• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Decomposition reaction of phosphate rock under the action of microwave plasma?

    2021-05-06 08:56:00HuiZheng鄭慧MengYang楊猛ChengFaJiang江成發(fā)andDaiJunLiu劉代俊
    Chinese Physics B 2021年4期

    Hui Zheng(鄭慧), Meng Yang(楊猛), Cheng-Fa Jiang(江成發(fā)), and Dai-Jun Liu(劉代俊)

    Department of Chemical Engineering,Sichuan University,Chengdu 610065,China

    Keywords: microwave plasma, phosphorus decomposition, optical emission spectroscopy, reaction mechanism

    1. Introduction

    Phosphorus is an important raw material for the production of fine phosphorous chemicals and high-quality phosphoric acid. The production source of yellow phosphorous is mainly derived from the decomposition of phosphate rock.Although there are many reserves of phosphate ore resources in the world, there are few rich mines. This requires the development of production technologies that can make good use of low-grade refractory phosphate rock.

    At present, the yellow phosphorus production industry mainly adopts the electric furnace method. This method has the advantages of good product quality (purity can reach 99.9%), high labor productivity, and low cost. But it consumes a lot of energy. The operating temperature is around 1600 K.For every 1 t of yellow phosphorus produced,it takes about 10 t of phosphate ore, electricity consumption is about 1.3×104kW·h to 1.5×104kW·h, and slag discharge is 9 t to 11 t. In addition, electric furnace method seriously pollute the environment and is not in line with current green development needs. Therefore,the development of energy-saving and consumption-reducing,clean production technology of yellow phosphorus production is of great significance to the sustainable development.

    In recent years,the research and application of microwave plasma technology has shown an obvious upward trend. Microwave plasma technology is to convert microwave energy into the internal energy of gas molecules, so that it can be excited, dissociated, and ionized into active species. Compared with dielectric barrier discharge,direct current arc,and radio frequency plasma,microwave plasma has the advantages of no electrode pollution,high purity,high energy utilization,high electron density, and uniform plasma distribution. This makes it have practical application value and wide application prospects. Microwave plasma can be used in many fields,such as sputtering film formation,[1]plasma chemical vapor deposition (PCVD),[2]plasma polymerization, and initiation polymerization,[3]surface modification of materials,[4]etc.

    Spectroscopic diagnosis of microwave plasma characteristics under atmospheric pressure is very important for the understanding of the reaction mechanism. Electron temperature (Te) and electron density (Ne) are important parameters of plasma,and they have an important influence on the application of plasma.[5]Optical emission spectroscopy(OES)was usually used to diagnose plasmas, it can provide a lot of information about plasma species. Using this method,some basic characteristics of the plasma can be obtained by recording the emission intensity of different excited states to obtain the electron temperature,[6,7]or the electron density can be measured by obvious broadening of the spectral line.[8]Because there are many excited atoms and free radicals in the plasma,they directly or indirectly participate in plasma chemical reaction processes and affect the decomposition and formation of substances in the plasma. The plasma species information obtained by OES can be used to explore the chemical reactions occuring in the plasma and help to understand the reaction mechanism.

    Up to now,there have been few reports about the decomposition phenomenon of phosphate rock under the action of microwave plasma.In this paper,we mainly study the reaction mechanism of the decomposition of low-grade phosphate rock under the action of atmospheric pressure microwave plasma.In experiment,the phosphate rock and its decomposition products are characterized by x-ray diffraction(XRD)techniques,energy disperse spectroscopy(EDS),and chemical method.At the same time, the plasma emission spectroscopy is used to study the characteristics of atmospheric pressure microwave plasma,to investigate and determine the electron temperature(Te)and electron density(Ne)of the plasma, clarify the composition of free radicals in atmospheric pressure microwave plasma, and obtain the reaction mechanism of the phosphate rock decomposition under the action of atmospheric pressure microwave plasma.

    2. Experiment

    The phosphate rock is from a factory in Sichuan, China.The minerals are analyzed by ICP-AES and chemical method,volumetric method, and other methods. The main chemical components are shown in Table 1.The powdered activated carbon with analytical grade(AR)is used as the reducing agent.

    The self-developed compressed waveguide microwave plasma device is used as the experimental equipment. Its microwave frequency is 2.45 GHz and the output power is adjustable from 0 W to 1300 W.The device is mainly composed of a microwave generator,a reaction chamber,a vacuum system, a cooling system and an air intake control system. The cooling system adopts circulating water cooling, and the intake air flow is controlled by a rotameter, as shown in Fig.1.Multi-channel high-resolution plasma dedicated analysis photoelectric acquisition system spectrometer (AVANTES B.V.AvaSpecULS2048-4-USB2-RM) is used for spectrum measurement. This spectrometer uses a fiber optic detector, the best optical resolution can reach 0.10 nm, and the measurement spectrum band range is 180 nm–710 nm.

    Table 1. Chemical composition of raw phosphate rock.

