comparison of attenuation between traditional and three modified models.

    4. The influence of different parameters on the attenuation of obliquely incident EM wave

    Table 1. Calculation conditions for the following figures. The units of nd,rd,L,ne,Te,θ are 1013 m?3,μm,cm,1017 m?3,103 K,and degree,respectively.

    Figure 2 shows the effect of different dust densities on the attenuation of obliquely incident EM wave in L-Ka frequency band. We can see that the change of overall dust density has little effect on the attenuation of EM waves. The significant energy attenuation can be observed for the incident EM wave frequency near the plasma frequency, which results from the resonance absorption of EM waves when the incident wave frequency is close to the plasma frequency. The attenuation of EM waves causes some interesting changes about 7.5 GHz(near the collision frequency). The incident wave frequency is lower than 7.5 GHz,the attenuation of EM waves decreases gradually with increasing dust density. On the contrary,the attenuation of EM waves increases with the dust density for the incident frequency above 7.5 GHz. This is because the collision between charged and neutral particles hinders the Debye shielding of charged particles in the low frequency region and enhances the collision absorption and attenuation of EM waves in the high frequency region.In addition,the possibility of charge adsorption between electrons and dust particles increases with the dust density,and the inelastic collision of dust particles causes a greater loss of electron energy. The shielding effect of weakly ionized dusty plasma in the low frequency region is further weakened, and the absorption loss ability in the high frequency region is enhanced.

    Fig.2. Effect of dust density on attenuation under modified models.

    Figure 3 presents the effect of different dust radius in weakly ionized dusty plasma on the attenuation of EM wave in L-Ka frequency band under the modified BGK collision model. It can be seen from Fig.3 that the attenuation of EM wave first decreases and then increases with the dust radius.The attenuation of EM wave decreases with the increase of dust radius for the incident frequency smaller than 7.5 GHz.For a constant collision frequency, the increase of dust particle radius leads to more absorption of charged particles, the increase of the charging frequency,and the increase of the inelastic collision probability between electrons and dust particles. However, severe collisions occur before electrons being accelerated by the electric field results in a decrease in the attenuation of EM wave. When the incident frequency larger than 7.5 GHz, the energy of the external EM wave is absorbed by charged particles and converted into the internal energy of dusty plasma through inelastic channels,indicating the enhanced attenuation of EM wave with the increase of dust radius.The attenuation will gradually approach zero for a very high incident frequency, which results from the fact that the electric field changes too fast and the electrons cannot keep up with the rapidly changing. Consequently,the absorbed energy of EM wave decreases,which leads to a decrease in the attenuation of EM wave. Compared with Fig.2, the effect of dust radius on attenuation is obviously significant than that of dust density,which is the reason for the restriction of orbit-limited motion theory.

    Fig.3. Effect of dust radius on attenuation under modified models.

    Figure 4 shows the influence of different dusty plasma thicknesses on the attenuation of obliquely incident EM wave in L-Ka frequency band under the modified model. The thickness was set to 3 cm, 5 cm, 7 cm, and 10 cm, respectively.From Fig.4,we can see that the larger the thickness of dusty plasma, the greater the attenuation of EM wave. A larger thickness of dusty plasma increases the interaction distance and leads to a significant influence on the EM wave, which makes it more difficult for the EM wave to pass through the dusty plasma. Therefore, the attenuation of EM wave caused by dusty plasma is larger. In addition, it is interesting that the incident frequency corresponding to the peak attenuation kept in a constant for the increase of thickness,indicating that the plasma frequency is an important factor to determine the corresponding incident frequency of peak attenuation value of EM wave.

    Fig.4. Effect of dusty plasma thickness on attenuation under modified models.

