• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Local dynamical characteristics of Bessel beams upon reflection near the Brewster angle?

    2021-05-06 08:54:52ZhiWeiCui崔志偉ShenYanGuo郭沈言YuanFeiHui惠元飛JuWang王舉andYiPingHan韓一平
    Chinese Physics B 2021年4期

    Zhi-Wei Cui(崔志偉), Shen-Yan Guo(郭沈言), Yuan-Fei Hui(惠元飛), Ju Wang(王舉), and Yi-Ping Han(韓一平)

    School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China

    Keywords: Bessel beams,reflection,Brewster angle,momentum,angular momentum

    1. Introduction

    In recent years, a special type of light beams that do not spread on propagation, i.e. the so-called nondiffracting beams, has attracted much attention for its interesting properties and potential applications.[1–9]The best known example of such beams is the Bessel beams, which are the exact solutions of the Helmholtz wave equation in circular cylindrical coordinates and described by Bessel function of the first kind.[10–17]The intensity distributions of these beams exhibit circular symmetry and consist of a series of concentric rings.The zero-order Bessel beam has a high-intensity central core,whereas the higher-order Bessel beams have a dark central core. As a special type of electromagnetic waves, the nondiffracting Bessel beams can carry not only energy and momentum but also angular momentum,which includes the spin angular momentum (SAM) corresponding to the polarization of the beams and the orbital angular momentum (OAM) associated to the spatial distribution of the beams. It is well known that the energy, momentum, SAM, and OAM are the main dynamical characteristics of light and play a crucial role in the understanding of the light–matter interactions. Meanwhile, the reflection of light from an interface between two media with different material properties is a well-known phenomenon involving the light–matter interaction. The existing studies have shown that a bounded beam of light upon reflection near the Brewster angle exhibits a variety of interesting phenomena, such as large and negative Goos–H¨anchen (GH)shift,[18]large in-plane angular shift,[19]and switchable and enhanced photonic spin Hall effect(PSHE).[20]It is expected that these phenomena accompanying the reflection of a beam at an interface near the Brewster angle will lead to the change of its energy, momentum, SAM, and OAM. Now a question arises: how do these dynamical quantities of the Bessel beams change upon reflection near the Brewster angle? The study on this issue could provide useful insights into the behavior of optical beams with vortex structure and diffraction-free nature during the reflection process,and find potential applications in the fields of new optical sensing,information processing,and new optoelectronic devices design.

    There have been some studies on the reflection of Bessel beams at the interface between two media and the accompanying phenomena.[21–26]Mugnai first examined the behavior of a Bessel beam on total reflection;[21]however, only zero-order Bessel beam is considered. Later, Novitsky and Barkovsky further studied the total internal reflection of Bessel beams with arbitrary order and the accompanying IF shift.[22]Novitsky also studied the change of the size of Bessel beam rings under reflection.[23]Subsequently, Aiello and Woerdman discussed the GH and IF shifts of the Bessel beams upon reflection.[24]Brand?ao and Pires explored the reflection of vector Bessel beams at an interface between dielectrics.[25]More recently, Liu et al. analytically investigated the reflection of a Bessel vortex beam incident on a uniaxial anisotropic media.[26]There have also been some reports on the dynamical properties of Bessel beams.[27–34]An analysis of the energy of Bessel beams was presented in Ref.[27].The OAM density of higher-order Bessel beams was investigated in Refs. [28,29].The coupling between SAM and OAM of the Bessel beams via spin–orbit interaction was studied in Refs.[30,32–34].Despite all these works,few attentions have been paid to the energy,momentum,SAM,and OAM of the Bessel beams upon reflection. These dynamical quantities are of great importance in understanding the dynamical processes concerning the reflection of light beams. In this paper, we focus on the local dynamical characteristics of Bessel beams upon reflection near the Brewster angle.A Taylor series expansion based on the angular spectrum component[35]is used to correct the reflection coefficients near the Brewster angle that changes dramatically.A hybrid method based on the angular spectrum representation and vector potential in the Lorenz gauge[36]is introduced to derive the analytical expressions of the electric and magnetic field components of the reflected Bessel beams,which are the key to study their dynamical characteristics theoretically. The local energy, momentum, SAM, and OAM are described by using the canonical approach proposed by Bliokh et al.[37,38]

    The rest of this paper is organized as follow. In Section 2,the theoretical formulae of this work are presented,where the explicit analytical expressions for the electric and magnetic field components of Bessel beams reflected at an air–medium interface are derived in detail.Some numerical simulations are performed and analyzed in Section 3. Finally, the conclusion is drawn in Section 4.