    In the experiment, a certain amount of phosphate rock with a particle size of 120 meshes was mixed with activated carbon in a certain proportion, then water was added to mix well (10% of water), and the tablets were dried. Put the compressed mixture into a graphite crucible, and carry out a reduction reaction under the action of microwave plasma.The experiment mainly investigates the influence of different reaction times. The phosphorus content in the product is determined in accordance with GB/T 1871.1-1995 “Determination of phosphorus pentoxide content in phosphate rock and phosphate concentrate-quinoline phosphomolybdate gravimetric method”.The calcium content is determined in accordance with GB/T 1871.4-1995“Determination of calcium oxide content in phosphate rock and phosphate concentrate volumetric method”.

    Fig.1. Schematic diagram of the experimental set up.

    Turn on successively the water cooling system, the microwave plasma equipment, the gas source, and adjust the power. A certain flow of working gas reaches the nozzle through the plasma resonance cavity. When the microwave power is large enough,the microwave energy at the tip of the nozzle can excite the gas discharge in the area to form a plasma jet. The optical fiber probe of the spectrometer is aimed at the center of the plasma flame to record the plasma spectrum data in time. N2as the working gas and CO as the reducing gas were used in the experiment. The operating parameters for the experiments are given in Table 2. The experimental raw materials and products are tested and characterized by XRD,EDS,chemical analysis,and other technologies.

    Table 2. Experimental operating parameters.

    3. Results and discussion

    3.1. Thermodynamic analysis of phosphate rock decomposition

    The change of Gibbs free energy is the only criterion for judging whether a chemical reaction can occur. This reaction can occur only when the Gibbs free energy of the reaction is less than zero. Phosphorus in phosphate rock is in the form of Ca5(PO4)3F,so the process of extracting phosphorus from the phosphate rock is actually the reduction process of Ca5(PO4)3F. When carbon and carbon monoxide are used as reducing agents, the most likely chemical reaction formulas for the phosphate rock decomposition are shown below:[9]

    The HSC Chemistry 6.0 software is used to calculate the Gibbs free energy change(?G)of the above reactions with temperature(T). The calculation results are shown in Fig.2.

    From Fig.2,it can be seen that when C(s)is used as the reducing agent,the corresponding temperatures when ?G=0 in Eqs.(1)–(3)are 1808 K,1670 K,and 1533 K,respectively.When CO is the reducing agent, the corresponding temperatures when ?G=0 in Eqs. (4)–(6) are 5204 K, 4975 K, and 4653 K, respectively. It can be seen that when carbon and carbon monoxide are used as reducing agents, the minimum temperature of the phosphate rock decomposition is relatively high. If C(g)is used as the reducing agent,the chemical reaction formula of phosphate rock decomposition is[9]

    Figure 2(c) shows the Gibbs free energy change(?G, kJ·mol?1) with temperature (T, K) calculated by the HSC Chemistry 6.0 software from Eqs. (7)–(9). From Fig.2(c), it can be seen that when the phosphate rock reacts with C(g),the lowest temperature of the reaction is much less than 100 K,so an attempt can be made to reduce the phosphate rock under the condition of C(g).

    Fig.2. Profiles of ?G–T from chemical reaction equations:(a)Eqs.(1)–(3);(b)Eqs.(4)–(6);and(c)Eqs.(7)–(9).

    LD Pietanza et al.[10]studied the non-equilibrium plasma kinetics of CO reaction under microwave discharge conditions. It was found that under the conditions of microwave discharge, CO follows a pure vibration mechanism, that is,CO can dissociate directly from CO+M→C+O+M,the ionization energy is 11.128 eV.At the same time, under the collision of electrons, CO ionizes in the following way, namely,e+CO←→e+CO++e, CO++e→C+O. From this we know that C(g) can be obtained from the dissociation of oxygencontaining gas in microwave plasma. Therefore in the present work, CO is applied as the working gas to reduce the phosphate rock under the action of microwave plasma.

    3.2. Phosphate rock decomposition

    The XRD pattern of the raw phosphorus powder is shown in Fig.3. Figure 4(a) shows the XRD patterns of phosphate rock reduction under microwave plasma at different reaction times. Figure 4(b)shows the intensity changes of the diffraction peaks of Ca2SiO4and CaSiO3at different reaction times.It can be seen from these figures that,when the phosphate rock is reduced under the action of plasma,two diffraction peaks of Ca2SiO4and CaSiO3appear in the XRD pattern of the product,indicating that the phosphate rock reacts with CO to form Ca2SiO4and CaSiO3. As the reaction time increases, the intensity of the CaSiO3diffraction peak first increases and then decreases,while the intensity of the Ca2SiO4diffraction peak basically remains unchanged. It can be known that when the reaction time is 10 min,the output of CaSiO3is the highest.

    Fig.3. XRD pattern of raw phosphorus powder.