    Figure 5 shows the effect of different electron densities on the attenuation of EM waves in L-Ka frequency band under the modified model. It can be seen from Fig.5 that the incident frequency value corresponding to the attenuation peak gradually shifts to a higher frequency with the increase of electron density. It has proved that the peak frequency is plasma frequency. This is because when the incident wave frequency is lower than the plasma frequency, it is difficult for the EM wave to penetrate the plasma, and most of the EM waves are attenuated. When the plasma frequency is reached, the resonance absorption phenomenon occurs inside the dusty plasma,and the attenuation value reaches the maximum. Then, the transmission energy of EM wave increases gradually,and the attenuation will decrease continuously with the increase of incident wave frequency. The increase of electron density increases the collision probability between free electrons and neutral molecules, which intensifies the energy conversion of EM wave and increases the attenuation. In addition, we also find that the incident frequency corresponding to the attenuation peak gradually shifts to the high frequency with the increase of electron density.Because of the relationship between electron density and plasma frequency,it is proved again that plasma frequency is an important factor in determining the peak attenuation.

    Fig.5. Effect of electron density on attenuation under modified models.

    Figure 6 shows the influence of different electron temperatures on the attenuation of obliquely incident EM wave in L-Ka frequency band. It can be seen from Fig.6 that the attenuation of EM wave decreases with the increase of electron temperature at low frequency and increases with the increase of frequency above plasma frequency. This is due to the fact that when the EM wave frequency is lower than the plasma frequency, the oscillation absorption of EM wave is dominated by free electrons in the dusty plasma,and the collision between free electrons and neutral particles weakens the oscillation absorption of free electrons. Thus, the higher the electron temperature, the more severe the collisions between free electrons and neutral particles,and the smaller the attenuation of EM wave. The collision attenuation of free electrons and neutral particles in plasma is dominant for the incident frequency higher than the plasma frequency. The higher electron temperature leads to a larger collision frequency and enhances the attenuation of EM wave.

    Fig.6. Effect of electron temperature on attenuation under modified models.

    Figure 7 shows the effect of different incident angles on the attenuation of EM wave in L-Ka frequency band under the modified model. It can be seen from Fig.7 that the variation of the incident angle is not evident to the attenuation of the EM wave in the very low frequency region (<2.5 GHz). As the frequency of the incident wave increases, the attenuation amplitude increases with the incident angle. This is because when the incident angle of EM wave increases, the reflection effect of dusty plasma on EM wave will be enhanced,and the transmission of EM wave will decrease,which will lead to the increase of attenuation of EM wave. In addition, we found that the incident frequency corresponding to the peak attenuation gradually shifts to the high frequency with the increase of incident angle,and the peak value shows an increasing trend.This indicates that the incident angle is also an important factor affecting the peak value of attenuation. We can control the attenuation intensity by controlling the incident angle of EM wave to fulfill the requirement of target stealth and monitoring.

    Fig.7. Effect of incidence angle on attenuation under modified models.

    5. The influence of different reentry heights of high-speed aircraft on the attenuation of EM wave

    The spatial distributions of electron density at different reentry heights in NASA experiments[4,32]are adopted to investigate the influence of different electron density distributions on the attenuation of EM wave. Parameters nd=1.0×1013m?3,rd=1μm,θ =30?,and Te=3000 K are adopted in simulation. The maximum electron density, mean electron density,and dusty plasma thickness at different heights[4]are shown in Table 2.

    Table 2. Average electron density and dusty plasma thickness at different reentry heights.

    Fig.8.Effect of different reentry heights on the attenuation of EM wave under modified models.