    2. Theoretical formulae

    2.1. Angular spectrum representation of the Bessel beams

    In this section,we start with a description of the angular spectrum representation of the Bessel beams. As stated earlier,the Bessel beams are the exact solutions of the Helmholtz wave equation in circular cylindrical coordinates (ρ,φ,z).Mathematically,the scalar electric field of a Bessel beam propagating in the+z direction is given by

    In this work we will consider,for simplicity,only the paraxial Bessel beams given by Eq.(3). By setting z=0,we obtain the complex amplitude of the Bessel beams in the initial plane

    Following the idea of angular spectrum representation,the Bessel beams can be expanded in terms of lots of plane waves with variable amplitudes and propagation directions.By taking the Fourier transform of Eq.(4),we can evaluate the angular spectrum amplitude of Bessel beams,as follows:[39]

    where θ and ? being the spherical coordinates in k space.

    Substituting Eq. (4) into Eq. (5), utilizing the following integral formula:[40]

    and recalling the properties of Dirac delta function[39]

    it is finally derived that

    2.2. Vector wave analysis of the Bessel beams upon reflection

    As a next step, we now consider the reflection of Bessel beams at a plane interface between air and a homogeneous glass. It is well known that the reflection of plane waves at an interface between two media is described by the Snell law and Fresnel formulas,which,however,are not accurately complied by the Bessel beams. As has been mentioned, Bessel beams consist of a lot of plane waves, which are incident at different angles. Although each of the plane waves satisfies the Snell and Fresnel laws,their superposition exhibits unique polarization properties.To reveal some important and interesting features,it is necessary to carry out a vector wave analysis of the Bessel beams upon reflection. Here we adopt a hybrid method based on the angular spectrum representation and vector potential in the Lorenz gauge[36]to describe the vectorial structure of Bessel beams upon reflection.

    Fig.1. Illustration of a Bessel beam reflected from an air–glass interface.

    In the coordinate system (xi,yi,zi), an arbitrarily polarized Bessel beam is assumed to propagate parallel to the positive ziaxis, the vector potential of such a beam can be expressed as

    where the parameters α and β satisfying |α|2+|β|2=1 determine the polarization state of the incident beam,ki=k0=2π/λ0is the wave number in the air,with λ0being the wavelength of the beam, and uiis the complex amplitude of the Bessel beam. Within the paraxial approximation, the two dimensional Fourier transform of the complex amplitude uitakes the form[39]

    with

    being the angular spectrum of the Bessel beam.As we can see,a Bessel beam has been decomposed into lots of plane waves,which can be used to analyze the Bessel beam reflection at an interface between two different dielectric media.

    After reflection of the Bessel beam from an air–glass interface, the corresponding vector potential in the coordinate system(xr,yr,zr)can be written as

    in which, n denotes the refractive index of the homogeneous glass, the subscripts p and s identify the parallel and perpendicular polarizations, respectively. The existing studies have shown that the reflection coefficients change abruptly when the beam is incident near the Brewster angle and a Taylor series expansion based on the angular spectrum component could be utilized to correct the reflection coefficients.[20,43]In particular,rpand rscan be expanded as

    Before proceeding further,note that,the boundary conditions krx=?kixand kry=kiyhave been applied in Eqs. (15)and(17). Further considering the relations

    We can also write the reflection boundary conditions for the Bessel beams as

    Consequently, the angular spectrum amplitude of the Bessel beams after applying the reflection boundary conditions takes the form

    After calculations,we obtain

    in which

    where krand Zrare wave number and wave impedance in the air,respectively.Then,inserting Eq.(13)to Eqs.(28)and(29),and making paraxial approximation,we have

    in which

    2.3. Description of the energy, momentum, SAM, and OAM

    Having written explicitly the analytical expressions of the electric and magnetic fields of the reflected Bessel beams,we now proceed to study the local energy,momentum,SAM,and OAM of the Bessel beams during the reflection process at the Brewster angle. Here we adopt a canonical approach proposed by Bliokh et al.[38]to describe these dynamical quantities. Specifically, the energy, canonical momentum, SAM,and OAM densities of the reflected Bessel beams can be expressed as

    where ω is the angular frequency,Im[·]denotes the imaginary parts,and the superscript“*”denotes the complex conjugate.Obviously,the momentum,SAM,and OAM densities are vectors that include the x,y,and z components. Usually,we consider the transverse and longitudinal components of these dynamical quantities separately. Here the transverse component includes the contributions of x and y components,and the longitudinal component is the z component.

    3. Numerical results and discussion

    In this section, we perform some numerical simulations to explore the local dynamical characteristics of the paraxial Bessel beams reflection at an interface between air and BK7 glass with refractive index n=1.515, which leads to a Brewster angle θB=56.5?. Besides the parameters given below every figure, the common parameters are chosen as: the free space wavelength of Bessel beams λ0=632.8 nm, the half-cone angle ?0=5?,the polarization parameters(α,β)=(1,0), i.e., x linear polarization, the topological charge l=2,and the position of observed plane zr=λ0.