    The EDX spectrum of the phosphate rock decomposed under the action of microwave plasma is shown in Fig.5. P,Ca, Si, and oxygen peaks are clearly identified. The EDX spectrum shows that the P peak is attenuated more than the Ca peak after the phosphate rock reacts for 10 min, indicating that the phosphate rock has decomposed during this process. Therefore, it can be seen from the EDX spectrum that the phosphate rock undergoes a decomposition reaction under the action of microwave plasma.

    Fig.4. XRD pattern of microwave plasma dissociated phosphorus at different times.

    Fig.5. EDS spectrum of phosphate rock decomposition under microwave plasma: (a) before the phosphate rock decomposes (b) after the phosphate rock is decomposed.

    Fig.6. The relationship between the reaction time and the conversion rate of phosphate rock.

    Figure 6 shows the relationship between the reaction time and the conversion rate of the phosphate rock. From Fig.6,it can be seen that the phosphate rock has a certain conversion rate under the action of microwave plasma,and as the reaction time increases,the reduction rate of the phosphate rock shows a slow upward trend. According to the experimental results,we can infer that the phosphate rock reduction reaction is completed in a short time under the action of microwave plasma,and a too long reaction time is meaningless to the phosphate rock reduction reaction.

    The above results confirmed that the phosphate rock had a decomposition reaction under the action of microwave plasma.The main products are Ca2SiO4and CaSiO3.It can be inferred that certain active particles excited by the microwave plasma promote the decomposition of the phosphate rock.The plasma emission spectroscopy is used to determine the excited atoms and free radicals participating in the decomposition reaction.

    3.3. Spectral diagnosis of microwave plasma characteristics

    There are many excited atoms and free radicals in the plasma. They participate in the plasma chemical reaction and affect the decomposition and generation of substances in the plasma. At the same time,electrons dominate the plasma ionization and collision between particles. Electron temperature(Te) and electron density (Ne) are the most important physical parameters that characterize the plasma state. Only by spectral diagnosis of atmospheric pressure microwave plasma can we understand the composition of excited atoms and free radicals inside the plasma, calculate the electron temperature and electron density, and infer the surface decomposition reaction mechanism of the phosphate rock under the action of microwave plasma.

    In this paper,the electron temperature(Te)of the plasma is measured by the relative intensity of the ion emission line.For the relative intensity ratio of two O II spectral lines, the intensity measurement of spectral lines emitted by the plasma jet,when the assumption of LTE is made,is given by[11]

    where λ is the emission spectrum wavelength; h is the Planck constant, 6.626×10?34J·s; c is the speed of light,3×10?8m·s?1; k is the Boltzmann constant, 1.38065×10?23J·K?1; N is the layout density of the ground state energy; Z is the partition function. The subscripts i and k are the main quantum numbers corresponding to the upper and lower levels of the line; Eiis the energy of the corresponding level;giis the statistical weight of the energy level;and Aikis the spontaneous transition probability from level i to level k.Therefore,the electron temperature(Te)can be obtained by using the intensity of two spectral lines with the same ionization state of the same element. The final formula for the electron temperature is given by:

    when v is the emission frequency.

    Under LTE conditions, the electron density (Ne) can be obtained by using the Saha ionization equation[12]

    Here, Z and Z+1 represent two adjacent ionization states of the same element;meis electron mass,9.11×10?31kg;E∞is the ionization energy of Z ionized particles. In this study,the intensity of the two spectral lines O II (301.91 nm) and O II(347.49 nm) were used to calculate the electron temperature,and the intensity of the C I(247.86 nm)and C II(296.62 nm)lines is used to calculate the electron density. The Kurucz database will be used to identify the spectral lines of these elements.[13]

    The experiment investigated the influence of CO variable and microwave power on electron temperature and electron density. A typical spectral emission at 1300 W and N2/CO flow rate 3/0.6 L/min is shown in Fig.7.

    Fig.7. Typical spectral emission at 1300 W and N2/CO flow rate 3/0.6 L/min: (a)wavelength from 230 nm to 550 nm; (b)wavelength from 413 nm to 424 nm.

    Table 3. Species and wavelengths used in measurements.

    Fig.8. The variations of electron temperature with different CO flows and different microwave output powers.

    According to formulas(10)–(13)and the elemental spectrum data in Table 3,the electron temperature can be obtained under different CO flows and microwave powers, as shown in Fig.8. As the CO flow rate and microwave output power increase, the electron temperature changes significantly. The electron temperature is an important parameter to determine the kinetic energy of electrons in plasma. Figure 8(a) shows that as the CO flow rate increases, the electron temperature shows a downward trend. This is because when the output power is constant, the increase of CO flow requires more energy for the dissociation of CO,while the constant microwave power makes the energy input in the plasma constant,and the kinetic energy of electrons will decrease. Figure 8(b) shows that as the microwave input power increases,the electron temperature increases slightly, but the increase is not significant.The CO flow rate remains unchanged, and the increase of input energy will inevitably cause the increase of the content of excited state particles produced by dissociation. The reason for the insignificant increase is because, in the spectrum obtained according to different output powers,the intensity of the CO+spectrum shows an insignificant increase as the power increases. That is, there is no obvious change in the average kinetic energy of electrons,so that there is no obvious change in the types of excited particles produced by the electron excitation and dissociation processes of the CO molecules.