    Figure 8 shows the effect of dusty plasma on the attenuation of EM wave in L-Ka frequency band when high-speed aircraft is located at different reentry heights. We can see from Fig.8 that the attenuation of EM wave varies with different reentry heights and its attenuation intensity increases from 21 km to 30 km and decreases from 30 km to 76 km. This result is related to the spatial distribution of electron density.The conclusion drawn from Fig.5 shows that the greater the electron density,the greater the attenuation of EM waves. Nevertheless,there is a different change at the height of 76 km and 21 km. It can be seen from Table 2 that although the average electron density at 76 km is greater than that at 21 km,they remain in the same order of magnitude,and the difference is very small. Moreover,the plasma thickness at the height of 76 km is much larger than that at 21 km. Combined with the influence of thickness and electron density on the attenuation of EM wave,it can be concluded that the attenuation is minimal at the height of 21 km. The thickness of dusty plasma at other reentry heights is basically maintained at a similar level,which can be explained by the average electron density. Therefore,the dusty plasma thickness and electron density synergistically affect the attenuation of EM wave.

    6. Conclusion and perspectives

    The attenuation characteristics of obliquely incident EM wave in weakly ionized dusty plasma in L-Ka frequency band were studied by using the modified dielectric constant under the BGK collision model with the minimum electron velocity and the second term of collision cross-section considered.The simulation results indicate that the dust density and dust radius have the same variation trend on the attenuation of obliquely incident EM wave and the maximum attenuation should appear around the plasma frequency. The EM wave attenuation decreases with the increase of dust radius(or dust density)for incident frequency smaller than the collision frequency(about 7.5 GHz) and increases with the increase of dust radius (or dust density) for incident frequency higher than the collision frequency. However, the effect of dust density on attenuation is weaker than that of dust radius due to orbit-limited motion theory. The attenuation of EM wave is proportional to dusty plasma thickness, electron density, and incident angle. The higher electron temperature in weakly ionized dusty plasma leads to more severe collisions between particles. The collisions will hinder the Debye shielding of charged particles in the low frequency region and enhance the loss ability of EM waves in the high frequency region due to collision absorption. Consequently, the attenuation of EM wave first decreases and then increases with the increase of electron temperature. Using the experimental spatial distribution data of electron density at different reentry heights,we find that attenuation change is related to electron density and plasma thickness. This work theoretically analyzes the influence of weakly ionized dusty plasma on obliquely EM wave attenuation characteristics and gives a further understanding of the influence of different plasma parameters on EM wave amplitude.