    Fig.2. Intensity patterns of the electric and magnetic field components of the reflected Bessel beams with different incident angles,and their corresponding phases are plotted in the upper right insets. Results are normalized to the corresponding maximum value of the total intensity for each illumination mode.

    To start, we consider the field and phase distributions of the reflected Bessel beams with different incident angles. By comparing Eqs. (30) and (31), we find that Erx=ZrHryand Ery=?ZrHrx, which indicate that Erxand Hry, as well as Eryand Hrxexhibit similar intensity patterns with different amplitudes. Here we only consider the components Erx, Ery,Erz, and Hrz. Figure 2 depicts the intensity patterns of these filed components, with their corresponding phases shown as insets in the top right corners. As is well known, the intensity distribution of the Bessel beams exhibits circular symmetry. For the incident Bessel beam with polarization parameters(α,β)=(1,0), i.e., x-linear polarization, its x component of the electric field and the y component of the magnetic field also possess circular symmetry. However,the intensity patterns of the central ring of the transverse field components Erxand Hrydeviate from the circular symmetry. The distortions become more severe with the increasing of incident angle, as illustrated in Figs.2(a1)–2(a3). When the incident angle is greater than the Brewster angle, distortions lead to the loss of vortex phase properties in the reflected Bessel beams. It is worthy to note that the amplitude distributions of the transverse field components Eryand Hrxinduced by the cross-polarization during the reflection process almost do not change with increasing the incident angle, as illustrated in Figs. 2(b1)–2(b3). In contrast, the longitudinal field components Erzand Hrzof the reflected Bessel beam are extremely sensitive to the incident angle,as shown in Figs.2(c1)–2(c7)and Figs.2(d1)–2(d7). It can be observed that the amplitude distributions of Erzand Hrzat Brewster angle incidence change abruptly. When the incident angle increases or decreases by the same angle relative to Brewster angle,the intensity patterns of Erzand Hrzare similar but rotate 180 degrees,which will lead to the change of the energy, momentum, SAM, and OAM of the reflected Bessel beam.

    Next, we examine the influence of the incidence angle on the energy, momentum, SAM, and OAM densities of the Bessel beams upon reflection, as illustrated in Fig.3. As we can see,the distribution patterns of these dynamical quantities for the reflected Bessel beams are sensitive to the incidence angle. Notably,the energy,momentum,SAM,and OAM change abruptly when the beam is incident near the Brewster angle.It can be seen that the distribution patterns of the energy and momentum densities for the reflected beams are similar except those near the Brewster angle. As the increase of the incident angle,the patterns gradually deviate from the circular symmetry.When the beam is incident near the Brewster angle,the circular symmetry of the patterns is seriously broken. Compared with the energy and momentum densities, the SAM density distribution of the reflected Bessel beam has completely lost the circular symmetry. Notably, when the incident angle increases or decreases by the same angle relative to Brewster angle,the distribution pattern of the SAM density remains unchanged. It also can be seen that the circular symmetry of the OAM density distribution pattern will be distorted as the incident angle increase. The distortions become much more serious when the incident angle is close to the Brewster angle.

    Fig.3. Normalized energy,momentum,SAM,and OAM density distributions of the reflected Bessel beams with different incident angles. The first line to the last line corresponds to the energy,momentum,SAM,and OAM densities,respectively.

    Fig.4. Distributions of the transverse and longitudinal momentums, SAM, and OAM densities of the reflected Bessel beams with topological charges:(a1)–(a6) l =?1, (b1)–(b6) l =0, (c1)–(c6) l =1, and (d1)–(d6) l =2, where the white arrows show the orientations of their corresponding transverse components. Results are normalized to the corresponding maximum value of each subgraph.

    Figure 5 shows the momentum,SAM,and OAM density distributions of reflected Bessel beams with different half-cone angles. As stated before, we restrict ourselves to the analysis of the reflection of the Bessel beams under paraxial approximation. Here we choose the half-cone angle as ?0=5?,10?,15?. It can be seen from Fig.5 that,the half-cone angle has a significant effect on the distributions of the momentum,SAM,and OAM densities. In particular, as the half-cone angle of the Bessel beam increases, the momentum, SAM, and OAM densities of the reflected beam gradually concentrate on the central area at the same observation plane. In addition, the larger the half-cone angle ?0,the larger the amplitude of these of these dynamical quantities.