    Fig.9. the variation in the electron temperature with the different CO flows and different microwave output power.

    Figure 9 shows the changing trend of electron density under different CO flows and microwave powers. The numerical value of the electron density can indicate the concentration of electrons in the plasma. Figure 9(a)shows that as the CO flow increases,the electron density decreases. The increase of CO flow makes the dissociation of CO require more energies,and the constant microwave power ensures that the input energy remains unchanged,and the energy is not enough to supply the energy required for CO dissociation or recombination, so the electron concentration will decrease with the increase of the CO flow.It can be seen from Fig.9(b)that as the output power increases, the electron density shows a clear upward trend.The flow of CO and nitrogen remains constant, the temperature of electrons changes little,and the average kinetic energy of electrons remains unchanged. The input energy continues to increase,and the dissociation of CO gets a sufficient energy supply. The content of excited particles produced by dissociation is increasing,that is,the electron concentration increases.This is similar to the results reported in the literature.[14]

    3.4. The mechanism of the decomposition of phosphate rock under the action of microwave plasma

    According to the relationship between the relative intensity of the active particles and the gas production in the spectrum shown in Fig.7, it can be seen that the spectral peaks of C I, C II, and O II are relatively strong. CO can dissociate from CO →C(3P)+O(3P), the dissociation energy of is 11.128 eV. CO molecule has 80 vibrational levels in the ground electronic state, and there are several electronic excited states at the same time, namely three triplet states,a3Π(6.01 eV), a3Σ+(6.86 eV), b3Σ+(10.40 eV) and four singlet states,A1Π(8.03 eV),B1Σ+(10.78 eV),C1Σ+(11.40 eV),E1Σ+(11.52 eV).For C and O atoms,they have four and five electronic energy levels respectively, namely, C(3P), C(1D),C(1S), C(5S0), and O(3P), O(1D), O(1S), O(3S0), O(5S0).The excitation potentials of CO+, C+, and O+are 14.01 eV,11.26 eV,and 13.61 eV,respectively.Their energies have been taken from the Kurucz database. For all the plasma species(CO,C,O,CO+,C+,O+)momentum transfer cross sections(MT),taken mainly from the LXcat database.[15]

    Therefore,we can infer the mechanism of phosphate rock decomposition under microwave plasma:.[10,16–20]

    (i)CO decomposition

    (ii)recombination reaction

    (iii)C(g)reacts with phosphate rock

    Among them,CO(v)and CO(w)represent CO molecules at v and w energy levels, and they may combine to generate CO2and C.Because the intensity of the O II line in the spectrum is relatively high. The P2produced by the decomposition of phosphate rock may combine with O or O+separated from CO to form phosphorus oxides, which is also the reason for the low conversion rate of phosphate rock.

    4. Conclusions

    In the present work, we confirm that the decomposition reaction occurs in phosphate rock under the action of microwave plasma. At the same time, plasma optical emission spectroscopy (OES) is used to study the characteristics of atmospheric pressure microwave plasma, and the electron temperature(Te)and electron density(Ne)of the plasma are investigated and measured. The results show that with the increase of CO flow and microwave power, the electron temperature and electron density in the plasma show a decreasing and increasing trend, which has an important relationship with the energy required for CO dissociation and recombination. The experiment also determined the composition of free radicals in atmospheric pressure microwave plasma through the full spectrum was studied by spectroscopy. According to the relationship between the relative intensity of the active particles and the gas production, we obtained the reaction mechanism of phosphate rock decomposition under the action of atmospheric pressure microwave plasma.

    It is known from the reaction mechanism that CO decomposes gaseous carbon ions under the action of microwave power,and the presence of gaseous carbon ions promotes the decomposition of phosphate rock. This shows that the application of atmospheric pressure microwave plasma technology to extract phosphorus from phosphate rock has great development potential.