    老司机深夜福利视频在线观看| 五月伊人婷婷丁香| 90打野战视频偷拍视频| 黄色视频,在线免费观看| 日韩 欧美 亚洲 中文字幕| 宅男免费午夜| 久久亚洲真实| 性欧美人与动物交配| 成人欧美大片| 国产99白浆流出| 久久精品aⅴ一区二区三区四区| 美女高潮喷水抽搐中文字幕| 嫩草影院入口| 久久草成人影院| 一级毛片精品| 999久久久国产精品视频| 2021天堂中文幕一二区在线观| 免费av毛片视频| av视频在线观看入口| 亚洲人成伊人成综合网2020| 日韩欧美在线乱码| 亚洲精品一区av在线观看| 十八禁网站免费在线| 欧美最黄视频在线播放免费| 在线免费观看不下载黄p国产 | 美女免费视频网站| 亚洲电影在线观看av| 国产一区二区三区视频了| 精品福利观看| 又黄又粗又硬又大视频| 国产欧美日韩精品一区二区| 欧美一级a爱片免费观看看| 精品国内亚洲2022精品成人| 国产亚洲精品av在线| 国产视频一区二区在线看| 精品国产亚洲在线| 一进一出抽搐gif免费好疼| 三级国产精品欧美在线观看 | 欧美日韩瑟瑟在线播放| 欧美日韩综合久久久久久 | 国产一区二区在线观看日韩 | 成人精品一区二区免费| 可以在线观看毛片的网站| 国产日本99.免费观看| 亚洲av电影不卡..在线观看| 欧美大码av| 九色国产91popny在线| 欧美日韩国产亚洲二区| 9191精品国产免费久久| 精品99又大又爽又粗少妇毛片 | 99热这里只有精品一区 | 真实男女啪啪啪动态图| 国产亚洲精品综合一区在线观看| 日韩欧美在线乱码| 看片在线看免费视频| 久久久久精品国产欧美久久久| 搡老岳熟女国产| 熟女电影av网| ponron亚洲| 久久精品夜夜夜夜夜久久蜜豆| 国产野战对白在线观看| 手机成人av网站| 亚洲成av人片在线播放无| 国产1区2区3区精品| 国产亚洲精品久久久久久毛片| 在线看三级毛片| 欧美国产日韩亚洲一区| 国产精品 欧美亚洲| 欧美黄色淫秽网站| 免费在线观看亚洲国产| 色av中文字幕| 国产在线精品亚洲第一网站| 观看免费一级毛片| 国内精品久久久久精免费| 又黄又粗又硬又大视频| 黑人巨大精品欧美一区二区mp4| 国产午夜精品论理片| 99国产精品99久久久久| 精品久久久久久久人妻蜜臀av| 中文字幕av在线有码专区| 国产成+人综合+亚洲专区| 免费在线观看视频国产中文字幕亚洲| 中文资源天堂在线| 精品国产亚洲在线| 99re在线观看精品视频| 一a级毛片在线观看| 久久这里只有精品中国| 日本 av在线| 亚洲熟妇中文字幕五十中出| 嫩草影院精品99| 成人无遮挡网站| 久久久国产成人免费| 两人在一起打扑克的视频| 美女 人体艺术 gogo| 久久久色成人| 麻豆av在线久日| 亚洲色图 男人天堂 中文字幕| 青草久久国产| 黄片大片在线免费观看| 别揉我奶头~嗯~啊~动态视频| 热99re8久久精品国产| 国产 一区 欧美 日韩| 久久精品国产综合久久久| 午夜精品一区二区三区免费看| 美女被艹到高潮喷水动态| 日韩国内少妇激情av| 精品一区二区三区视频在线观看免费| 每晚都被弄得嗷嗷叫到高潮| av天堂在线播放| 亚洲成人久久性| 成人三级黄色视频| 精品国产三级普通话版| 色综合亚洲欧美另类图片| 综合色av麻豆| 国产亚洲精品久久久com| 精品无人区乱码1区二区| 欧美中文日本在线观看视频| www.