    In all the numerical simulations above, the incident Bessel beams are assumed to be linearly polarized. As well known, the polarization state of a light beam can take different forms such as linear,circular,radial,azimuthal,and so on.Among which, the state of circular polarization is associated with SAM. It raises an interesting question, that is, how the local momentums,SAM,and OAM of the reflected beam behave when the incident Bessel beam is circularly polarized.To answer this question,we plot the distributions of the transverse and longitudinal momentums, SAM, and OAM densities for the Bessel beams with left circular polarization during the reflection process, as shown in Fig.6. Comparing Fig.6 with Figs. 4(d1)–4(d6), we find that the distribution patters of the local momentum,transverse SAM,and OAM densities change from axisymmetric structure to multi ring structure.The longitudinal SAM distribution of the linearly polarized Bessel beam is similar to that of the circularly polarized Bessel beam. We also find that both the momentum and SAM densities are mainly dominated by the longitudinal component of them,whereas the OAM density is dominated by its transverse component. This analysis suggests that changing the incident polarization offers an alternative way to regulate the local dynamical characteristics of Bessel beams during the reflection process.

    Fig.5. Distributions of the momentum, SAM, and OAM densities of reflected Bessel beams with different half-cone angles. Panels (a)–(c) are the momentum,SAM,and OAM density distributions along yr(xr=λ0)axis in the xr–yr plane with half-cone angles ?0=5?,10?,and 15?,respectively.

    Fig.6. Distributions of the transverse and longitudinal momentums, SAM, and OAM densities in the xr–yr plane for the Bessel beams with left circular polarization during the reflection process. (a1)and(b1)momentum,(a2)and(b2)SAM,(a3)and(b3)OAM,and the white arrows show the orientations of their corresponding transverse components.

    4. Conclusion

    In conclusion, we have investigated analytically and numerically the local dynamical characteristics of Bessel beams reflected from an air–glass interface near the Brewster angle.To describe such an issue exactly,a Taylor series expansion in form of angular spectrum component was applied to correct the reflection coefficients. The explicit analytical expressions for the electric and magnetic field components of the reflected Bessel beams were derived and used to calculate the energy,momentum, SAM, and OAM. The effects of the incidence angle, topological charge, half-cone angle, and polarization state of the incident beams on these dynamical quantities are numerically simulated and discussed. The results show that the local dynamical characteristics of the Bessel beams during the reflection process at Brewster angle incidence change abruptly, and can be regulated by altering the sign and value of the topological charge, as well as the half-cone angle and polarization state. In particular, the change of the sign of the topological charge has a significant effect on the transverse momentum, and the longitudinal SAM and OAM,but has no effect on the longitudinal momentum,and the transverse SAM and OAM.As the topological charge increases,the profiles of these dynamical quantities gradually go away from the center.Meanwhile, with the increasing of half-cone angle, the distribution patters of these dynamical quantities gradually concentrate on the central area at the observation plane. In addition,with changing the polarization state of the incident beam from linear to circular, the corresponding momentum, transverse SAM, and OAM density distributions change from axisymmetric structure to multi ring structure. These findings are valuable in understanding the behavior of optical beams with vortex structure and diffraction-free nature during the reflection process, and have potential applications in the fields of optical sensing,information processing,and new optoelectronic devices design.