    人人妻人人看人人澡| 极品少妇高潮喷水抽搐| 爱豆传媒免费全集在线观看| 亚洲精品乱久久久久久| 人人妻人人爽人人添夜夜欢视频 | 一级毛片电影观看| 亚洲欧洲日产国产| 免费大片18禁| 免费观看性生交大片5| 亚洲精品国产色婷婷电影| 亚洲精品国产成人久久av| 亚洲伊人久久精品综合| 日韩一本色道免费dvd| 国产伦在线观看视频一区| 亚洲av成人精品一区久久| 久久久久性生活片| av国产久精品久网站免费入址| 啦啦啦在线观看免费高清www| 亚洲av欧美aⅴ国产| 国产精品.久久久| 国产久久久一区二区三区| 国产精品久久久久久av不卡| 亚洲精品久久午夜乱码| 久久99热这里只有精品18| 性色avwww在线观看| 国产真实伦视频高清在线观看| 秋霞伦理黄片| 女人被狂操c到高潮| 99热全是精品| av女优亚洲男人天堂| 免费观看的影片在线观看| 久久午夜福利片| av卡一久久| 天天躁日日操中文字幕| 一级二级三级毛片免费看| 亚州av有码| 久久99蜜桃精品久久| 你懂的网址亚洲精品在线观看| 亚洲人成网站在线观看播放| 一级av片app| 久久人人爽av亚洲精品天堂 | 大又大粗又爽又黄少妇毛片口| 欧美成人午夜免费资源| 日韩欧美精品免费久久| 国产综合精华液| 精品久久久久久久久av| 国产精品人妻久久久影院| 永久免费av网站大全| 特级一级黄色大片| 亚洲成人一二三区av| 国模一区二区三区四区视频| 噜噜噜噜噜久久久久久91| 亚洲av福利一区| 亚洲国产欧美在线一区| 国产亚洲91精品色在线| 亚州av有码| 亚洲一级一片aⅴ在线观看| 久久国产乱子免费精品| 精品人妻偷拍中文字幕| 国产精品一区二区在线观看99| 国产一区二区三区综合在线观看 | 一级毛片久久久久久久久女| 色吧在线观看| 日韩伦理黄色片| 少妇人妻一区二区三区视频| 亚洲精品日韩在线中文字幕| 成年女人看的毛片在线观看| 波野结衣二区三区在线| 亚洲成人av在线免费| 色5月婷婷丁香| 最后的刺客免费高清国语| 久久久精品94久久精品| 亚洲一级一片aⅴ在线观看| 美女国产视频在线观看| 少妇丰满av| 少妇人妻 视频| 久久99热这里只有精品18| 99久久中文字幕三级久久日本| 久久久久久久久大av| 成人国产麻豆网| 国产亚洲5aaaaa淫片| 夜夜看夜夜爽夜夜摸| 亚洲成人av在线免费| 亚洲成色77777| av在线老鸭窝| 岛国毛片在线播放| 黄片无遮挡物在线观看| 午夜亚洲福利在线播放| 熟女人妻精品中文字幕| 国产在线一区二区三区精| 亚洲在久久综合| 午夜福利高清视频| 一边亲一边摸免费视频| 亚洲国产色片| 精品人妻熟女av久视频| 人妻 亚洲 视频| 成年女人看的毛片在线观看| 亚洲电影在线观看av| 午夜免费男女啪啪视频观看| 国产大屁股一区二区在线视频| 麻豆乱淫一区二区| 亚洲精品成人av观看孕妇| 国产精品久久久久久精品电影小说 | 国产精品久久久久久久久免| 一级av片app| 日本三级黄在线观看| 日本三级黄在线观看| 九九爱精品视频在线观看| 青春草国产在线视频| 亚洲欧美一区二区三区国产| 少妇猛男粗大的猛烈进出视频 | 中国国产av一级| 亚洲精品国产色婷婷电影| 日本av手机在线免费观看| 91久久精品国产一区二区成人| 久久精品久久久久久久性| 精品视频人人做人人爽| 久久精品国产亚洲av涩爱| 国产一区有黄有色的免费视频| 一级黄片播放器| 午夜福利视频精品| 国产高清有码在线观看视频| 国产成人精品婷婷| 欧美另类一区| xxx大片免费视频| 亚洲欧洲日产国产| 亚洲,一卡二卡三卡| 日本一二三区视频观看| 亚洲欧美清纯卡通| 精品久久久精品久久久| 亚洲,一卡二卡三卡| videossex国产| 丝袜美腿在线中文| 啦啦啦中文免费视频观看日本| 亚洲精品日韩av片在线观看| 五月伊人婷婷丁香| 一级毛片 在线播放| xxx大片免费视频| 久久97久久精品| av女优亚洲男人天堂| 午夜激情福利司机影院| 亚洲四区av| 免费大片18禁| 国产黄片视频在线免费观看| 噜噜噜噜噜久久久久久91| 在线观看国产h片| 视频中文字幕在线观看| 大片免费播放器 马上看| 禁无遮挡网站| 成年免费大片在线观看| 蜜桃久久精品国产亚洲av| 久久精品国产鲁丝片午夜精品| 国产v大片淫在线免费观看| 内地一区二区视频在线| 亚洲av在线观看美女高潮| 