精华液| 色av中文字幕| 国产伦精品一区二区三区四那| 观看免费一级毛片| 国产精品一区二区免费欧美| 在线观看舔阴道视频| 女同久久另类99精品国产91| 人人妻人人澡欧美一区二区| 国产精品一区二区三区四区久久| 制服丝袜大香蕉在线| 老司机午夜十八禁免费视频| 精品久久久久久久久久免费视频| 亚洲在线自拍视频| 国产精品99久久久久久久久| 国产午夜福利久久久久久| 婷婷六月久久综合丁香| 一边摸一边抽搐一进一小说| 熟女少妇亚洲综合色aaa.| 国产欧美日韩精品一区二区| av在线蜜桃| 亚洲精品美女久久久久99蜜臀| 欧美日韩乱码在线| 最新在线观看一区二区三区| 成人欧美大片| 成人av一区二区三区在线看| 亚洲av免费在线观看| 99久久无色码亚洲精品果冻| 亚洲精品456在线播放app | 最新美女视频免费是黄的| 国产伦在线观看视频一区| 成年女人看的毛片在线观看| 久久精品国产清高在天天线| 一个人观看的视频www高清免费观看 | 中文字幕人妻丝袜一区二区| 99久久无色码亚洲精品果冻| 免费看日本二区| 香蕉久久夜色| 伊人久久大香线蕉亚洲五| 99久久精品国产亚洲精品| 精品无人区乱码1区二区| 国产成人福利小说| 男女做爰动态图高潮gif福利片| 99热只有精品国产| 美女免费视频网站| 免费看a级黄色片| 免费av毛片视频| 亚洲国产欧洲综合997久久,| 亚洲中文av在线| 男女床上黄色一级片免费看| 亚洲中文av在线| 欧美zozozo另类| 在线观看日韩欧美| 免费在线观看亚洲国产| 午夜福利成人在线免费观看| 日本三级黄在线观看| 国产精品久久电影中文字幕| 久久久久久久久免费视频了| 精品久久蜜臀av无| 国模一区二区三区四区视频 | 岛国在线免费视频观看| 中文字幕人妻丝袜一区二区| 亚洲欧美精品综合一区二区三区| 欧美最黄视频在线播放免费| 看免费av毛片| 精品日产1卡2卡| 久久伊人香网站| www.熟女人妻精品国产| 国产日本99.免费观看| 操出白浆在线播放| 一进一出抽搐动态| 国产精品美女特级片免费视频播放器 | 国产精品98久久久久久宅男小说| 人人妻人人看人人澡| 国产成人av激情在线播放| 热99re8久久精品国产| 国产成人aa在线观看| e午夜精品久久久久久久| 在线免费观看不下载黄p国产 | 国产精品一及| 18禁观看日本| 一进一出抽搐gif免费好疼| 手机成人av网站| 好看av亚洲va欧美ⅴa在| 真人做人爱边吃奶动态| 中文字幕av在线有码专区| 成人欧美大片| 欧美精品啪啪一区二区三区| 好男人在线观看高清免费视频| 亚洲成av人片免费观看| 一本一本综合久久| 成年女人毛片免费观看观看9| 最新在线观看一区二区三区| 最新美女视频免费是黄的| 久久午夜综合久久蜜桃| 成人18禁在线播放| 亚洲av成人精品一区久久| 久久久久精品国产欧美久久久| 欧美在线黄色| 精品一区二区三区四区五区乱码| 久久性视频一级片| 在线观看日韩欧美| 在线观看免费午夜福利视频| 国产精品久久视频播放| 久久天躁狠狠躁夜夜2o2o| 日本a在线网址| 免费看美女性在线毛片视频| 我要搜黄色片| 最近视频中文字幕2019在线8| 精品久久久久久久毛片微露脸| 黄色女人牲交| 九色成人免费人妻av| 床上黄色一级片| 久久精品综合一区二区三区| 久久久久久久午夜电影| 久久中文看片网| 九九热线精品视视频播放| 国内揄拍国产精品人妻在线| 亚洲精品在线观看二区| 手机成人av网站| 成人18禁在线播放| 日日摸夜夜添夜夜添小说| 最新美女视频免费是黄的| 可以在线观看毛片的网站| 亚洲欧美日韩卡通动漫| 亚洲av美国av| 亚洲,欧美精品.