    .国产精品久久| 波多野结衣高清作品| 免费大片18禁| 97超级碰碰碰精品色视频在线观看| 亚洲三级黄色毛片| 熟女电影av网| 日韩欧美三级三区| 久久性视频一级片| 淫妇啪啪啪对白视频| 国产乱人伦免费视频| 亚洲国产精品999在线| or卡值多少钱| 亚洲一区高清亚洲精品| 99国产精品一区二区三区| 日本黄大片高清| 宅男免费午夜| 给我免费播放毛片高清在线观看| 九色国产91popny在线| 网址你懂的国产日韩在线| 国产真实伦视频高清在线观看 | 欧美成狂野欧美在线观看| 在线播放国产精品三级| 日本成人三级电影网站| 我的女老师完整版在线观看| 欧美成狂野欧美在线观看| 久久人妻av系列| 在线a可以看的网站| 久久亚洲精品不卡| 精品久久久久久久末码| 国产色爽女视频免费观看| 麻豆成人av在线观看| 国产精品av视频在线免费观看| 亚洲欧美日韩卡通动漫| 成熟少妇高潮喷水视频| 国内精品一区二区在线观看| 日韩中字成人| 一边摸一边抽搐一进一小说| 天堂网av新在线| 成年女人看的毛片在线观看| 国产av不卡久久| 久久午夜亚洲精品久久| 国产成人a区在线观看| 亚洲 欧美 日韩 在线 免费| 精品久久国产蜜桃| 97超级碰碰碰精品色视频在线观看| 免费av观看视频| 神马国产精品三级电影在线观看| 精品免费久久久久久久清纯| 日韩欧美在线二视频| 老熟妇乱子伦视频在线观看| 在线免费观看的www视频| 十八禁人妻一区二区| www.熟女人妻精品国产| 人妻夜夜爽99麻豆av| 国产高清视频在线观看网站| 少妇人妻精品综合一区二区 | 99热只有精品国产| 99精品久久久久人妻精品| 成人一区二区视频在线观看| 99国产极品粉嫩在线观看| 露出奶头的视频| x7x7x7水蜜桃| 成人高潮视频无遮挡免费网站| 亚洲成人中文字幕在线播放| а√天堂www在线а√下载| 极品教师在线视频| 少妇高潮的动态图| 丰满人妻一区二区三区视频av| 一本久久中文字幕| 亚洲av中文字字幕乱码综合| 国产野战对白在线观看| 日本a在线网址| 成人亚洲精品av一区二区| 国产精品国产高清国产av| 少妇丰满av| 69av精品久久久久久| 精品99又大又爽又粗少妇毛片 | 久久久成人免费电影| 欧美成人一区二区免费高清观看| 欧美最黄视频在线播放免费| 国产三级在线视频| 日本a在线网址| 亚洲久久久久久中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 精品一区二区免费观看| 麻豆成人午夜福利视频| 国产精品亚洲美女久久久| 亚洲精品日韩av片在线观看| 久久午夜福利片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲欧美日韩卡通动漫| 精品人妻一区二区三区麻豆 | 国产色婷婷99| 成人毛片a级毛片在线播放| 色综合站精品国产| 欧美日韩亚洲国产一区二区在线观看| 成年女人看的毛片在线观看| 乱人视频在线观看| 在线播放国产精品三级| 国产爱豆传媒在线观看| 国产精品精品国产色婷婷| 精品一区二区三区视频在线| 老司机午夜福利在线观看视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一本综合久久免费| 日本黄大片高清| eeuss影院久久| 国产欧美日韩精品亚洲av| 天天躁日日操中文字幕| 一进一出好大好爽视频| 18禁在线播放成人免费| 精品熟女少妇八av免费久了| 中文在线观看免费www的网站| 91狼人影院| 亚洲成人精品中文字幕电影| 俺也久久电影网| 看免费av毛片| 美女大奶头视频| 久久亚洲真实| 天堂网av新在线| 日韩精品青青久久久久久| 18禁在线播放成人免费| 中文字幕免费在线视频6| 小说图片视频综合网站| 露出奶头的视频| 99久国产av精品| 婷婷精品国产亚洲av| 精品乱码久久久久久99久播| 99久久精品国产亚洲精品| 日韩精品中文字幕看吧| 88av欧美| 色视频www国产| 激情在线观看视频在线高清| 亚洲av成人av| 如何舔出高潮| 99久久久亚洲精品蜜臀av| 亚洲狠狠婷婷综合久久图片| 国产精品久久久久久久久免 | 我要搜黄色片| 亚洲人成网站高清观看| 无遮挡黄片免费观看| 久久亚洲真实| 国产色婷婷99| 精华霜和精华液先用哪个| 国模一区二区三区四区视频| 看黄色毛片网站| 