女的被弄到高潮叫床怎么办| 香蕉精品网在线| 亚洲四区av| 欧美3d第一页| 久久6这里有精品| 插阴视频在线观看视频| 国产精品99久久99久久久不卡 | 亚洲av欧美aⅴ国产| 国产极品天堂在线| 欧美人与善性xxx| 亚洲美女搞黄在线观看| 中国国产av一级| 性插视频无遮挡在线免费观看| av卡一久久| 最近2019中文字幕mv第一页| 国产亚洲一区二区精品| 极品教师在线视频| 中文字幕亚洲精品专区| 狂野欧美白嫩少妇大欣赏| 亚洲精品影视一区二区三区av| 男女边吃奶边做爰视频| 美女国产视频在线观看| 亚洲欧美精品专区久久| 国产午夜福利久久久久久| 国产老妇女一区| 精品国产露脸久久av麻豆| 国产精品.久久久| 大香蕉久久网| 黄色配什么色好看| 91精品一卡2卡3卡4卡| 大又大粗又爽又黄少妇毛片口| 久久精品国产鲁丝片午夜精品| 欧美 日韩 精品 国产| 91久久精品国产一区二区成人| 精品少妇久久久久久888优播| 亚洲av电影在线观看一区二区三区 | 高清毛片免费看| 免费黄网站久久成人精品| 免费在线观看成人毛片| 2021少妇久久久久久久久久久| 亚洲国产最新在线播放| 日日摸夜夜添夜夜爱| 久久综合国产亚洲精品| 少妇人妻久久综合中文| 国内揄拍国产精品人妻在线| 伦精品一区二区三区| 欧美高清性xxxxhd video| 一级毛片电影观看| 欧美日韩精品成人综合77777| 午夜福利在线观看免费完整高清在| 国产欧美亚洲国产| 免费播放大片免费观看视频在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲第一区二区三区不卡| 亚洲欧美日韩东京热| 秋霞伦理黄片| 欧美潮喷喷水| 一级爰片在线观看| 高清在线视频一区二区三区| 久久久久久久久久久丰满| 国产精品蜜桃在线观看| 午夜爱爱视频在线播放| 婷婷色综合www| 欧美成人a在线观看| 色视频在线一区二区三区| 国产亚洲最大av| 免费av毛片视频| 黄片wwwwww| 国产午夜精品久久久久久一区二区三区| 久久国产乱子免费精品| 日韩av免费高清视频| 99九九线精品视频在线观看视频| 最近中文字幕高清免费大全6| 国产老妇伦熟女老妇高清| 韩国av在线不卡| av线在线观看网站| 国产精品人妻久久久久久| 国产探花在线观看一区二区| 国产精品麻豆人妻色哟哟久久| 国产精品久久久久久精品古装| 欧美 日韩 精品 国产| 建设人人有责人人尽责人人享有的 | 在线观看一区二区三区| 久久久久精品久久久久真实原创| 精品国产乱码久久久久久小说| 亚洲天堂av无毛| 国内精品美女久久久久久| 日本黄大片高清| 在线天堂最新版资源| 两个人的视频大全免费| 我的老师免费观看完整版| 夜夜看夜夜爽夜夜摸| 午夜福利网站1000一区二区三区| 成人毛片60女人毛片免费| 亚洲av欧美aⅴ国产| 天天躁夜夜躁狠狠久久av| 国产高潮美女av| 中文天堂在线官网| 日韩欧美精品v在线| 久久99精品国语久久久| 2022亚洲国产成人精品| 亚洲精品成人久久久久久| 国产真实伦视频高清在线观看| 国产一区二区在线观看日韩| 国产精品av视频在线免费观看| 亚洲av男天堂| 中文欧美无线码| 两个人的视频大全免费| 亚洲色图av天堂| 国产免费一级a男人的天堂| av国产免费在线观看| 午夜激情久久久久久久| 亚洲国产精品成人综合色| 麻豆成人午夜福利视频| 亚洲av在线观看美女高潮| 赤兔流量卡办理| 99精国产麻豆久久婷婷| 亚洲精品视频女| 日本wwww免费看| 久久久久久久午夜电影| 美女内射精品一级片tv| 亚洲欧美中文字幕日韩二区| 人妻系列 视频| 成人美女网站在线观看视频| kizo精华| 一个人看视频在线观看www免费| 三级经典国产精品| 国产精品久久久久久久电影| 成人亚洲欧美一区二区av| 久久久久国产网址| 久久精品国产亚洲av涩爱| 在线精品无人区一区二区三 | 国产在线男女| 日本三级黄在线观看| 国产大屁股一区二区在线视频| 成年免费大片在线观看| 国产欧美日韩一区二区三区在线 | 综合色丁香网| 嫩草影院新地址| 国精品久久久久久国模美| 欧美zozozo另类| 久久久精品欧美日韩精品| 黄色怎么调成土黄色| 九色成人免费人妻av| av一本久久久久| 美女国产视频在线观看| 亚洲伊人久久精品综合| 又粗又硬又长又爽又黄的视频| 五月伊人婷婷丁香| 