| 亚洲av免费在线观看| 日本一二三区视频观看| 中文字幕av在线有码专区| 国产一级毛片七仙女欲春2| 一夜夜www| 欧美成人免费av一区二区三区| 久久久久精品国产欧美久久久| 国产成人av激情在线播放| 亚洲精品一卡2卡三卡4卡5卡| 日本免费一区二区三区高清不卡| 一二三四社区在线视频社区8| 长腿黑丝高跟| 午夜福利成人在线免费观看| 亚洲国产精品合色在线| 1024香蕉在线观看| 三级毛片av免费| netflix在线观看网站| 国产精品综合久久久久久久免费| 精品国产三级普通话版| 国产日本99.免费观看| 一个人看视频在线观看www免费 | 国产成人av激情在线播放| 国产精品一区二区三区四区免费观看 | 色精品久久人妻99蜜桃| 99久久精品一区二区三区| 色噜噜av男人的天堂激情| 午夜福利视频1000在线观看| 亚洲专区国产一区二区| 国内毛片毛片毛片毛片毛片| 99热精品在线国产| 精品国产美女av久久久久小说| 亚洲欧美日韩高清专用| 日本黄色视频三级网站网址| 亚洲aⅴ乱码一区二区在线播放| 国产又黄又爽又无遮挡在线| 最新中文字幕久久久久 | 小蜜桃在线观看免费完整版高清| 成人国产一区最新在线观看| 亚洲av成人av| 亚洲人成电影免费在线| 桃色一区二区三区在线观看| 欧美又色又爽又黄视频| 在线观看午夜福利视频| 亚洲欧美精品综合一区二区三区| 国产黄a三级三级三级人| 一级作爱视频免费观看| 岛国在线观看网站| 久久久精品欧美日韩精品| 91老司机精品| 搡老岳熟女国产| 18禁裸乳无遮挡免费网站照片| 两人在一起打扑克的视频| 欧美极品一区二区三区四区| 岛国在线观看网站| 中文字幕熟女人妻在线| 精品久久久久久成人av| 国产一级毛片七仙女欲春2| 九九热线精品视视频播放| 免费观看的影片在线观看| 99久久99久久久精品蜜桃| 国产野战对白在线观看| 国产精品日韩av在线免费观看| 国内毛片毛片毛片毛片毛片| 日韩有码中文字幕| 一区二区三区激情视频| 听说在线观看完整版免费高清| 亚洲一区高清亚洲精品| 国产精品一区二区三区四区免费观看 | 欧美成人免费av一区二区三区| 欧美乱色亚洲激情| 日韩欧美国产一区二区入口| 欧美日韩福利视频一区二区| 国产精品野战在线观看| 国产男靠女视频免费网站| 性色av乱码一区二区三区2| 亚洲成a人片在线一区二区| 亚洲一区二区三区不卡视频| 国产精品久久久人人做人人爽| 观看美女的网站| 成人18禁在线播放| 伊人久久大香线蕉亚洲五| 日韩三级视频一区二区三区| 久久久国产成人精品二区| 不卡av一区二区三区| 久久香蕉精品热| 色吧在线观看| 91麻豆av在线| 变态另类成人亚洲欧美熟女| 最近视频中文字幕2019在线8| 亚洲人与动物交配视频| 久久精品亚洲精品国产色婷小说| 99在线人妻在线中文字幕| 久99久视频精品免费| 成人永久免费在线观看视频| 久久亚洲精品不卡| 俺也久久电影网| 成人欧美大片| 亚洲av日韩精品久久久久久密| 午夜精品久久久久久毛片777| 看黄色毛片网站| 无遮挡黄片免费观看| 亚洲av电影在线进入| 国产真人三级小视频在线观看| 国产高清激情床上av| 禁无遮挡网站| 国产亚洲精品久久久久久毛片| 国产一区二区在线av高清观看| 亚洲成人中文字幕在线播放| 日本免费a在线| 免费一级毛片在线播放高清视频| 99久久精品热视频| 国产精品永久免费网站| 久久精品aⅴ一区二区三区四区| 99热6这里只有精品| 日本成人三级电影网站| 国模一区二区三区四区视频 | 久久久精品欧美日韩精品| 国产精品电影一区二区三区| 久久久水蜜桃国产精品网| 国内久久婷婷六月综合欲色啪| 999久久久国产精品视频| 国内毛片毛片毛片毛片毛片| 