少妇人妻一区二区三区视频| a在线观看视频网站| 可以在线观看毛片的网站| 免费看a级黄色片| 免费人成视频x8x8入口观看| 国内精品久久久久精免费| 99国产极品粉嫩在线观看| 色播亚洲综合网| 淫妇啪啪啪对白视频| 亚洲精品在线观看二区| 亚洲精华国产精华精| 人妻丰满熟妇av一区二区三区| 午夜福利在线在线| 99riav亚洲国产免费| 国产av麻豆久久久久久久| 精品人妻视频免费看| 国产精品久久视频播放| 国产熟女xx| 久久这里只有精品中国| 日韩亚洲欧美综合| 欧美激情国产日韩精品一区| 国产精品一区二区三区四区久久| 国产视频内射| 国产老妇女一区| 亚洲无线在线观看| 免费黄网站久久成人精品 | 日本黄色片子视频| 麻豆成人av在线观看| 亚洲国产欧美人成| 午夜久久久久精精品| 久久精品人妻少妇| 高清毛片免费观看视频网站| 国产熟女xx| 国产欧美日韩一区二区三| 国产精品美女特级片免费视频播放器| 国产精品国产高清国产av| 日本精品一区二区三区蜜桃| 欧美成人免费av一区二区三区| 成年女人看的毛片在线观看| 免费人成视频x8x8入口观看| 91在线观看av| 亚洲av成人av| 亚洲第一电影网av| 亚洲国产精品sss在线观看| a在线观看视频网站| 免费av观看视频| 久久婷婷人人爽人人干人人爱| 亚洲成人久久爱视频| 黄色一级大片看看| 淫秽高清视频在线观看| 真实男女啪啪啪动态图| 久久精品国产自在天天线| 亚洲国产色片| 亚洲经典国产精华液单 | 国产毛片a区久久久久| 精品午夜福利在线看| 国产精品伦人一区二区| 国产乱人视频| 欧美成狂野欧美在线观看| 国产免费男女视频| 国产精品日韩av在线免费观看| 亚洲男人的天堂狠狠| 国内少妇人妻偷人精品xxx网站| 女人十人毛片免费观看3o分钟| 日韩大尺度精品在线看网址| av欧美777| 国产人妻一区二区三区在| 欧美激情久久久久久爽电影| 乱人视频在线观看| 美女被艹到高潮喷水动态| 最新中文字幕久久久久| 精品无人区乱码1区二区| 久久精品国产亚洲av涩爱 | 日韩有码中文字幕| 欧美国产日韩亚洲一区| 中文字幕高清在线视频| 国产高潮美女av| 变态另类丝袜制服| 国产真实乱freesex| 啦啦啦韩国在线观看视频| 国产精品综合久久久久久久免费| 九色成人免费人妻av| 一级作爱视频免费观看| 成人欧美大片| 久久精品人妻少妇| 九九热线精品视视频播放| 欧美色欧美亚洲另类二区| 成人永久免费在线观看视频| 亚洲成人精品中文字幕电影| 亚洲国产精品成人综合色| 日本三级黄在线观看| 国产黄片美女视频| www.色视频.com| 一本久久中文字幕| 日韩大尺度精品在线看网址| 伦理电影大哥的女人| 日本三级黄在线观看| 国产爱豆传媒在线观看| 亚洲片人在线观看| 深爱激情五月婷婷| 成年女人毛片免费观看观看9| 久久久久久久久久成人| 亚洲成人精品中文字幕电影| 亚洲七黄色美女视频| 色av中文字幕| 国产探花极品一区二区| 日韩中字成人| 中国美女看黄片| 国产综合懂色| 身体一侧抽搐| 亚洲av成人av| 久99久视频精品免费| 免费人成在线观看视频色| 午夜免费成人在线视频| 日本a在线网址| www.熟女人妻精品国产| 国产午夜福利久久久久久| 欧美性猛交黑人性爽| 在线看三级毛片| 精品福利观看| 麻豆国产97在线/欧美| 97超级碰碰碰精品色视频在线观看| 午夜两性在线视频| 嫩草影院入口| 老司机深夜福利视频在线观看| 五月玫瑰六月丁香| 观看免费一级毛片| 国产精品久久久久久精品电影| 国产69精品久久久久777片| 1000部很黄的大片| 在现免费观看毛片| 一区二区三区激情视频| 久久久久国内视频| 人妻制服诱惑在线中文字幕| 制服丝袜大香蕉在线| 国产av麻豆久久久久久久| 高清日韩中文字幕在线| 高清在线国产一区| 久久婷婷人人爽人人干人人爱| 国产69精品久久久久777片| 老熟妇仑乱视频hdxx| 国产成人影院久久av| 国产毛片a区久久久久| 最近视频中文字幕2019在线8| 高潮久久久久久久久久久不卡| 草草在线视频免费看| 免费看日本二区| 欧美+亚洲+日韩+国产| 毛片女人毛片| 99视频精品全部免费 在线| av视频在线观看入口| 在线观看舔阴道视频| 色哟哟·www| 真实男女啪啪啪动态图| 国产精品免费一区二区三区在线| 天堂影院成人在线观看| 久久这里只有精品中国| 国产久久久一区二区三区| 亚洲欧美日韩无卡精品| 