最新中文字幕久久久久| 联通29元200g的流量卡| 三级国产精品片| 欧美日韩视频精品一区| 在线看a的网站| 五月开心婷婷网| 亚洲精品一二三| 99热这里只有是精品50| 欧美丝袜亚洲另类| 国产一区二区亚洲精品在线观看| 男女边摸边吃奶| 在线观看av片永久免费下载| 欧美日韩综合久久久久久| 中文资源天堂在线| 国产黄片美女视频| 国产男女超爽视频在线观看| 在线天堂最新版资源| 免费观看a级毛片全部| av一本久久久久| 亚洲va在线va天堂va国产| 中文字幕亚洲精品专区| 80岁老熟妇乱子伦牲交| 岛国毛片在线播放| 欧美日韩在线观看h| 少妇丰满av| 亚洲欧美精品专区久久| 亚洲精品日韩av片在线观看| 九色成人免费人妻av| 成人特级av手机在线观看| 色视频在线一区二区三区| 我要看日韩黄色一级片| 亚洲av一区综合| 久久人人爽人人爽人人片va| 男女国产视频网站| 嫩草影院精品99| 有码 亚洲区| av免费在线看不卡| 偷拍熟女少妇极品色| 国产淫片久久久久久久久| 波野结衣二区三区在线| 亚洲精品久久午夜乱码| 91狼人影院| 欧美另类一区| 美女被艹到高潮喷水动态| 色吧在线观看| 高清在线视频一区二区三区| 亚洲av男天堂| 中文字幕人妻熟人妻熟丝袜美| 日韩中字成人| 亚洲精品日韩在线中文字幕| 国产午夜精品久久久久久一区二区三区| 欧美性感艳星| 亚洲欧美中文字幕日韩二区| 亚洲图色成人| 久久亚洲国产成人精品v| 99精国产麻豆久久婷婷| 欧美日韩精品成人综合77777| 欧美国产精品一级二级三级 | 国产大屁股一区二区在线视频| 欧美xxⅹ黑人| 免费观看的影片在线观看| av福利片在线观看| 一区二区三区免费毛片| 国产高清不卡午夜福利| 97热精品久久久久久| 国产毛片a区久久久久| 少妇裸体淫交视频免费看高清| 欧美高清成人免费视频www| 精品久久国产蜜桃| 国产在线男女| 综合色av麻豆| 欧美老熟妇乱子伦牲交| 视频中文字幕在线观看| 日本熟妇午夜| 日韩成人av中文字幕在线观看| 亚洲无线观看免费| 欧美日韩视频高清一区二区三区二| 亚洲精华国产精华液的使用体验| 国产高清国产精品国产三级 | 午夜福利高清视频| 熟女人妻精品中文字幕| 亚洲精品亚洲一区二区| 99热全是精品| 街头女战士在线观看网站| 在线免费十八禁| av在线蜜桃| 一本一本综合久久| av网站免费在线观看视频| 国产精品一区www在线观看| 人妻夜夜爽99麻豆av| 日韩亚洲欧美综合| 91久久精品电影网| 欧美xxxx性猛交bbbb| 天天躁夜夜躁狠狠久久av| 国产 精品1| 国产永久视频网站| 麻豆精品久久久久久蜜桃| 欧美亚洲 丝袜 人妻 在线| 韩国av在线不卡| 国产精品偷伦视频观看了| 建设人人有责人人尽责人人享有的 | 国产久久久一区二区三区| 亚洲欧洲国产日韩| 又爽又黄a免费视频| 久久久久久伊人网av| av在线app专区| av国产免费在线观看| 欧美成人精品欧美一级黄| 婷婷色综合大香蕉| 高清毛片免费看| 久久久久久伊人网av| 国产高清三级在线| 九色成人免费人妻av| 成人午夜精彩视频在线观看| 深爱激情五月婷婷| 精品酒店卫生间| 欧美性感艳星| 少妇的逼水好多| 麻豆国产97在线/欧美| 亚洲人成网站高清观看| 一本色道久久久久久精品综合| av黄色大香蕉| 国产男人的电影天堂91| 看黄色毛片网站| 一级毛片电影观看| 国产午夜精品一二区理论片| 深爱激情五月婷婷| 亚洲国产日韩一区二区| 亚洲国产最新在线播放| 身体一侧抽搐| av女优亚洲男人天堂| 老司机影院毛片| 亚洲精品国产色婷婷电影| 精品一区二区三卡| 黄色一级大片看看| 日韩欧美精品v在线| 国产黄a三级三级三级人| 色婷婷久久久亚洲欧美| 在线观看一区二区三区激情| 国产成人freesex在线| 久久久久久久久大av| 国产高清有码在线观看视频| 中文字幕亚洲精品专区| 人人妻人人澡人人爽人人夜夜| 久久99热这里只有精品18| 一区二区三区免费毛片| 亚洲国产精品国产精品| 波野结衣二区三区在线| 一级毛片电影观看| 亚洲人成网站高清观看| 最新中文字幕久久久久| a级毛色黄片| 成年女人看的毛片在线观看| 午夜免费鲁丝| 国产伦精品一区二区三区四那| 国产精品av视频在线免费观看| 五月天丁香电影| 午夜视频国产福利| 哪个播放器可以免费观看大片| 欧美一区二区亚洲| 