国产精品99久久久久久久久| 国产三级黄色录像| 国产 一区 欧美 日韩| 国产精品一及| 精品一区二区三区av网在线观看| 亚洲精品色激情综合| 国产精品一区二区免费欧美| 免费高清视频大片| 日日夜夜操网爽| 丰满人妻一区二区三区视频av | 成在线人永久免费视频| 久久久久久久久免费视频了| 亚洲真实伦在线观看| 91在线精品国自产拍蜜月 | 不卡av一区二区三区| 亚洲成人精品中文字幕电影| 亚洲五月天丁香| 老司机在亚洲福利影院| 亚洲精品国产精品久久久不卡| 夜夜爽天天搞| 一级毛片精品| 在线永久观看黄色视频| 最新美女视频免费是黄的| 好男人电影高清在线观看| 色噜噜av男人的天堂激情| 色综合欧美亚洲国产小说| 麻豆成人av在线观看| 国产精品av久久久久免费| 国产精品久久电影中文字幕| 亚洲专区字幕在线| av在线天堂中文字幕| 91老司机精品| 在线视频色国产色| 天天躁日日操中文字幕| 亚洲人成网站高清观看| 五月玫瑰六月丁香| 婷婷丁香在线五月| 999久久久精品免费观看国产| 90打野战视频偷拍视频| 成年女人毛片免费观看观看9| 伊人久久大香线蕉亚洲五| 国内毛片毛片毛片毛片毛片| 国产又黄又爽又无遮挡在线| 18禁黄网站禁片免费观看直播| 久久久久九九精品影院| 亚洲欧美日韩东京热| 欧美日韩乱码在线| 国产av麻豆久久久久久久| 国产主播在线观看一区二区| 日韩高清综合在线| 久久久久久久久中文| 村上凉子中文字幕在线| 国产成人av教育| xxx96com| 日韩精品青青久久久久久| 午夜福利视频1000在线观看| www日本在线高清视频| 久久久久久久久久黄片| 国产成人影院久久av| 天堂网av新在线| 亚洲乱码一区二区免费版| 国产三级黄色录像| 夜夜夜夜夜久久久久| 免费在线观看影片大全网站| 男人的好看免费观看在线视频| 99在线视频只有这里精品首页| 精品欧美国产一区二区三| 无限看片的www在线观看| 精品人妻1区二区| 一个人免费在线观看电影 | 国产成人啪精品午夜网站| 嫩草影视91久久| 欧美日韩乱码在线| 国产精品99久久99久久久不卡| 亚洲中文av在线| av黄色大香蕉| 国产av在哪里看| 亚洲成av人片免费观看| 久久久久免费精品人妻一区二区| 亚洲成人久久性| 免费人成视频x8x8入口观看| 国产午夜精品论理片| 一二三四社区在线视频社区8| 国产成人一区二区三区免费视频网站| 成人欧美大片| 丰满的人妻完整版| 精品久久蜜臀av无| 日本五十路高清| 成人午夜高清在线视频| av天堂中文字幕网| 操出白浆在线播放| 又粗又爽又猛毛片免费看| 少妇的丰满在线观看| 一级a爱片免费观看的视频| 高清在线国产一区| 亚洲熟妇熟女久久| 成人永久免费在线观看视频| 国产av不卡久久| 久久久久精品国产欧美久久久| 丰满人妻一区二区三区视频av | 一区福利在线观看| 男人和女人高潮做爰伦理| 亚洲国产欧美网| 亚洲国产精品sss在线观看| a在线观看视频网站| 成人高潮视频无遮挡免费网站| 国产精品一及| 法律面前人人平等表现在哪些方面| 久久精品91蜜桃| 国产黄色小视频在线观看| 一级黄色大片毛片| 国产伦人伦偷精品视频| 国产av麻豆久久久久久久| 香蕉av资源在线| 国产激情偷乱视频一区二区| 变态另类丝袜制服| 亚洲国产中文字幕在线视频| 男人舔女人的私密视频| 午夜免费激情av| 亚洲专区中文字幕在线| 亚洲国产欧美一区二区综合| 人妻丰满熟妇av一区二区三区| 国产精品影院久久| 精品欧美国产一区二区三| 精品久久久久久久人妻蜜臀av| avwww免费| 