欧美中文日本在线观看视频| 精品久久久久久,| 51国产日韩欧美| 色哟哟哟哟哟哟| 性色avwww在线观看| 免费无遮挡裸体视频| 欧美日韩乱码在线| 欧美+日韩+精品| 亚洲无线在线观看| 在线国产一区二区在线| 琪琪午夜伦伦电影理论片6080| 夜夜躁狠狠躁天天躁| 他把我摸到了高潮在线观看| 99久久成人亚洲精品观看| 国产男靠女视频免费网站| 99riav亚洲国产免费| 亚洲一区高清亚洲精品| 亚洲男人的天堂狠狠| 日韩中文字幕欧美一区二区| 免费av毛片视频| 五月玫瑰六月丁香| 美女 人体艺术 gogo| 亚洲av五月六月丁香网| 亚州av有码| 国产视频内射| 九九在线视频观看精品| 国产精品爽爽va在线观看网站| 日韩欧美在线二视频| 91字幕亚洲| 久久亚洲真实| 麻豆一二三区av精品| 久久亚洲精品不卡| 一进一出抽搐动态| 免费无遮挡裸体视频| 久久久久久国产a免费观看| 免费黄网站久久成人精品 | 欧美zozozo另类| 免费观看精品视频网站| 91av网一区二区| 一本一本综合久久| 免费看光身美女| 国产成人福利小说| 精品久久久久久成人av| 日韩欧美国产一区二区入口| 国产精品久久视频播放| 成人一区二区视频在线观看| 精品久久久久久久久久免费视频| 99视频精品全部免费 在线| 深爱激情五月婷婷| 亚洲中文日韩欧美视频| 精华霜和精华液先用哪个| 麻豆国产av国片精品| 国内精品一区二区在线观看| 搡女人真爽免费视频火全软件 | 丰满人妻熟妇乱又伦精品不卡| 精品人妻偷拍中文字幕| 深爱激情五月婷婷| 九色成人免费人妻av| 成人av在线播放网站| 精品国内亚洲2022精品成人| 国产高清视频在线播放一区| 国产欧美日韩精品亚洲av| 我的女老师完整版在线观看| 欧美色欧美亚洲另类二区| 白带黄色成豆腐渣| 精品午夜福利在线看| 成年免费大片在线观看| 日本成人三级电影网站| 在线观看66精品国产| 国产av不卡久久| 99热这里只有精品一区| 午夜福利在线观看免费完整高清在 | 成人特级黄色片久久久久久久| 亚洲av电影在线进入| 精品人妻一区二区三区麻豆 | 狠狠狠狠99中文字幕| 国产色爽女视频免费观看| 日韩欧美精品v在线| 99riav亚洲国产免费| 91在线观看av| www.色视频.com| 如何舔出高潮| 99久久久亚洲精品蜜臀av| 亚洲国产精品成人综合色| 国产精品女同一区二区软件 | av专区在线播放| 男女做爰动态图高潮gif福利片| x7x7x7水蜜桃| 999久久久精品免费观看国产| 亚洲av熟女| 9191精品国产免费久久| 亚州av有码| 亚洲美女搞黄在线观看 | 欧美一级a爱片免费观看看| 午夜福利欧美成人| 少妇人妻精品综合一区二区 | 精品久久久久久,| 国产精品伦人一区二区| 久久精品国产亚洲av香蕉五月| 99久久成人亚洲精品观看| 日韩欧美三级三区| 窝窝影院91人妻| 国产精品爽爽va在线观看网站| 欧美日本视频| 性色av乱码一区二区三区2| 国产精品国产高清国产av| 精品久久久久久久末码| 三级国产精品欧美在线观看| 美女 人体艺术 gogo| 午夜影院日韩av| 亚洲欧美精品综合久久99| av欧美777| 午夜久久久久精精品| 十八禁网站免费在线| 真人做人爱边吃奶动态| 美女xxoo啪啪120秒动态图 | 亚洲国产色片| 2021天堂中文幕一二区在线观| 99久国产av精品| 99久久精品热视频| 中文字幕久久专区| 国产一区二区三区在线臀色熟女| 亚洲国产精品合色在线| 高清毛片免费观看视频网站| 亚洲专区中文字幕在线| 国产精品伦人一区二区| 久久久久久久久大av| 夜夜躁狠狠躁天天躁| 国产精品日韩av在线免费观看| 国产精品不卡视频一区二区 | 精品国产亚洲在线| 国产麻豆成人av免费视频| 久久人人精品亚洲av| 成人亚洲精品av一区二区| 久久精品国产清高在天天线| 亚洲三级黄色毛片| 国内毛片毛片毛片毛片毛片| 黄色日韩在线| 久9热在线精品视频| 日韩精品青青久久久久久| 成年女人毛片免费观看观看9| 久久精品国产亚洲av香蕉五月| 国产精品一区二区免费欧美| 一个人免费在线观看的高清视频| 国产毛片a区久久久久| 俺也久久电影网| ponron亚洲| 国产亚洲欧美98| 一区福利在线观看| 日韩大尺度精品在线看网址| 欧美性感艳星| 欧美最新免费一区二区三区 | 在线a可以看的网站| 国产欧美日韩一区二区精品| 午夜福利18| 