国产乱人偷精品视频| 黄片无遮挡物在线观看| 亚洲欧美中文字幕日韩二区| 日韩国内少妇激情av| 精品久久国产蜜桃| av在线app专区| 国产真实伦视频高清在线观看| 国产精品熟女久久久久浪| 免费看光身美女| 国产免费福利视频在线观看| 国产黄频视频在线观看| 在现免费观看毛片| 三级男女做爰猛烈吃奶摸视频| av国产精品久久久久影院| 亚洲国产日韩一区二区| av国产精品久久久久影院| 国产午夜精品一二区理论片| 一级毛片电影观看| 可以在线观看毛片的网站| 在线观看三级黄色| 免费少妇av软件| 国产一区亚洲一区在线观看| 在线观看一区二区三区激情| 亚洲精品乱久久久久久| 国产色爽女视频免费观看| 爱豆传媒免费全集在线观看| 亚洲天堂国产精品一区在线| 国产精品国产三级国产av玫瑰| 久久精品国产鲁丝片午夜精品| 久久久久久久久大av| av黄色大香蕉| av又黄又爽大尺度在线免费看| 国产日韩欧美在线精品| 大码成人一级视频| 国产探花在线观看一区二区| 97超视频在线观看视频| 亚洲国产成人一精品久久久| 国产成人精品婷婷| 伊人久久国产一区二区| av免费在线看不卡| 夜夜爽夜夜爽视频| 中文精品一卡2卡3卡4更新| 一级av片app| 国产黄频视频在线观看| 插阴视频在线观看视频| 久久久久久久久久久免费av| 久久韩国三级中文字幕| 三级经典国产精品| 成人无遮挡网站| 国产欧美亚洲国产| 在线观看免费高清a一片| 亚洲成色77777| 2021少妇久久久久久久久久久| 国产熟女欧美一区二区| 99九九线精品视频在线观看视频| 午夜精品一区二区三区免费看| 久久久久久伊人网av| 各种免费的搞黄视频| 国产成人91sexporn| av专区在线播放| 美女脱内裤让男人舔精品视频| 黄色配什么色好看| 亚洲国产精品专区欧美| 免费观看的影片在线观看| 欧美97在线视频| 自拍偷自拍亚洲精品老妇| 久久韩国三级中文字幕| 国产探花极品一区二区| 18禁裸乳无遮挡动漫免费视频 | 亚洲国产最新在线播放| 国产色爽女视频免费观看| 人妻夜夜爽99麻豆av| 丝袜美腿在线中文| 丝袜喷水一区| 亚洲自拍偷在线| 国产 精品1| 色网站视频免费| 美女xxoo啪啪120秒动态图| 国产探花在线观看一区二区| 99热国产这里只有精品6| 国产成人aa在线观看| 免费观看在线日韩| 亚洲av电影在线观看一区二区三区 | 六月丁香七月| 亚洲精华国产精华液的使用体验| 菩萨蛮人人尽说江南好唐韦庄| 日韩亚洲欧美综合| 日日摸夜夜添夜夜添av毛片| 亚洲av免费在线观看| 熟妇人妻不卡中文字幕| 国产精品偷伦视频观看了| 在线 av 中文字幕| 99精国产麻豆久久婷婷| 国产高清有码在线观看视频| 中国美白少妇内射xxxbb| 高清av免费在线| 国产在线一区二区三区精| 亚洲成人中文字幕在线播放| 欧美xxxx性猛交bbbb| 大话2 男鬼变身卡| 久久人人爽av亚洲精品天堂 | 国产成人a区在线观看| 一区二区av电影网| 国产v大片淫在线免费观看| 婷婷色麻豆天堂久久| 男人爽女人下面视频在线观看| 寂寞人妻少妇视频99o| 欧美日韩国产mv在线观看视频 | 精品少妇黑人巨大在线播放| 丰满乱子伦码专区| 大又大粗又爽又黄少妇毛片口| 美女国产视频在线观看| 欧美成人午夜免费资源| 免费观看a级毛片全部| 亚洲精品成人av观看孕妇| 男的添女的下面高潮视频| 久久久久网色| 亚洲欧美精品自产自拍| 性色avwww在线观看| 日韩,欧美,国产一区二区三区| 18禁在线播放成人免费| 久久久欧美国产精品| 激情 狠狠 欧美| 直男gayav资源| 九九久久精品国产亚洲av麻豆| 免费黄网站久久成人精品| 精品久久久久久久久亚洲| 男人狂女人下面高潮的视频| 91久久精品电影网| 老司机影院成人| 你懂的网址亚洲精品在线观看| 大香蕉97超碰在线| 肉色欧美久久久久久久蜜桃 | 免费av观看视频| 久久久精品94久久精品| 国产午夜精品一二区理论片| 国产一区二区亚洲精品在线观看| 男女无遮挡免费网站观看| 美女国产视频在线观看| 免费少妇av软件| 日韩一区二区视频免费看| 啦啦啦在线观看免费高清www| 亚洲人成网站高清观看| 亚洲av.av天堂| 欧美成人精品欧美一级黄| 亚洲美女视频黄频| 蜜桃久久精品国产亚洲av| 26uuu在线亚洲综合色| 91精品国产九色| 看非洲黑人一级黄片| 欧美3d第一页|