99在线视频只有这里精品首页| 天堂影院成人在线观看| 午夜影院日韩av| 国产真实乱freesex| 亚洲精品一卡2卡三卡4卡5卡| 啪啪无遮挡十八禁网站| 亚洲国产欧美网| 一区福利在线观看| 51午夜福利影视在线观看| 一本精品99久久精品77| 久久婷婷人人爽人人干人人爱| 亚洲在线自拍视频| 日韩 欧美 亚洲 中文字幕| 黄片大片在线免费观看| 波多野结衣巨乳人妻| 99热只有精品国产| 国产精品亚洲美女久久久| 精品国产美女av久久久久小说| 欧美大码av| 国产真人三级小视频在线观看| 亚洲天堂国产精品一区在线| 久久精品国产清高在天天线| 亚洲成av人片在线播放无| 久久香蕉国产精品| 天天一区二区日本电影三级| 精品国产乱码久久久久久男人| 久久久久免费精品人妻一区二区| 变态另类丝袜制服| 欧美最黄视频在线播放免费| 亚洲性夜色夜夜综合| 国产精品野战在线观看| 免费搜索国产男女视频| 国产毛片a区久久久久| 午夜精品在线福利| 变态另类成人亚洲欧美熟女| 午夜激情福利司机影院| 久久久久亚洲av毛片大全| 蜜桃久久精品国产亚洲av| 啦啦啦免费观看视频1| 怎么达到女性高潮| 国产精品一区二区三区四区久久| 97超级碰碰碰精品色视频在线观看| 日本成人三级电影网站| 性色avwww在线观看| 女人高潮潮喷娇喘18禁视频| 成人av在线播放网站| 亚洲成av人片在线播放无| 老鸭窝网址在线观看| 中文字幕av在线有码专区| 国产三级黄色录像| svipshipincom国产片| 在线免费观看的www视频| 国产高清三级在线| 丰满人妻一区二区三区视频av | 欧美日韩福利视频一区二区| 三级毛片av免费| 免费看a级黄色片| 成年女人毛片免费观看观看9| 午夜福利高清视频| www.精华液| 禁无遮挡网站| 老汉色∧v一级毛片| 久久久精品欧美日韩精品| 在线观看免费视频日本深夜| 免费看十八禁软件| 国产成人av激情在线播放| 中文字幕最新亚洲高清| 19禁男女啪啪无遮挡网站| 在线国产一区二区在线| 欧美成人性av电影在线观看| 亚洲 欧美 日韩 在线 免费| 午夜精品久久久久久毛片777| av在线蜜桃| 无人区码免费观看不卡| 亚洲熟女毛片儿| 99国产精品一区二区蜜桃av| 久久中文字幕一级| 亚洲成人精品中文字幕电影| 欧美日韩福利视频一区二区| 美女cb高潮喷水在线观看 | 欧美黄色淫秽网站| 国产精品乱码一区二三区的特点| 久久久久久人人人人人| or卡值多少钱| 女人被狂操c到高潮| 日本免费一区二区三区高清不卡| 国产亚洲精品久久久com| 亚洲国产精品久久男人天堂| 国产午夜福利久久久久久| 亚洲欧美一区二区三区黑人| 成人18禁在线播放| 欧美又色又爽又黄视频| 亚洲成av人片免费观看| 欧美日韩黄片免| 日韩三级视频一区二区三区| 校园春色视频在线观看| 亚洲美女视频黄频| 天堂网av新在线| 丁香欧美五月| 国产成人影院久久av| 欧美精品啪啪一区二区三区| 久久久久久久午夜电影| 欧美大码av| 亚洲真实伦在线观看| 久久久久性生活片| av在线蜜桃| 亚洲熟妇熟女久久| 色尼玛亚洲综合影院| 波多野结衣高清作品| 亚洲国产精品久久男人天堂| 1000部很黄的大片| 一个人观看的视频www高清免费观看 | 久久中文字幕一级| 久久伊人香网站| 亚洲成人精品中文字幕电影| 久久九九热精品免费| 日本黄大片高清| 亚洲国产欧美一区二区综合| 99热这里只有是精品50| 亚洲欧美日韩无卡精品| 精品日产1卡2卡| 成人av一区二区三区在线看| 老鸭窝网址在线观看| 老司机在亚洲福利影院|