日韩欧美在线二视频| 天堂动漫精品| 午夜视频国产福利| 欧美激情在线99| 亚洲 欧美 日韩 在线 免费| 老司机午夜十八禁免费视频| 草草在线视频免费看| 啦啦啦观看免费观看视频高清| 一个人免费在线观看的高清视频| 白带黄色成豆腐渣| 免费av毛片视频| 久久久久精品国产欧美久久久| 99在线人妻在线中文字幕| 国产亚洲精品av在线| 女人十人毛片免费观看3o分钟| 国产精品久久久久久久电影| 亚洲人成伊人成综合网2020| 亚洲美女视频黄频| 美女被艹到高潮喷水动态| 免费观看人在逋| 小说图片视频综合网站| 在线免费观看不下载黄p国产 | 老鸭窝网址在线观看| 国内精品美女久久久久久| xxxwww97欧美| 99久久精品热视频| 国产在线男女| 亚洲国产精品成人综合色| 身体一侧抽搐| 成年女人毛片免费观看观看9| 我的女老师完整版在线观看| 99久久99久久久精品蜜桃| 国产精品久久久久久人妻精品电影| 永久网站在线| 国产69精品久久久久777片| 国产欧美日韩一区二区三| 国产激情偷乱视频一区二区| 欧美在线一区亚洲| 亚洲成人久久性| 又爽又黄无遮挡网站| 国产私拍福利视频在线观看| 91在线观看av| 性色avwww在线观看| 久久欧美精品欧美久久欧美| 日本三级黄在线观看| 麻豆国产97在线/欧美| 少妇熟女aⅴ在线视频| 禁无遮挡网站| 亚洲成人精品中文字幕电影| 真实男女啪啪啪动态图| 超碰av人人做人人爽久久| 国产精品亚洲一级av第二区| aaaaa片日本免费| 国产伦精品一区二区三区视频9| 欧美潮喷喷水| 亚洲黑人精品在线| 国产爱豆传媒在线观看| 免费黄网站久久成人精品 | 免费看光身美女| 亚洲最大成人手机在线| 国产真实伦视频高清在线观看 | 三级国产精品欧美在线观看| 99久国产av精品| 波多野结衣高清作品| 一个人看视频在线观看www免费| 青草久久国产| 丁香欧美五月| 精品国内亚洲2022精品成人| 久久久久久久精品吃奶| 亚洲专区中文字幕在线| 日本在线视频免费播放| 中文字幕熟女人妻在线| 欧美区成人在线视频| 99精品久久久久人妻精品| 一a级毛片在线观看| 成人欧美大片| 日本 欧美在线| 日韩欧美国产一区二区入口| 精品久久久久久久久久久久久| 国产一区二区三区在线臀色熟女| 国产视频一区二区在线看| 亚洲欧美激情综合另类| 久久精品国产清高在天天线| 一本综合久久免费| 久久午夜亚洲精品久久| 少妇被粗大猛烈的视频| 看片在线看免费视频| 中亚洲国语对白在线视频| 久久久久亚洲av毛片大全| 黄色丝袜av网址大全| 乱人视频在线观看| 精品国产亚洲在线| 亚洲欧美精品综合久久99| 久久中文看片网| 国产激情偷乱视频一区二区| 男人舔女人下体高潮全视频| 午夜亚洲福利在线播放| 99久久精品一区二区三区| 变态另类丝袜制服| 高潮久久久久久久久久久不卡| 国产成年人精品一区二区| 级片在线观看| 亚洲av美国av| 丁香六月欧美| 露出奶头的视频| 亚洲最大成人中文| 久久亚洲真实| 夜夜看夜夜爽夜夜摸| 欧美乱妇无乱码| 久久热精品热| 亚洲欧美激情综合另类| 精品久久久久久,| 午夜福利成人在线免费观看| 国产主播在线观看一区二区| 中文在线观看免费www的网站| 亚洲av免费在线观看| 亚洲av成人精品一区久久| 久久精品综合一区二区三区| 特级一级黄色大片| 欧美黑人巨大hd| av福利片在线观看| 男人和女人高潮做爰伦理| 日韩免费av在线播放| 99热这里只有是精品在线观看 | 欧美成人一区二区免费高清观看| 亚洲中文字幕日韩| 18禁黄网站禁片午夜丰满| 青草久久国产| 成人一区二区视频在线观看| 中文字幕熟女人妻在线| 久久久久免费精品人妻一区二区| 免费看美女性在线毛片视频| 国产精品一区二区三区四区免费观看 | 国产v大片淫在线免费观看| 在线观看一区二区三区| 国产综合懂色| 欧美性猛交黑人性爽| 亚洲最大成人中文| www.www免费av| 日韩免费av在线播放| 免费看日本二区| 久久久久久久久大av| 天堂av国产一区二区熟女人妻| 国内毛片毛片毛片毛片毛片| 亚洲经典国产精华液单 | 国产爱豆传媒在线观看| 国产精品伦人一区二区| 丰满人妻一区二区三区视频av| 赤兔流量卡办理| av视频在线观看入口| 日本黄色视频三级网站网址| 中文字幕精品亚洲无线码一区| 久久精品国产自在天天线| 午夜精品一区二区三区免费看| 欧美性猛交╳xxx乱大交人|